
ORGANIZING THE SEQUENCING OF PROCESSES

Fred Lesh
Jet Propulsion Laboratory

California Institute of Technology

Pasadena, CA 91103/USA

ABSTRACT

The difficult part of many computer applications is the design and

implementation of control mechanisms which allow the necessary calcula-

tions to be performed at exactly the right time or in exactly the right

logical sequence. Designing systems of this kind involves the designer

in a variety of unusually interesting problems, and requires blending

classical design approaches with techniques peculiar to computational

control applications, This paper presents three examples of such appli-

cations and describes the approach adopted for each. The classical design

steps are then discussed, and elements peculiar to computational control

are highlighted by illustrations drawn from the three sample systems.

I. INTRODUCTION

Many kinds of complexity plague designers of software systems. They are over-

whelmed by the number and sophistication of the equations of motion for an inter-

planetary spacecraft, innundated with the sheer volume of options and special cases

of a business application, or puzzled how to achieve a convergent algorithm in the

solution of coupled sets of partial differential equations.

But there is a wide class of computer applications in which the primary com-

plexity stems not from the difficulty or variety of the underlying computations but

from the need to make those computations in the right order or at the right time.

Systems developed to achieve this kind of ordering and timing are called "computa-

tional control systems." Three examples of such systems are discussed in Section If.

Computational control systems are usually written assuming that they will be

used more than once for a variety of applications within a certain class. Program-

mers who use an already developed control system for a new application are called

"users." But a computational control system may be developed for a single applica-

tion in order to achieve a flexible system architecture which avoids large reprogram-

ming efforts during the system checkout and acceptance period. The example of Sec-

tion II-A is such a case.

The architecture chosen for a computation control system can make the difference

between a chaotic, inefficient program -- difficult to understand and maintain -- and

an orderly, even elegant program which pleases the maintenance staff as well as the

403

designer. The task of arriving at an orderly architecture for computational control

systems blends standard system design concepts with other concepts peculiar to problems

of computational control. Section III describes a set of standard steps in system

design and some novel features of the standard steps which arise from peculiarities of

computational control problems. The novel features and their impact on the standard

steps are presented in terms of illustrations drawn from the examples of Section II.

II. EXAMPLES OF COMPUTATIONAL CONTROL SYSTEMS

Sections A, B, and C below contain examples of computer applications leading to

interesting and difficult computational control problems. A brief description of the

problem is given in each case, followed by an indication of the kind of system devel-

oped to solve the problem.

A. Mosaic Tilin~

Figure 1 shows a test frame produced by a program written to process TV picture

data from the camera aboard the Viking Lander spacecraft, which in late 1975 trans-

mitted to earth the first pictures of the rock-strewn plains of Mars. This picture

is a mosaic of tiny tiles -- so small that they can be seen in the 20 x 20 centimeter

original glossy only under a strong magnifying lens. The total frame is 1024 tiles

across and 1024 tiles deep. The tiles range from black to white in 64 shades of gray.

Unlike real ceramic tiles, the tiles originate aboard the spacecraft as 6-bit integers

which represent gray levels, reside for a while in computers as 8-bit bytes of data,

and end up as tiny spots on s photographic film. The tiles are called "pixels."

Processing of images, a complicated task that has been the subject of many

papers, is not the concern here. Instead, this paper concentrates on the problem of

producing the total frame -- image plus borders, annotation, histograms, gray-level

calibration scale, etc. In this process, the image is assumed to be stored as data

bytes in bulk storage where it can easily be retained and inserted into the frame as

required.

The complications in compiling the frame arise from the fact that the number of

pixels in the image is too large (106) to store conveniently in random access memory.

Instead, it is necessary to generate the picture one line at a time and write the lines

on magnetic tape in the format needed by the film recorder, which produces the final

hard copy. The Viking Lander camera produced vertical data lines that sweep from bot-

tom to top instead of the horizontal lines familiar from commercial TV that sweep

from left to right, so it is natural to produce vertical lines for the entire frame

also.

Figure 2 is an approximate expansion of the bottom right-hand corner of one of

the histograms which appears along the right edge of Figure i. The area of Figure 2

404

Figure I. Test Frame From a Mosaic Tiling Program

is shown broken into six subareas. Each of these subareas is associated with a program

which generates the pixels for that area. These programs are called "pixel genera-

tors." The breakdown of the total area of Figure 2 into six subareas is necessary to

make each of the pixel generators a simple, logical entity. Even with this much break-

down, the pixel generators for suhareas 1 and 6 are far from trivial since the histo-

gram and annotation both vary from one picture to the next.

The difficulty in building a single line of the frame in Figure i is that any

single vertical line consists of pixels from many different areas. To produce the

necessary pixels for a given vertical line, many different pixel generators must run

in the right order, and that order is different for some vertical lines than for

405

Figure 2. Lower Right Corner of a Histogram

others. Each pixel generator must produce only a small subset of its total pixels

(those for one line through the area associated with the pixel generator) and must

then somehow remember where it was until its turn comes to produce pixels for the next

line. The problem of coordinating the activities of all the pixel generators is an

exercise in computational control.

The control scheme adopted for this problem is table-driven, as illustrated in

Figure 3, which, for explanatory purposes, shows a simple pattern of areas unrelated

to those of Figures 1 and 2. But areas 3 and 5 require the same pixel generator (G3) ,

and this is exactly the situation which arises with the histograms that appear along

the middle of the right-hand side of Figure i. Even though areas 3 and 5 require the

same pixel generator, they need different data.

Each pixel generator is written as a pure procedure operating on a state vector

which can be pointed to by a data pointer P. The pixel generator is written as though

it begins at line zero, and each time it is called, it outputs a single vertical line,

increments the internal line count in its state vector, and returns. The state vector

for the pixel generator may contain just the internal line number, but it may also

contain data such as that used to produce the histograms at the right of Figure i.

The first row of the control table of Figure 3 tells the control program to

produce lines 0 through 12 of the frame by calling pixel generator G 3 with data pointer

P5' then calling pixel generator G 3 again with data pointer P3' and finally calling

406

AREA 1

GI ' P1

FRAME AREA 3

G3' P3

AREA 5

G3' P5

LINE # 0

i
,

I
I

I
!

I
I
1
!

, , J

13

AREA 2

G2' P2

AREA 4

G4' P4 AREA 7

AREA 6

G4' P6

20 30

G5' P7

50

CONTROL
TABLE

o, (G 3, Ps), (G 3, P3), (G 1 , P1).

13, (G 3, P5), (03, P3), (02, P2)-
20, (04, P6), (o 4, P4), (02, P2).

30, (G 5, P7), (G 2, P2).

50.

Figure 3. Sample Frame and Control Table for Mosaic Tiling

pixel generator G 1 with data pointer P1 o The control program simply produces lines

according to the specifications of the control table, and writes the lines one at a

time on magnetic tape.

B. Spacecraft Control

An interplanetary spacecraft typically consists of as many as 20 subsystems

such as the power subsystem, the propulsion subsystem, the attitude control subsystem,

and the television subsystem. From a computer software point of view, operating a

spacecraft is similar to operating an oil refinery or an automotive assembly plant.

The operations to be performed are usually such simple ones as closing a switch. The

complexity of the problem derives entirely from the necessity to close the right

switch at exactly the right time.

At the Jet Propulsion Laboratory, the natural and historical partitioning of

spacecraft into subsystems led easily to consideration of distributed systems of

407

microprocessors for spacecraft control and data handling, and a breadboard system was

constructed to test the concept [i, 2]. In the breadboard, each subsystem is assigned

a microprocessor with just enough capacity to control that subsystem and to acquire

and format its data. All the processors are tied together with a common data bus.

Even though the spacecraft control job is distributed, each microprocessor still

has several programs which have to run concurrently. The TV subsystem, for example,

has one program to drive a TV camera through a complex cycle of erasures needed to

eliminate the ghost of the old picture from the vidicon, another program to simulta-

neously drive data lines out of the alternate camera, and a third program to gather

miscellaneous engineering data needed by the system controller to monitor the health

of the TV subsystem.

Most real-time systems are completely interrupt-driven in the sense that all

activity initiations and completions are signaled by a processor interrupt. Interrupt-

handling programs turn on flags requesting that computations be performed, and pro-

cessing is then done on a highest-priority-first basis. Because it is important to

be able to easily diagnose malfunctions on a spacecraft operating millions of miles

from earth, JPL's breadboard operates in a completely different manner. The only

interrupt is one which occurs simultaneously in all processors every 2.5 milliseconds.

There is nothing special about 2.5 milliseconds -- it is simply an interval chosen to

give time resolution more accurately than any which would be needed for spacecraft

control, yet long enough to allow completion of calculations which need to be done

at a given point in time.

This 2.5-millisecond interrupt serves two related purposes. The first purpose

is to act as the escapement for a software clock. The 2.5-millisecond interval

between interrupts is called a "tick." There are 400 ticks to a second, and a soft-

ware clock in each processor increments time (hours, minutes, seconds, ticks) at each

interrupt. The second purpose is to strobe out all input or output signals which have

been set up by the operation of software during the tick.

The interface circuitry between processors and their instruments is organized

in such a way that electrical control signals produced by software operation during

a given 2.5-millisecond interval are buffered until the end of the interval before

being sent to the external hardware. If programs A and B both run and produce output

signals during a 2o5-millisecond interval, the output signals are identical whether

program A or B runs first. The order of program execution within a 2.5-millisecond

interval is therefore irrelevant, and the programs are thought of as operating simul-

taneously and instantaneously.

Each program running in this system is required to do specific (usually very

simple) things at exactly the right times as kept by the software clock. The computa-

tion control problem in this application centers around the questions: How can

several programs -- each of which must time its operations exactly -- be run concurrently?

408

Can application programs be written in such a way that each is transparent to the

others during development and operation? Can they be designed and written using

standard DO, IF, and CALL structures?

It was originally proposed to organize the software system around time-event

tables. But it is difficult to achieve the effect of DO loops in a time-event system.

Also, it was desired to do structured design and coding.

The adopted solution to this problem involves two constructs, called WAIT and

WHEN, which allow for program timing. If, for example, a programmer wishes to delay

the execution of a sequence code defining some action A until the first tick for

which his software clock reads SEC = 40, he writes:

WHEN SEC = 40

DO ACTION A

If the programmer wishes to delay the execution of a sequence of code defining action

B for exactly 75 ticks, he writes:

WAIT 75 TICKS

DO ACTION B

These constructs can be written anywhere inside or outside of the ranges of DO, IF,

or CALL statements. Consider, for example, the case in which it is desired to drive

data from a 600-1ine TV camera. Assume that the camera must start taking the picture

at the exact beginning of each new minute (when SEC = 0 and TICK = 0), that the camera

takes exactly i0 lines of data each second, and that the line sweep requires 90 milli-

seconds followed by a 10-millisecond period during which the vidicon beam "flies back"

to the beginning of the next line. The control loop for this operation is illustrated

in Figure 4.

WHEN SEC = 0, T I C K = 0

DO FOR LINE = 0, I , 2 799

START LINE READOUT

WAIT 36 TICKS

STOP LINE READOUT

START FLYBACK

WAIT 4 TICKS

ENDDO

Figure 4. Design Language for Spacecraft Control Applications

409

All application programs written in this fashion are run under an executive.

The WHEN and WAIT constructs are CALLs to WHEN and WAIT subroutines which operate as

part of the executive. Each time an application program comes to a WAIT or WHEN, the

executive takes over, remembers where control came from, and, on each subsequent TICK,

tests whether the conditions stated on the WAIT or WHEN are satisfied. Only when they

are satisfied does the executive return control to the application program at the

location immediately following the stated test conditions.

Using this scheme, the executive runs, in any tick, only the short segment of a

given user program between two logically consecutive WAIT or WHEN statements. The

programmer of an application program never needs to be aware that this is going on,

but it allows his programs to time their operations and simultaneously enables the

executive to maintain control so it can run several application programs concurrently

[3].

The only control table needed by the executive is shown in Figure 5 and consists

of a set of eight pointers. Each application is assigned to one pointer. If the

application program is not running, its pointer is zero. If it is running, its pointer

points to the test which must be satisfied before control is returned to the program.

POINTER # 0 I 2 3 4 5 6 7 CONTROL
TABLE

POINTER 0 0 PA 0 0 PB 0 0

PROGRAM A

WHEN TICK = 23 ~ , t - -

WHEN SECOND = 30

PROGRAM B

WHEN HOUR = 2

- - ~ WHEN TICK = I

Figure 5, Control Table for Concurrent Program Operation

C. Spacecraft Simulation

The primary product of a spacecraft simulation is a real-time simulated telemetry

stream. Months before a spacecraft is launched, teams of engineers and scientists

410

spend hundreds of hours rehearsing their roles in monitoring and controlling its

operation. The effectiveness of these rehearsals depends on realistic simulation of

the spacecraft and its telemetry stream.

Spacecraft simulation is mostly a discrete problem. Commands arrive at the

spacecraft and cause state changes; instruments turn on and off; the telemetry mode

changes. All these are discrete events which can be queued and executed in a pre-

determined order. But if it is to be realistic, spacecraft simulation must also

involve things like the three angles of spacecraft attitude, the battery charge, and

the instrument temperatures, all of which change continuously. Continuous variables

may be calculable directly as functions of time, but more often they are obtainable

only as solutions to a simple set of differential equations. So the spacecraft simu-

lation problem is essentially a continuous/discrete problem [4~.

One complication in the computational control of simulation arises from the

magnitude of the programming task. Programs which simulate given spacecraft sub-

systems are called "models," and usually i0 to 20 models running simultaneously are

required to produce an effective telemetry simulation. A given programmer/analyst

is often assigned to write and check out one to five models. Generally, no one pro-

grammer/analyst understands all the ramifications of certain spacecraft events.

For example, a program simulating subsystem A may set a logical variable with

a given name. That logical variable may affect operation of subsystems B, C, D, and

E. The programmer of the subsystem A model may know about some of these instructions,

but not all. If he neglects to notify any subsystem model that he has changed a logi-

cal variable which affects it, the ramifications of the change will not be propagated

correctly.

A second complication in this kind of problem is that there are often a variety

of simple actions which must be performed at specified values of the continued vari-

ables. In simulating a spacecraft attitude control system, for example, there is a

continuous variable -- usually a combined position sensor and rate sensor output --

which determines whether or not the tiny cold-nitrogen jets which control spacecraft

attitude should be on or off. The jet turns on when this variable reaches one value

and then shuts off when it reaches another. Simulating the turn-on or shut-off of

the jet is a simple matter of changing the value of a parameter used in the differen-

tial equations which describe the spacecraft's rotatory motion. But that action

must be taken at exactly the right point, and it is not possible to predict in advance

the time associated with that point.

A third complication peculiar to spacecraft simulation is that simulated time

must be kept close to real time, though not as close as might at first be thought

neeessary. The reason for this is illustrated in Figure 6. At distances where inter-

planetary spacecraft spend most of their time (lunar distances or greater), it takes

many seconds for a command to pass from the transmitter on earth to the receiver on

411

t- ~t

I

TRANSMISSION
TIME OF TELEMETRY
ARRIVING AT TIME t

t
I

CURRENT
CLOCK

TIME

t + s t
I

ARRIVAL TIME
OF COMMANDS SENT

AT TIME t

Figure 6. The Real-Time Window

the spacecraft. Telemetry changes resulting from any command require a similar time

to return to earth. Therefore, it is necessary only that simulated time T remain

between t - At and t + At, where t is real time and AT is the light travel time.

This scheme requires that commands sent at a time t be buffered until T = t + At
o o

and that telemetry data produced at ~d be buffered until ~d = t - At. But the rate

of command transmission is very low, and telemetry data buffers can be kept small by

maintaining T near t - At.

Effective solution of the computational control problem for spacecraft simula-

tion requires three major elements -- one for each of the complications described

above.

To handle the complexity and interaction problem, models are organized as shown

in Figure 7. The first part of each model handles initialization of all continuous

and discrete variables associated with the subsystem. The second part handles discret~

variable calculations. Using a method reminiscent of the General Simulation Language

(GSL), this part of the model has many entries [5]. The code at each entry normally

executes one simple action (event). Figure 7 shows only three entries (I0, 20, and

30) for ease of illustration. The third part of the model calculates the continuous

variables associated with the subsystem.

Propagation of effects between models is allowed for by providing a class of

logical variables which must always be set or reset with the statement

CALL LSET (LV,X)

where LV is the logical variable and X gives the value (0 or I) to which LV is to be

set. The subroutine LSET changes LV, then checks a list associated with the variable

LV to see how to propagate the effects of the variable, and, in effect, enters the

412

INITIALIZATION
SUBROUTINE ACSI

RETURN

10 m

DISCRETE EVENT HANDLING

SUBROUTINE ACS

GO TO (10, 20, 30) K

R ETUR N

2 0 ~

RETURN

3 0 ~

RETURN

CONTINUOUS VARIABLE CALCULATION

SUBROUTINE ACSX

RETURN

Figure 7. Structure of a Simulation Model

appropriate discrete event handlers with the correct control parameter k.

is constructed automatically as the result of calls of the type

CALL LTAB (LV,T/F/B,M,K)

where the cases T, F, and B are defined as:

Case Meaning

T

F

B

The list

call model M with parameter K when logical variable LV goes from F to T

call model M with parameter K when logical variable LV goes from T to F

call model M with parameter K with logical variable LV changes

413

Most calls to LTAB are made at initialization time, but they can be and often are

made from the discrete event subroutines.

The second major element is required to allow programmers to easily specify and

achieve the execution of events at given values of continuous variables. To specify

that an action be taken at a given time, the programmer writes:

C~L TSET (T,M,K)

Here T is the value of time (t) at which the action is taken, and the code which

performs the action is at entry K of the discrete event handling portion of model M.

To specify that an action be taken when ,a continuous variable V becomes equal to C,

the programmer writes:

CALL YSET (V,C,M,K)

The set of items (V,C,M,K) is called a "Z-trigger," and the point at which V = C is

called the "Z-trigger 0-point."

The third major element (required to keep simulated time close to real time) is

the computational control algorithm itself. This algorithm is shown in Figure 8.

The 0-points of Z-triggers are not easy to find, and the search requires iteration.

The complexity of this search is completely represented by step 4 in the algorithm

of Figure 8.

III. STEPS IN DESIGNING COMPUTATIONAL CONTROL SYSTEMS

System requirements are elusive, and gathering and documenting requirements is

a major part of any system development. But the problem of requirements gathering is

a subject in itself and too complex to be covered here.

So this paper assumes that a reasonsbly good statement of the requirements is

available and discusses the standard system design steps that remain, emphasizing

peculiarities and regularities which arise from restricting the problem class to that

of computational control problems.

A. Analysis

The first task of the system designer is to establish the elements from which

the system will be constructed. In the case of the mosaic tiling system, for example,

the elements are the individual pixel generators in the form of closed subroutines,

the control table, and the system control program which uses the pixel generators and

the table to construct the picture lines. In the case of simulation, the elements are

more complex. There is still a system control program, but it is far more complicated

than that for mosaic tiling. Instead of pixel generators, there is a set of models~

but each model has a complicated internal structure which needs to be understood in

414

LET H BE THE MAXIMUM STEP SIZE FOR CONTINUOUS VARIABLE CALCULATIONS

LET 6 BE THE ONE-WAY LIGHT-TRAVEL TIME

LET f BE REAL TIME

LETs'- BE SIMULATED TIME

LET T L A N D ' r R BE THE LEFT AND RIGHT ENDS OF A SIMULATED TIME INTERVAL

LET TNE X BE THE SMALLEST T FOR ANY UNSATISFIED TSET CALLS

LET E < ~/2

0. INITIALIZE ALL MODELS

1. SET'rL:'r,'rR=MIN('r+ 6/2, T+ H, TNE X)

2. WAIT UNTIL " r< t - 6 ÷ E

3. CALCULATE CONTINUOUS VARIABLES AT 'r R FOR ALL MODELS

4. IF ANY Z-TRIGGER 0-POINTS LIE BETWEEN "rk AND TR ADJUST TR UNTIL IT IS THE

FIRST Z-TRIGGER 0-POINT

5. INTERPOLATE AND BUFFER TELEMETRY FOR INTERVAL ('r L, s" R)

6. PERFORM ACTIONS ASSOCIATED WITH ANY TRIGGERS AT"/'R

7. REPEAT FROM STEP 1.

Figure 8. Computational Control Algorithm for Spacecraft Simulation

detail. Instead of a single control table, there are T-triggers, Y-triggers, and

lists associated with logical variables.

It is important to note that in spite of the diversity of applications in

Sections II-A through C, the systems have a certain regularity of structure. In each

case, there is a control program which runs the system, one or more control tables

used by the control program to determine what to do next, and a set of slave programs

(pixel generators, application programs, or models) which do the desired calculations

under the direction of the control program. These elements can be expected to appear

in almost any computational control system, and recognition of this fact gives the

system designer a quick start in drawing his system diagrams.

In the mosaic tiling example, the control table completely defines the sequence

of calculations from start to finish. Sequencing does not depend on calculated

results. In the spacecraft control and simulation examples, however, sequencing by

the control program depends on the results of calculations or real-time interactions

and cannot be predicted in advance. As a result, each of these last cases requires

the development of mechanisms by which the user can communicate new sequencing

415

requirements through the slave programs to the control program. In each case, these

mechanisms involve language elements. In the spacecraft control case, the language

elements used are the WHEN and WAIT. In the simulation case, the language elements

used are CALL TSET, CALL YSET, CALL LSET and CALL LTAB.

These language elements can be thought of as statements which pass necessary

sequencing information to the control program. In each case, they translate as

simple CALLs to subroutines. Only in the case of the WAIT and WHEN is the control

more complicated. These cases, too, are CALLs to subroutines, but the subroutines

do not return control immediately as subroutines normally would.

So the designer can expect that if the sequence of control depends on calculated

results, he will need some simple language elements to pass sequencing information

from the slave programs to the control program. He can also expect the language

elements to translate to subroutine CALLs.

B. synthesis

Synthesis is the process of putting the diverse elements of the system back

together again, and consists primarily of designing the algorithms used by the control

program. Even though analysis and synthesis seem like entirely different activities,

they are so mixed together in early design stages that it would be almost impossible

to say where one began and the other left off. They are like two sides of a coin of

design that the designer flips from time to time to decide which to do next. Consider,

for example, developing an algorithm to control operation of application programs in

the spacecraft control system. The question immediately arises: How does the control

program know when the application programs need control again and to what location

control should go? Obviously, some kin~ of control table is needed. But there are

countless table structures which can be used, and each different table structure

requires a different algorithm. Deciding which tables to use and what structures

they should have must be done concurrently with deciding on the algorithm to be used

in the control program. One effective procedure involves writing down a clear picture

of a control table, sketching an algorithm which uses it, and then looking for ways

to simplify and speed up the algorithm by changing the control table. Several itera-

tions of this procedure with constantly increasing precision of definition usually

suffice to produce something good enough to serve as a starting point for the system

architecture.

There are many ways to depict algorithms. The use of flow charts is an old,

well understood technique and is perfectly acceptable. A better system involves the

use of structured languages such as "Program Design Language" and the processor

developed by Caine, Farber, and Gordon, Inc., of Los Angeles [6]. Restricting pro-

gramming structures to DO, IF, and CALL generally leads to better program organiza-

tion than allowing unrestricted branching. Structured English language statements

416

are far more compact and efficient than flow charts, and -- given a processor -- far

easier to change.

Users of structured languages should always be aware that the rules of structured

usage are intended to simplify programming structures and make them easier to under-

stand. Whenever adherence to structured usage clearly complicates programs or makes

them more difficult to understand, the rules should be violated. A good example of

this violation occurs in the WAIT and WHEN statements of the spacecraft control

example. These subroutines do not return control to the user in the normal way, but

instead return control to the control program.

C. Experiment

The system designer eventually completes his analysis and synthesis, has his

control tables structured, has a specification for the language elements (if any) used

by the slave programs to communicate control information back to the control program,

and has some form of representation of the control program algorithm. It would seem

that the next step should be coding. It probably is not. The next step should

usually be for the designer to put himself in the shoes of a user unfamiliar with the

system and try to develop some sample slave programs for the system. This may turn

out to be just as easy as the designer thinks it will be. If so, it will not take

long. But the designer may run into some surprises -- particularly if he is lucky

enough to be able to talk a friend into trying to develop slave programs. Because

of his unfamiliarity with the underlying assumptions concerning the problem, the

friend may try to do things which never even occurred to the designer.

An example of the kind of surprises which can hit the system designer at this

stage occurred during the design of the spacecraft control system. Originally, the

WAIT statement had been designed to specify the wait duration in terms of the number

of minutes, seconds, and ticks. These are the elements of system time and are used

in the WHEN statement. Using them in the WAIT statement seemed to give the system a

pleasing uniformity. But as soon as slave programs were written using the WAIT system,

it became apparent that the natural unit for the user to specify was the total number

of 2.5-millisecond ticks he wanted to wait, even if that number exceeded 400 (i second).

D. Articulation

The importance of letting others know the details of a proposed architecture

varies greatly with the circumstances of the development. In the mosaic tiling system,

there were no anticipated users of the system beyond the designer himself, and the

primary concern was simply to get the job done fast. The system was already running

before any significant amount of documentation was done, and the documentation, even

when published, was ignored.

417

The other extreme is illustrated by the simulation example. Publication of the

first draft of the system design in that case raised a storm of technical and manage-

rial controversy which did not settle down for months. A second draft of the system

design document with a considerable number of fundamental changes was required to

settle the dust of the technical arguments, but formal management meetings and

full-scale slide presentations of the system design were required to finally resolve

the managerial disagreements.

So the system designer must try to anticipate the need for communication even

as he designs the system. There is almost always a need for some communication of

design ideas to some audience, and if the designer keeps that in mind as he draws his

system diagrams, he may be able to make them usable for future presentations to his

peers.

E. Iteration

It is not enough to iterate the analysis and synthesis during the early design

phase, or even to iterate a system design based on inputs from a design review. It

should always be planned, if time permits, to iterate a system at least once after it

has been completely designed, implemented, and used. The importance of iteration

cannot be overstressed -- it is the essence of design. Systems of significant com-

plexity can seldom be designed right the first time. A little experience with a

system almost always makes glaringly obvious things which could be seen, if at all,

only with peripheral vision during design.

Sometimes, because of schedule pressures, it may not be possible to iterate,

and the system is left with glaring flaws. The mosaic tiling system contains a good

example. That system was implemented so that any single picture line which deviated

by even one pixel from the known line length caused a diagnostic message to print and

processing to stop. That sounded like a good idea when thought of, but it meant that

normally only one error per computer pass could be caught. If the entire picture had

been allowed to complete, the finished copy could have pointed out errors in many

pixel generators simultaneously.

Although the system does work, system redesign is usually valuable just because

several benefits are gained by the redesign. The spacecraft control system affords a

good example. This system was originally implemented with a WHEN statement which

assumed that each item of system time was normally to be tested and used control bits

to tell which items to ignore. Once the system was being used, it became obvious

that the IFHEN statement should simply name each item to be tested. This made the

418

system independent of the time base used and even allowed programmers to say, in

effect,

WHEN FLAG F IS SET

CONTINUE

where flag F may be set by another program or by a data transmission from another

machine. The resulting system was easier to use, was far more flexible, and ran

faster than the old one.

IV. CONCLUSION

Systems for computational control almost always consist of a single control

program, a number of slave programs, and one or more control tables. The problem of

analysis is to identify these elements and their structure. The problem of synthesis

is to determine a simple way to tie the elements together with a foolproof algorithm

for the control program. Usually, the algorithm needs to be flexible enough to

handle an entire class of similar problems. Analysis and synthesis must be tackled

together and constitute the early design stage.

But a first design, untested by the fires of criticism and use, seldom repre-

sents the designer's best work. Even before his design is cast in code, the designer

needs to put himself in the user's place by writing slave programs and testing alter-

native architectures. He needs to explain his work to an audience of peers and

solicit their helpful and honest criticism. And even when a first version of the

system is running, the designer should, if time allows, plan to do a final iteration,

for experience is an exacting referee, and iteration is the name of the game.

ACKNO~,~EDGEMENT

This paper presents the results of one phase of research carried out at the

Jet Propulsion Laboratory, California Institute of Technology, under Contract

No. NAS7-100, sponsored by the National Aeronautics and Space Administration.

REFERENCES

i.

2.

3.

David A. Rennels, Borge Riis-Vestergaard, and Lance C. Tyree~ "The Unified
Data System: A Distributed Processing Network for Control and Data Handling
on a Spacecraft," NASCON Conference Proceedings, May 1976.

David A. Rennels~ "A Distributed Microprocessor System for Spacecraft Control
and Data Handling," MIDCON/77 Conference Proceedings, 1977.

Hansen Per Brinch, "Concurrent Programming Concepts," Computing Survey,
Vol. 5, No. 4, December 1973.

419

4.

5.

6.

Fred Lesh, "A Continuous/Discrete Simulation for Interplanetary Spacecraft,"
Proceedings of the Seventh Annual Pittsburgh Conference on Modeling and
Simulation, April 21-22, 1977, pp. 243-247.

Donald G. Golden and James D. Schoefflen, "GSL - A Combined Continuous and
Discrete Simulation Language," Simulation, Vol. 20, No. i, January 6, 1973,
pp. 1-8.

Steven H. Caine and E. Kent Gordon, "PDL - A Tool for Software Design,"
AFIPS Conference Proceedings, Vol° 44, pp. 271-276, National Computer
Conference, 1975.

