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ABSTRACT 

The difficult part of many computer applications is the design and 

implementation of control mechanisms which allow the necessary calcula- 

tions to be performed at exactly the right time or in exactly the right 

logical sequence. Designing systems of this kind involves the designer 

in a variety of unusually interesting problems, and requires blending 

classical design approaches with techniques peculiar to computational 

control applications, This paper presents three examples of such appli- 

cations and describes the approach adopted for each. The classical design 

steps are then discussed, and elements peculiar to computational control 

are highlighted by illustrations drawn from the three sample systems. 

I. INTRODUCTION 

Many kinds of complexity plague designers of software systems. They are over- 

whelmed by the number and sophistication of the equations of motion for an inter- 

planetary spacecraft, innundated with the sheer volume of options and special cases 

of a business application, or puzzled how to achieve a convergent algorithm in the 

solution of coupled sets of partial differential equations. 

But there is a wide class of computer applications in which the primary com- 

plexity stems not from the difficulty or variety of the underlying computations but 

from the need to make those computations in the right order or at the right time. 

Systems developed to achieve this kind of ordering and timing are called "computa- 

tional control systems." Three examples of such systems are discussed in Section If. 

Computational control systems are usually written assuming that they will be 

used more than once for a variety of applications within a certain class. Program- 

mers who use an already developed control system for a new application are called 

"users." But a computational control system may be developed for a single applica- 

tion in order to achieve a flexible system architecture which avoids large reprogram- 

ming efforts during the system checkout and acceptance period. The example of Sec- 

tion II-A is such a case. 

The architecture chosen for a computation control system can make the difference 

between a chaotic, inefficient program -- difficult to understand and maintain -- and 

an orderly, even elegant program which pleases the maintenance staff as well as the 
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designer. The task of arriving at an orderly architecture for computational control 

systems blends standard system design concepts with other concepts peculiar to problems 

of computational control. Section III describes a set of standard steps in system 

design and some novel features of the standard steps which arise from peculiarities of 

computational control problems. The novel features and their impact on the standard 

steps are presented in terms of illustrations drawn from the examples of Section II. 

II. EXAMPLES OF COMPUTATIONAL CONTROL SYSTEMS 

Sections A, B, and C below contain examples of computer applications leading to 

interesting and difficult computational control problems. A brief description of the 

problem is given in each case, followed by an indication of the kind of system devel- 

oped to solve the problem. 

A. Mosaic Tilin~ 

Figure 1 shows a test frame produced by a program written to process TV picture 

data from the camera aboard the Viking Lander spacecraft, which in late 1975 trans- 

mitted to earth the first pictures of the rock-strewn plains of Mars. This picture 

is a mosaic of tiny tiles -- so small that they can be seen in the 20 x 20 centimeter 

original glossy only under a strong magnifying lens. The total frame is 1024 tiles 

across and 1024 tiles deep. The tiles range from black to white in 64 shades of gray. 

Unlike real ceramic tiles, the tiles originate aboard the spacecraft as 6-bit integers 

which represent gray levels, reside for a while in computers as 8-bit bytes of data, 

and end up as tiny spots on s photographic film. The tiles are called "pixels." 

Processing of images, a complicated task that has been the subject of many 

papers, is not the concern here. Instead, this paper concentrates on the problem of 

producing the total frame -- image plus borders, annotation, histograms, gray-level 

calibration scale, etc. In this process, the image is assumed to be stored as data 

bytes in bulk storage where it can easily be retained and inserted into the frame as 

required. 

The complications in compiling the frame arise from the fact that the number of 

pixels in the image is too large (106 ) to store conveniently in random access memory. 

Instead, it is necessary to generate the picture one line at a time and write the lines 

on magnetic tape in the format needed by the film recorder, which produces the final 

hard copy. The Viking Lander camera produced vertical data lines that sweep from bot- 

tom to top instead of the horizontal lines familiar from commercial TV that sweep 

from left to right, so it is natural to produce vertical lines for the entire frame 

also. 

Figure 2 is an approximate expansion of the bottom right-hand corner of one of 

the histograms which appears along the right edge of Figure i. The area of Figure 2 
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Figure I. Test Frame From a Mosaic Tiling Program 

is shown broken into six subareas. Each of these subareas is associated with a program 

which generates the pixels for that area. These programs are called "pixel genera- 

tors." The breakdown of the total area of Figure 2 into six subareas is necessary to 

make each of the pixel generators a simple, logical entity. Even with this much break- 

down, the pixel generators for suhareas 1 and 6 are far from trivial since the histo- 

gram and annotation both vary from one picture to the next. 

The difficulty in building a single line of the frame in Figure i is that any 

single vertical line consists of pixels from many different areas. To produce the 

necessary pixels for a given vertical line, many different pixel generators must run 

in the right order, and that order is different for some vertical lines than for 
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Figure 2. Lower Right Corner of a Histogram 

others. Each pixel generator must produce only a small subset of its total pixels 

(those for one line through the area associated with the pixel generator) and must 

then somehow remember where it was until its turn comes to produce pixels for the next 

line. The problem of coordinating the activities of all the pixel generators is an 

exercise in computational control. 

The control scheme adopted for this problem is table-driven, as illustrated in 

Figure 3, which, for explanatory purposes, shows a simple pattern of areas unrelated 

to those of Figures 1 and 2. But areas 3 and 5 require the same pixel generator (G3) , 

and this is exactly the situation which arises with the histograms that appear along 

the middle of the right-hand side of Figure i. Even though areas 3 and 5 require the 

same pixel generator, they need different data. 

Each pixel generator is written as a pure procedure operating on a state vector 

which can be pointed to by a data pointer P. The pixel generator is written as though 

it begins at line zero, and each time it is called, it outputs a single vertical line, 

increments the internal line count in its state vector, and returns. The state vector 

for the pixel generator may contain just the internal line number, but it may also 

contain data such as that used to produce the histograms at the right of Figure i. 

The first row of the control table of Figure 3 tells the control program to 

produce lines 0 through 12 of the frame by calling pixel generator G 3 with data pointer 

P5' then calling pixel generator G 3 again with data pointer P3' and finally calling 
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20 30 

G5' P7 

50 

CONTROL 
TABLE 

o, (G 3, Ps), (G 3, P3), (G 1 , P1). 

13, (G 3, P5), (03, P3), (02, P2)- 
20, (04, P6), (o 4, P4 ), (02, P2). 

30, (G 5, P7 ), (G 2, P2). 

50. 

Figure 3. Sample Frame and Control Table for Mosaic Tiling 

pixel generator G 1 with data pointer P1 o The control program simply produces lines 

according to the specifications of the control table, and writes the lines one at a 

time on magnetic tape. 

B. Spacecraft Control 

An interplanetary spacecraft typically consists of as many as 20 subsystems 

such as the power subsystem, the propulsion subsystem, the attitude control subsystem, 

and the television subsystem. From a computer software point of view, operating a 

spacecraft is similar to operating an oil refinery or an automotive assembly plant. 

The operations to be performed are usually such simple ones as closing a switch. The 

complexity of the problem derives entirely from the necessity to close the right 

switch at exactly the right time. 

At the Jet Propulsion Laboratory, the natural and historical partitioning of 

spacecraft into subsystems led easily to consideration of distributed systems of 
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microprocessors for spacecraft control and data handling, and a breadboard system was 

constructed to test the concept [i, 2]. In the breadboard, each subsystem is assigned 

a microprocessor with just enough capacity to control that subsystem and to acquire 

and format its data. All the processors are tied together with a common data bus. 

Even though the spacecraft control job is distributed, each microprocessor still 

has several programs which have to run concurrently. The TV subsystem, for example, 

has one program to drive a TV camera through a complex cycle of erasures needed to 

eliminate the ghost of the old picture from the vidicon, another program to simulta- 

neously drive data lines out of the alternate camera, and a third program to gather 

miscellaneous engineering data needed by the system controller to monitor the health 

of the TV subsystem. 

Most real-time systems are completely interrupt-driven in the sense that all 

activity initiations and completions are signaled by a processor interrupt. Interrupt- 

handling programs turn on flags requesting that computations be performed, and pro- 

cessing is then done on a highest-priority-first basis. Because it is important to 

be able to easily diagnose malfunctions on a spacecraft operating millions of miles 

from earth, JPL's breadboard operates in a completely different manner. The only 

interrupt is one which occurs simultaneously in all processors every 2.5 milliseconds. 

There is nothing special about 2.5 milliseconds -- it is simply an interval chosen to 

give time resolution more accurately than any which would be needed for spacecraft 

control, yet long enough to allow completion of calculations which need to be done 

at a given point in time. 

This 2.5-millisecond interrupt serves two related purposes. The first purpose 

is to act as the escapement for a software clock. The 2.5-millisecond interval 

between interrupts is called a "tick." There are 400 ticks to a second, and a soft- 

ware clock in each processor increments time (hours, minutes, seconds, ticks) at each 

interrupt. The second purpose is to strobe out all input or output signals which have 

been set up by the operation of software during the tick. 

The interface circuitry between processors and their instruments is organized 

in such a way that electrical control signals produced by software operation during 

a given 2.5-millisecond interval are buffered until the end of the interval before 

being sent to the external hardware. If programs A and B both run and produce output 

signals during a 2o5-millisecond interval, the output signals are identical whether 

program A or B runs first. The order of program execution within a 2.5-millisecond 

interval is therefore irrelevant, and the programs are thought of as operating simul- 

taneously and instantaneously. 

Each program running in this system is required to do specific (usually very 

simple) things at exactly the right times as kept by the software clock. The computa- 

tion control problem in this application centers around the questions: How can 

several programs -- each of which must time its operations exactly -- be run concurrently? 
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Can application programs be written in such a way that each is transparent to the 

others during development and operation? Can they be designed and written using 

standard DO, IF, and CALL structures? 

It was originally proposed to organize the software system around time-event 

tables. But it is difficult to achieve the effect of DO loops in a time-event system. 

Also, it was desired to do structured design and coding. 

The adopted solution to this problem involves two constructs, called WAIT and 

WHEN, which allow for program timing. If, for example, a programmer wishes to delay 

the execution of a sequence code defining some action A until the first tick for 

which his software clock reads SEC = 40, he writes: 

WHEN SEC = 40 

DO ACTION A 

If the programmer wishes to delay the execution of a sequence of code defining action 

B for exactly 75 ticks, he writes: 

WAIT 75 TICKS 

DO ACTION B 

These constructs can be written anywhere inside or outside of the ranges of DO, IF, 

or CALL statements. Consider, for example, the case in which it is desired to drive 

data from a 600-1ine TV camera. Assume that the camera must start taking the picture 

at the exact beginning of each new minute (when SEC = 0 and TICK = 0), that the camera 

takes exactly i0 lines of data each second, and that the line sweep requires 90 milli- 

seconds followed by a 10-millisecond period during which the vidicon beam "flies back" 

to the beginning of the next line. The control loop for this operation is illustrated 

in Figure 4. 

WHEN SEC = 0, T I C K = 0  

DO FOR LINE = 0, I ,  2 . . . . .  799 

START LINE READOUT 

WAIT 36 TICKS 

STOP LINE READOUT 

START FLYBACK 

WAIT 4 TICKS 

ENDDO 

Figure 4. Design Language for Spacecraft Control Applications 
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All application programs written in this fashion are run under an executive. 

The WHEN and WAIT constructs are CALLs to WHEN and WAIT subroutines which operate as 

part of the executive. Each time an application program comes to a WAIT or WHEN, the 

executive takes over, remembers where control came from, and, on each subsequent TICK, 

tests whether the conditions stated on the WAIT or WHEN are satisfied. Only when they 

are satisfied does the executive return control to the application program at the 

location immediately following the stated test conditions. 

Using this scheme, the executive runs, in any tick, only the short segment of a 

given user program between two logically consecutive WAIT or WHEN statements. The 

programmer of an application program never needs to be aware that this is going on, 

but it allows his programs to time their operations and simultaneously enables the 

executive to maintain control so it can run several application programs concurrently 

[3]. 

The only control table needed by the executive is shown in Figure 5 and consists 

of a set of eight pointers. Each application is assigned to one pointer. If the 

application program is not running, its pointer is zero. If it is running, its pointer 

points to the test which must be satisfied before control is returned to the program. 

POINTER # 0 I 2 3 4 5 6 7 CONTROL 
TABLE 

POINTER 0 0 PA 0 0 PB 0 0 

PROGRAM A 

WHEN TICK = 23 ~ , t - -  

WHEN SECOND = 30 

PROGRAM B 

WHEN HOUR = 2 

- - ~  WHEN TICK = I 

Figure 5, Control Table for Concurrent Program Operation 

C. Spacecraft Simulation 

The primary product of a spacecraft simulation is a real-time simulated telemetry 

stream. Months before a spacecraft is launched, teams of engineers and scientists 



410 

spend hundreds of hours rehearsing their roles in monitoring and controlling its 

operation. The effectiveness of these rehearsals depends on realistic simulation of 

the spacecraft and its telemetry stream. 

Spacecraft simulation is mostly a discrete problem. Commands arrive at the 

spacecraft and cause state changes; instruments turn on and off; the telemetry mode 

changes. All these are discrete events which can be queued and executed in a pre- 

determined order. But if it is to be realistic, spacecraft simulation must also 

involve things like the three angles of spacecraft attitude, the battery charge, and 

the instrument temperatures, all of which change continuously. Continuous variables 

may be calculable directly as functions of time, but more often they are obtainable 

only as solutions to a simple set of differential equations. So the spacecraft simu- 

lation problem is essentially a continuous/discrete problem [4~. 

One complication in the computational control of simulation arises from the 

magnitude of the programming task. Programs which simulate given spacecraft sub- 

systems are called "models," and usually i0 to 20 models running simultaneously are 

required to produce an effective telemetry simulation. A given programmer/analyst 

is often assigned to write and check out one to five models. Generally, no one pro- 

grammer/analyst understands all the ramifications of certain spacecraft events. 

For example, a program simulating subsystem A may set a logical variable with 

a given name. That logical variable may affect operation of subsystems B, C, D, and 

E. The programmer of the subsystem A model may know about some of these instructions, 

but not all. If he neglects to notify any subsystem model that he has changed a logi- 

cal variable which affects it, the ramifications of the change will not be propagated 

correctly. 

A second complication in this kind of problem is that there are often a variety 

of simple actions which must be performed at specified values of the continued vari- 

ables. In simulating a spacecraft attitude control system, for example, there is a 

continuous variable -- usually a combined position sensor and rate sensor output -- 

which determines whether or not the tiny cold-nitrogen jets which control spacecraft 

attitude should be on or off. The jet turns on when this variable reaches one value 

and then shuts off when it reaches another. Simulating the turn-on or shut-off of 

the jet is a simple matter of changing the value of a parameter used in the differen- 

tial equations which describe the spacecraft's rotatory motion. But that action 

must be taken at exactly the right point, and it is not possible to predict in advance 

the time associated with that point. 

A third complication peculiar to spacecraft simulation is that simulated time 

must be kept close to real time, though not as close as might at first be thought 

neeessary. The reason for this is illustrated in Figure 6. At distances where inter- 

planetary spacecraft spend most of their time (lunar distances or greater), it takes 

many seconds for a command to pass from the transmitter on earth to the receiver on 
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I 
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CLOCK 
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I 

ARRIVAL TIME 
OF COMMANDS SENT 

AT TIME t 

Figure 6. The Real-Time Window 

the spacecraft. Telemetry changes resulting from any command require a similar time 

to return to earth. Therefore, it is necessary only that simulated time T remain 

between t - At and t + At, where t is real time and AT is the light travel time. 

This scheme requires that commands sent at a time t be buffered until T = t + At 
o o 

and that telemetry data produced at ~d be buffered until ~d = t - At. But the rate 

of command transmission is very low, and telemetry data buffers can be kept small by 

maintaining T near t - At. 

Effective solution of the computational control problem for spacecraft simula- 

tion requires three major elements -- one for each of the complications described 

above. 

To handle the complexity and interaction problem, models are organized as shown 

in Figure 7. The first part of each model handles initialization of all continuous 

and discrete variables associated with the subsystem. The second part handles discret~ 

variable calculations. Using a method reminiscent of the General Simulation Language 

(GSL), this part of the model has many entries [5]. The code at each entry normally 

executes one simple action (event). Figure 7 shows only three entries (I0, 20, and 

30) for ease of illustration. The third part of the model calculates the continuous 

variables associated with the subsystem. 

Propagation of effects between models is allowed for by providing a class of 

logical variables which must always be set or reset with the statement 

CALL LSET (LV,X) 

where LV is the logical variable and X gives the value (0 or I) to which LV is to be 

set. The subroutine LSET changes LV, then checks a list associated with the variable 

LV to see how to propagate the effects of the variable, and, in effect, enters the 
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INITIALIZATION 
SUBROUTINE ACSI 

RETURN 

10 m 

DISCRETE EVENT HANDLING 

SUBROUTINE ACS 

GO TO (10, 20, 30) K 

R ETUR N 

2 0 ~  

RETURN 

3 0 ~  

RETURN 

CONTINUOUS VARIABLE CALCULATION 

SUBROUTINE ACSX 

RETURN 

Figure 7. Structure of a Simulation Model 

appropriate discrete event handlers with the correct control parameter k. 

is constructed automatically as the result of calls of the type 

CALL LTAB (LV,T/F/B,M,K) 

where the cases T, F, and B are defined as: 

Case Meaning 

T 

F 

B 

The list 

call model M with parameter K when logical variable LV goes from F to T 

call model M with parameter K when logical variable LV goes from T to F 

call model M with parameter K with logical variable LV changes 
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Most calls to LTAB are made at initialization time, but they can be and often are 

made from the discrete event subroutines. 

The second major element is required to allow programmers to easily specify and 

achieve the execution of events at given values of continuous variables. To specify 

that an action be taken at a given time, the programmer writes: 

C~L TSET (T,M,K) 

Here T is the value of time (t) at which the action is taken, and the code which 

performs the action is at entry K of the discrete event handling portion of model M. 

To specify that an action be taken when ,a continuous variable V becomes equal to C, 

the programmer writes: 

CALL YSET (V,C,M,K) 

The set of items (V,C,M,K) is called a "Z-trigger," and the point at which V = C is 

called the "Z-trigger 0-point." 

The third major element (required to keep simulated time close to real time) is 

the computational control algorithm itself. This algorithm is shown in Figure 8. 

The 0-points of Z-triggers are not easy to find, and the search requires iteration. 

The complexity of this search is completely represented by step 4 in the algorithm 

of Figure 8. 

III. STEPS IN DESIGNING COMPUTATIONAL CONTROL SYSTEMS 

System requirements are elusive, and gathering and documenting requirements is 

a major part of any system development. But the problem of requirements gathering is 

a subject in itself and too complex to be covered here. 

So this paper assumes that a reasonsbly good statement of the requirements is 

available and discusses the standard system design steps that remain, emphasizing 

peculiarities and regularities which arise from restricting the problem class to that 

of computational control problems. 

A. Analysis 

The first task of the system designer is to establish the elements from which 

the system will be constructed. In the case of the mosaic tiling system, for example, 

the elements are the individual pixel generators in the form of closed subroutines, 

the control table, and the system control program which uses the pixel generators and 

the table to construct the picture lines. In the case of simulation, the elements are 

more complex. There is still a system control program, but it is far more complicated 

than that for mosaic tiling. Instead of pixel generators, there is a set of models~ 

but each model has a complicated internal structure which needs to be understood in 
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LET H BE THE MAXIMUM STEP SIZE FOR CONTINUOUS VARIABLE CALCULATIONS 

LET 6 BE THE ONE-WAY LIGHT-TRAVEL TIME 

LET f BE REAL TIME 

LETs'- BE SIMULATED TIME 

LET T L A N D ' r  R BE THE LEFT AND RIGHT ENDS OF A SIMULATED TIME INTERVAL 

LET TNE X BE THE SMALLEST T FOR ANY UNSATISFIED TSET CALLS 

LET E < ~/2 

0. INITIALIZE ALL MODELS 

1. SET'rL:'r,'rR=MIN('r+ 6/2, T+ H, TNE X) 

2. WAIT UNTIL " r< t  - 6 ÷ E 

3. CALCULATE CONTINUOUS VARIABLES AT 'r R FOR ALL MODELS 

4. IF ANY Z-TRIGGER 0-POINTS LIE BETWEEN "rk AND TR ADJUST TR UNTIL IT IS THE 

FIRST Z-TRIGGER 0-POINT 

5. INTERPOLATE AND BUFFER TELEMETRY FOR INTERVAL ('r L, s" R) 

6. PERFORM ACTIONS ASSOCIATED WITH ANY TRIGGERS AT"/'R 

7. REPEAT FROM STEP 1. 

Figure 8. Computational Control Algorithm for Spacecraft Simulation 

detail. Instead of a single control table, there are T-triggers, Y-triggers, and 

lists associated with logical variables. 

It is important to note that in spite of the diversity of applications in 

Sections II-A through C, the systems have a certain regularity of structure. In each 

case, there is a control program which runs the system, one or more control tables 

used by the control program to determine what to do next, and a set of slave programs 

(pixel generators, application programs, or models) which do the desired calculations 

under the direction of the control program. These elements can be expected to appear 

in almost any computational control system, and recognition of this fact gives the 

system designer a quick start in drawing his system diagrams. 

In the mosaic tiling example, the control table completely defines the sequence 

of calculations from start to finish. Sequencing does not depend on calculated 

results. In the spacecraft control and simulation examples, however, sequencing by 

the control program depends on the results of calculations or real-time interactions 

and cannot be predicted in advance. As a result, each of these last cases requires 

the development of mechanisms by which the user can communicate new sequencing 
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requirements through the slave programs to the control program. In each case, these 

mechanisms involve language elements. In the spacecraft control case, the language 

elements used are the WHEN and WAIT. In the simulation case, the language elements 

used are CALL TSET, CALL YSET, CALL LSET and CALL LTAB. 

These language elements can be thought of as statements which pass necessary 

sequencing information to the control program. In each case, they translate as 

simple CALLs to subroutines. Only in the case of the WAIT and WHEN is the control 

more complicated. These cases, too, are CALLs to subroutines, but the subroutines 

do not return control immediately as subroutines normally would. 

So the designer can expect that if the sequence of control depends on calculated 

results, he will need some simple language elements to pass sequencing information 

from the slave programs to the control program. He can also expect the language 

elements to translate to subroutine CALLs. 

B. synthesis 

Synthesis is the process of putting the diverse elements of the system back 

together again, and consists primarily of designing the algorithms used by the control 

program. Even though analysis and synthesis seem like entirely different activities, 

they are so mixed together in early design stages that it would be almost impossible 

to say where one began and the other left off. They are like two sides of a coin of 

design that the designer flips from time to time to decide which to do next. Consider, 

for example, developing an algorithm to control operation of application programs in 

the spacecraft control system. The question immediately arises: How does the control 

program know when the application programs need control again and to what location 

control should go? Obviously, some kin~ of control table is needed. But there are 

countless table structures which can be used, and each different table structure 

requires a different algorithm. Deciding which tables to use and what structures 

they should have must be done concurrently with deciding on the algorithm to be used 

in the control program. One effective procedure involves writing down a clear picture 

of a control table, sketching an algorithm which uses it, and then looking for ways 

to simplify and speed up the algorithm by changing the control table. Several itera- 

tions of this procedure with constantly increasing precision of definition usually 

suffice to produce something good enough to serve as a starting point for the system 

architecture. 

There are many ways to depict algorithms. The use of flow charts is an old, 

well understood technique and is perfectly acceptable. A better system involves the 

use of structured languages such as "Program Design Language" and the processor 

developed by Caine, Farber, and Gordon, Inc., of Los Angeles [6]. Restricting pro- 

gramming structures to DO, IF, and CALL generally leads to better program organiza- 

tion than allowing unrestricted branching. Structured English language statements 
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are far more compact and efficient than flow charts, and -- given a processor -- far 

easier to change. 

Users of structured languages should always be aware that the rules of structured 

usage are intended to simplify programming structures and make them easier to under- 

stand. Whenever adherence to structured usage clearly complicates programs or makes 

them more difficult to understand, the rules should be violated. A good example of 

this violation occurs in the WAIT and WHEN statements of the spacecraft control 

example. These subroutines do not return control to the user in the normal way, but 

instead return control to the control program. 

C. Experiment 

The system designer eventually completes his analysis and synthesis, has his 

control tables structured, has a specification for the language elements (if any) used 

by the slave programs to communicate control information back to the control program, 

and has some form of representation of the control program algorithm. It would seem 

that the next step should be coding. It probably is not. The next step should 

usually be for the designer to put himself in the shoes of a user unfamiliar with the 

system and try to develop some sample slave programs for the system. This may turn 

out to be just as easy as the designer thinks it will be. If so, it will not take 

long. But the designer may run into some surprises -- particularly if he is lucky 

enough to be able to talk a friend into trying to develop slave programs. Because 

of his unfamiliarity with the underlying assumptions concerning the problem, the 

friend may try to do things which never even occurred to the designer. 

An example of the kind of surprises which can hit the system designer at this 

stage occurred during the design of the spacecraft control system. Originally, the 

WAIT statement had been designed to specify the wait duration in terms of the number 

of minutes, seconds, and ticks. These are the elements of system time and are used 

in the WHEN statement. Using them in the WAIT statement seemed to give the system a 

pleasing uniformity. But as soon as slave programs were written using the WAIT system, 

it became apparent that the natural unit for the user to specify was the total number 

of 2.5-millisecond ticks he wanted to wait, even if that number exceeded 400 (i second). 

D. Articulation 

The importance of letting others know the details of a proposed architecture 

varies greatly with the circumstances of the development. In the mosaic tiling system, 

there were no anticipated users of the system beyond the designer himself, and the 

primary concern was simply to get the job done fast. The system was already running 

before any significant amount of documentation was done, and the documentation, even 

when published, was ignored. 
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The other extreme is illustrated by the simulation example. Publication of the 

first draft of the system design in that case raised a storm of technical and manage- 

rial controversy which did not settle down for months. A second draft of the system 

design document with a considerable number of fundamental changes was required to 

settle the dust of the technical arguments, but formal management meetings and 

full-scale slide presentations of the system design were required to finally resolve 

the managerial disagreements. 

So the system designer must try to anticipate the need for communication even 

as he designs the system. There is almost always a need for some communication of 

design ideas to some audience, and if the designer keeps that in mind as he draws his 

system diagrams, he may be able to make them usable for future presentations to his 

peers. 

E. Iteration 

It is not enough to iterate the analysis and synthesis during the early design 

phase, or even to iterate a system design based on inputs from a design review. It 

should always be planned, if time permits, to iterate a system at least once after it 

has been completely designed, implemented, and used. The importance of iteration 

cannot be overstressed -- it is the essence of design. Systems of significant com- 

plexity can seldom be designed right the first time. A little experience with a 

system almost always makes glaringly obvious things which could be seen, if at all, 

only with peripheral vision during design. 

Sometimes, because of schedule pressures, it may not be possible to iterate, 

and the system is left with glaring flaws. The mosaic tiling system contains a good 

example. That system was implemented so that any single picture line which deviated 

by even one pixel from the known line length caused a diagnostic message to print and 

processing to stop. That sounded like a good idea when thought of, but it meant that 

normally only one error per computer pass could be caught. If the entire picture had 

been allowed to complete, the finished copy could have pointed out errors in many 

pixel generators simultaneously. 

Although the system does work, system redesign is usually valuable just because 

several benefits are gained by the redesign. The spacecraft control system affords a 

good example. This system was originally implemented with a WHEN statement which 

assumed that each item of system time was normally to be tested and used control bits 

to tell which items to ignore. Once the system was being used, it became obvious 

that the IFHEN statement should simply name each item to be tested. This made the 
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system independent of the time base used and even allowed programmers to say, in 

effect, 

WHEN FLAG F IS SET 

CONTINUE 

where flag F may be set by another program or by a data transmission from another 

machine. The resulting system was easier to use, was far more flexible, and ran 

faster than the old one. 

IV. CONCLUSION 

Systems for computational control almost always consist of a single control 

program, a number of slave programs, and one or more control tables. The problem of 

analysis is to identify these elements and their structure. The problem of synthesis 

is to determine a simple way to tie the elements together with a foolproof algorithm 

for the control program. Usually, the algorithm needs to be flexible enough to 

handle an entire class of similar problems. Analysis and synthesis must be tackled 

together and constitute the early design stage. 

But a first design, untested by the fires of criticism and use, seldom repre- 

sents the designer's best work. Even before his design is cast in code, the designer 

needs to put himself in the user's place by writing slave programs and testing alter- 

native architectures. He needs to explain his work to an audience of peers and 

solicit their helpful and honest criticism. And even when a first version of the 

system is running, the designer should, if time allows, plan to do a final iteration, 

for experience is an exacting referee, and iteration is the name of the game. 
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