
THE REFERENCE STRING INDEXING METHOD 

H.-J. Schek 
IBM Wissenschaftliches Zentrum 

Tiergartenstrasse 15 
D-6900 Heidelberg 

SUMMARY 

The motivation for the reference string indexing method may be 
derived from the intention to retrieve any piece of information 
by specifying arbitrary p a r t s of it. Common restrictions 
such as the usage only of a certain set of descriptors or 
(complete) keywords in document retrieval systems or the 
specification of only certain (inverted) attribute values for 
queries in formatted files should be removed without loosing 
performance necessary for interactive usage. 

The solution to be described is essentially based on the 
realistic assumption that the frequency distribution for the 
occurrence of character strings with a certain length, or words, 
or word sequences in textual files, and also for the occurrence 
of attribute values or value combinations in formatted files is 
n o t uniform but rather highly hyperbolic or "Zipfian". The 

same is valid also for the u s a g e of data, expressed as the 
"80-20"-law. Exploiting this assumption, a (small) set of 
"reference strings" is generated by a statistical analysis of 
collected queries or - if not available - by usage estimation 
with the original data. The inversion to these reference strings 
with respect to records or record clusters gives the reference 
string index. 

Corresponding to the estimated usage frequency, a search argument 
may have been made available completely as a reference string or 
has to be decomposed into shorter reference strings. Therefore, 
the reference string access is adaptive with the consequence that 
a routine query may be answered faster than a non-routine one. 

The reference string index may be applied as a new adapted index 
in information retrieval systems as well as in formatted files as 
single or multi-attribute index. In addition it can be applied 
for phonetic and general record similarity search. 



433 

I .  Introduction 

The reference string indexing method is related to problems often 

called partial match retrieval, associative search or 

multi-attribute retrieval. A directly accessible piece of stored 

information (record, block or cluster) which is represented as a 

string of characters shall be retrieved (and optionally 

subsequently updated) by specifying one or several 

a r b i t r a r y fragments (or substrings, fragmentary 

information) which~must be contained in the desired record(s). 

This provides a more general "accessing by contents" than by 

preassigned and often artificial keys. So, the main objective of 

the proposed access method is to support formal search functions 

summarized as functions for "partial match retrieval" Direct 

access becomes possible in cases where serial file scanning often 

has been the only solution until now. Examples for such searches 

are queries specifying values for not inverted attributes in 

formatted records, queries with partially specified attribute 

values, search with phonetic patterns, and nearest neighbour 

search. In text retrieval systems with automatic indexing, an 

important application of the reference string access method is 

the search with f r a g m e n t s of keywords which appear e.g. 

as c o m p o n e n t s of chemical substances or in 

c o m p o u n d w o r d s of a natural language. In formatted 

files the reference strings provide a p a r t i a 1 inversion 

either for a single attribute, or for several attributes as a new 

multi-attribute index, in both cases in adaptation to the data. 

The idea of the reference string access method is easily 

explained by an example: The set of all records which contain 

somewhere the string 'CHRO~X' is contained in the set of all 

records which contain somewhere both strings 'MAX' & 'CHR0~' 

which, in turn is contained in the set with 'AX' & 'CHROM' & 

'0MA'. 

Obviously t many more decompositions would be possible. However, 

decompositions of this kind motivate the idea of introducing a 

set of standard strings which are used in every decomposition. 

These strings will be called reference strings or shorter 



434 

"refstrings" and may or may not be meaningful strings of 

characters. The only purpose of a refstring is to give a 

reference into a record where it occurs. So it is assumed that 

each refstring has an inverted list which means that a list of 

accession numbers, unique keys, or logical pointers of those 

records is known which contain somewhere the corresponding 

refstring as a substring. 

The automatic determination of a reasonable set of refstrings is 

the key problem and the main idea for its solution is to 

determine substrings which have a high r e f e r e n c e 

frequency, in other words, which have a high probability to be 

n e e d e d for a reference into the records. Estimates for 

these probabilities may be derived from an analysis of the 

queries used in the past and by extrapolation to future usage. 

For a first estimation of usage frequencies, letter and word 

resp. attribute co-occurrence statistics of the original data 

itself are evaluated to give an initial set of refstrings. 

It is important to observe that two facts are exploited 

essentially in this approach. The distribution of the reference 

frequency of data as well as the distribution of the occurrence 

and co-occurrence frequency of letters or syllables in words or 

words in texts etc. is not uniform but rather hyperbolic. The 

first is known as "80-20-rule" /KNU73/ and the second as Zipf's 

distribution /ZI49/. This means that only a small quantity of 

data is used in most of the queries resp. it means that a small 

set of different strings covers the whole (textual) file. With 

respect to the refstring index it means that the size (number of 

different refstrings) can be kept small even if one prescribes a 

high mean selectivity. 

The reference string indexing method has been developed startin~ 

in 1974 with the problem of similarity search in keywerd lists 

including the misspelling case and phonetics /SCHE75/. In the 

more general context here and in its further extensions it has 

relations to the following literature: determination of 

"equifrequent character strings" and application for text 

searching and data compression /BA74, CLA72/, substring and 

pattern matching /AHO75, KNU74, MCR74, HA71/, partial match 



435 

retrieval and related index or tree (trie) constructions /RI76, 

BU76, BE75, WO71, LU70/ , term association and statistical 

thesaurus constructions /STE74, SA68, LUS67/, general indexin~ 

and access methods /WE75, WA75, BAY73/. The following is a 

shortened and revised version of /SCHE77/. 

2. The Reference String Index 

In order to include the most general case it is assumed that the 

file P from which data have to be retrieved contains directly 

accessible records. Each record may be formatted in fields 

(attribute structure) or may be without format (free format case 

like in natural language texts) or it may be a mixture between 

both which means that certain attributes may contain a textstring 

as attribute value such as a title of a book. Without loss of 

generality it is further assumed that attribute values appear in 

their character representation. The reference string index is 

motivated by the intention to retrieve any record by specifying 

arbitrary parts of it. One or several strings which must occur 

in the matching records as substrings - disregarding attribute or 

word positions for the moment shall be sufficient for 

retrieval. 

2.1 Refstrings for Substring Matching 

Obviously, a solution for the retrieval-by-parts problem consists 

in the solution of the substring or pattern match problem. 

However, in the context here methods are not allowed which scan 

the whole file, even though there are sophisticated methods. The 

reason is that one should avoid to transfer the whole file from 

external to internal storage. Therefore, one would like to have a 

fast method which allows to decide which records contain 

somewhere a certain substring x, or somewhat weaker, which may 

contain x with a high probability. 

A first, unrealistic solution would be to provide an index for 

each possible substring which occurs in P. The size of such a 

complete substring index would be prohibitively high and is also 

not necessary as the following considerations show: 



436 

I. Only those substrings which have a high probability to be 

specified in queries should be included in the substring index 

called refstring index with the refstrings as entries. 

2. If a search argument x is not contained in the refstring 

index but if x contains substrings yl,y2,...,yn which are 

refstrings, then every record which does not contain all 

yi,i=1,...,n must not contain x and can be excluded from 

processing. 

3. In order to support an arbitrary substring search (meaning 

that at least one decomposition into refstrings is possible) 

either all single characters, or all character pairs, or all 

character triples are defined to be refstrings too and are 

included in the refstring index. 

The second principle /HA71/ may introduce false drops: A record 

containing all substrings yi of x will not necessarily contain 

x. To express it more precisely: Let be J(x) the set of all 

record numbers of those records containing x anywhere. Then the 

following corrolaries hold 

CI: If y substring of x then J(x) i J(Y) 

C2: If x contains y and z as substrings then 

J (x)  Z J(Y) n J ( z )  

C3: If x contains y and y contains z as a substring 

then, instead of (2) one has J(x) ~ J(y) 

(intersection with J(z) is redundant). 

CI is easily be proved, C2 and C3 are consequences from CI. 

The first and third consideration lead to the introduction of two 

disjoint sets of refstrings, namely the set of basic refstrings 

BRS and the set of additional refstrings ARS with the following 

definitions. 

Def. BRS: The set of basic reference strings BRS={brSl,...,brs m} 

contains a i 1 strings of a certain length k which 



437 

occur in P (k=], or k=2, or k=3). 

Def. ARS: The set of additional reference strings 

ARS={arsl,...,ars ~ contains c e r t a i n 

refstrings with length g r e a t e r k. 

Because of this definition one has 

RS = BRSu ARS and BRS n ARS = O. 

described in chapter 3. 

for the set of all refstrings 

The determination of ARS is 

The motivation for these definitions will be clear if one applies 

RS for arbitrary substring searches: Let x be a search string 

with length between k and m. Then the list of record numbers 

J(x) which contain x as a substring is desired. For that purpose 

relate to x the set of all substrings in x and denote it by X. 

further, determine the refstrings in x 

AXRS := Xn ARS, BXRS := Xn BRS, XRS := AXRSu BXRS 

Because all substrings with lenght k of file P are in BRS one has 

At: If BXRS = $ then x does not occur in P. 

If this trivial case is excluded the set 

XRS={XrSl,Xrs2,...,xrs I } has at least one element. In 

application of (C2) using a 1 1 refstrings one has 

A2: J(x)?_J'(x): = J(xrs]) nJ(xrs2) n ..... n J(xrs I) 

In A2 redundant intersections may occur if one or several xrsi's 

are contained in one or several (longer) elements xrs.. They may 

be omitted applying (C3). Therefore~ the set MX~S c XRS is 

introduced 

MXRS = {mxrsl(mxrscXRS ) and mxrs is not substring of 

any other element of XRS} 

Obviously, MXRS contains all longest possible refstrings leading 

to non-redundant logical operations. One may select other 

non-redundant subsets SXRScXRS but MXRS has special properties 



438 

A3: 1. J(MXRS) = J(XRS) 

2. J(MXRS) ~ J(SXRS) 

for all subsets SXRS c XRS. In other words, the set MXRS leads 

to the smallest possible number of records to be transferred 

a n d to the smallest number of false drops. Especially, 

A4: If MXRS = {x} then J(MXRS) = J(x) 

In this case the smallest possible number of block transfers is 

also necessary. No false drops are encountered in this case. 

2.2. Refstrings for Partial Match Retrieval 

The application of the refstrings for partial match retrieval 

(PMR) in the sense of /BE75/, also called a query of order s 

/YA77/, is derived from the substring search described so far. 

A query which specifies s attribute values Vl,V2,...,v s is 

regarded as a substring match problem where all s substrings 

Vl,...,v s have to occur in one record. So, instead of a single 

set related to one substring, one defines V i to be the set of 

all substrings in vi, i=1,2...,s and uses as set X the union 

VIUV 2 ...uV s All other definitions remain unchanged. 

It is obvious that this method allows also to specify attribute 

values itself only partially. This is important in cases where 

attributes may consist of several keywords like a title of a book 

or where compound attributes such as chemical formulas occur. 

The refstring index supports a search with arbitrary attribute 

components. 

A further generalization of PMR beyond the definition in /BE7S/ 

is again especially important for the specification of several 

equivalent keywords in the free format case. For simplicity of 

notion this problem is discussed for the case when one attribute 

value v may have two equivalent values x and y. Therefore, 

records have to be accessed containing somewhere x or y or both. 



439 

In order to avoid the union J(x) u J(Y) in the practically 

important case where x and y have common reference strings on 

defines 

M.RS = MXRS n MYRS 

Then the number of logical operations is reduced without changing 

the result by 

J' (xvy) := J[M.RS]n (J [MXRS-M.RS] u J [MYRS-M.RS] ) 

Note that the number of logical operations corresponds also to 

the number of secondary data transfers. 

A final extension is the similarity search: Again the set MXRS is 

determined which contains all refstrings without the redundant 

ones belonging to X: = VIuV2 ...uV s where Vi again are the sets 

of all substrings in the given attribute values v . But instead 
i 

of determining the records J[MXRS] which have to contain 

e v e r y reference string from MXRS, a weaker requirement is 

set up: All records containing a sufficiently 

h i g h n u m b e r of reference strings - not necessarily all 

- are considered as candidate records for a refined similarity 

inspection. To be more specific, let p(i) be a positive (weight) 

number, related to each reference string i, then a record j is a 

candidate if 

p(il)+P(i2)+...+P(il) >- ~. 

The value ~ is a given threshold and the indices i. ,j=1,2,...,I, 
] 

belong to those refstrings from MXRS which occur also in the 

considered record. 

3. Determination of Refstrings 

The set of additional refstrings ARS is the better the smaller 

the number of inverted lists can be kept which have to be 

accessed and processed for the execution of all queries including 

update actions. Under limitation of storage and because of update 

processing it is reasonable to limit the set of refstrings to a 



440 

set of such strings which are really needed and which have a high 

probability to occur in a query. A query which specifies rarely 

used keywords or attribute values will then be answered by the 

usage of the basic reference strings (perhaps somewhat slowlier) 

whereas a common query is answered fast and more directly with 

the aid of the additional refstrings. 

Let be S a file which contains a sample of previous query 

arguments. If no query arguments are available the original file 

P or a sufficient large sample of it is used as S. Assume further 

that a delimiter character separates query arguments, attribute 

values, or keywords etc. A substring s from S is understood in 

the following as a substring of S which does not contain the 

delimiter character. 

The algorithm for refstring determination to be described is 

motivated by the following considerations: 

(I) The frequency of a certain substring from S is regarded as an 

indicator for the frequency of future usage. 

(2) If the frequency of a certain substring is either too low 

then s is not considered worthwile being a reference string. 

If the frequency is too high, then s is a reference string 

only if the condition in the next rule (3) is satisfied. 

In the low frequency case~ establishing an inverted list is 

unnecessary because it is never or rarely used; in the high 

frequency casep the substring has a high probability to occur 

within a longer refstring. 

(3) If a certain substring s is contained in a reference string 

rs as substring then s is considered to be a refstring too 

only if the frequency of s w i t h o u t the occurrences 

in rs is high enough. 

Therefore~ a decision whether a certain string is taken as 

refstring will not be based on the absolute reference frequency 

alone. One has to take into account the frequency of indirect 

references by longer refstrings. If eog. the string ROM occurs 

always in connection with CHROM or BROM and these two have been 



441 

included in the set of refstrings it is not worthwhile to have 

also ROM as refstring. 

The algorithm needs two main steps: Refstring candidates are 

determined first for the refstring generation in the second 

step. The second step is described first. 

3.1 Refstring Determination Using Candidates 

Assume that sets Qk of candidates qk for refstrings with length k 

are available together with their absolute frequencies f(qk). 

Generally f(s) denotes the frequency of a substring s in S, and 

RSj denotes the set of refstrings with length j. Assume further 

that the maximum length of a candidate is denoted by m and that 

the set of refstrings RSj, j=m, m-J...,k+l have been determined 

already. 

For the determination of RSk, take a qk E Qk and relate to it the 

two sets RSLk+ l (qk) and RSRk+ I (qk) being the sets of those 

refstrings r~+ I ~ RSk+ I which have qk as left resp. right 

substring. Similarly, relate to qk the two sets QLk+I (qk) and 

QRI+ 1 (qQ which contain those candidates qk+laQk+1 which have qk 

as left resp. right substring and which are n o t element from 

RSk+3 

With these sets the i n d i r e c t reference frequency irfl(qk) 

resp. irfr(qk) of qk is defined by 

irfl(q k) = ~ f  (rs) + > max Eirfl(qk+1) , irfr(qk+1) ] 
r Sk+ 1 sRSLk+ 1 qk+ 1 sQL~+ 1 

irfr(q k) = ~f(rs] 
rSk+leRSRk+ I 

max [irfl(qk+l) , irfr(qk+] )] 

The weight p(qk ) of each candidate qk is defined by 

p(qk): = f(qk) -max[[rfl(qk), irfr(qk)] 

and qk will be selected to be a refstring if 

p(qk ) z t .  

The v a l u e  t i s  a g i v e n  t h r e s h o l d .  F o l l o w i n g  t h e  d e f i n i t i o n ,  one  

(1) 

(2) 

(3) 

(4) 



442 

proves that p(.) in (3) is nonnegative, p is an estimate for the 

reference probability of q being referenced alone and not within 

the context of a longer refstring. 

In the definition of the indirect reference frequency (1,2) one 

recognizes two terms: the candidate qk may be indirectly 

referenced by longer r e f s t r i n g s rk+ I or by candidates 

qk+1 which themselves are only indirectly referenced by any 

longer refstring rsj, j ~+I. Therefore the indirect reference 

frequency of a qk depends of the indirect reference frequencies 

So, the definitions (4,5) are complete by the on some qk+1" 

additional one 

irfl(q~) = irfr(%) = 0 

which states that the refstring candidates with maximal length m 

are not directly referenced. 

A small example shall illustrate the formulas: let 

Q = ABCDE(1OO,O,O),ABCDF(IO,O,O),BABCD(120,O,O) 

Q = ABCD(150,1OO,120 ),ABCE(100,O,O),BABC(2OO,120,O),ABCF(30,O,O) 

Q = ABC(3OO, . ) 

The numbers in parantheses behind each string mean the absolute 

frequency and the indirect reference frequencies irfl and irfr. 

The underlined elements are refstrings. For a decision whether 

q =ABC should be a refstring, one determines 

RSL = { ABCE(IOO,O,O) } 

RSR = {BABC(200,120,O)} 

QL- = {ABCD(]50,IOO,120),ABCF(30,O,O)} 

QR- = { } 

Corresponding to these sets the indirect reference frequencies 

for ABC are 

irfl = 100+max(1OO,120)+max(O,O) = 220 

irfr = 200+0 = 200, 

and the weight is given by 



443 

p = 300 - max (220,200) = 80 

If the Riven threshold value for the weight is not greater 80, 

ABC is used as refstring. 

3.2 Determination of Refstring Candidates 

The method described so far assumes that refstring candidates 

Ok, ksm are available with their frequencies. A straight forward 

solution would be to use all possible substrings in S as 

candidates and to count their frequencies. A better solution is 

to restrict the counting to those substrings which have a chance 

of being a candidate. Because of (4) and due to p(qk ) ~ f(q~ one 

may exclude all substrings having an absolute frequency f(qk)<t. 

Further one applies the inequality 

f(x) _< min[f(y),f(z) ] 

for a string x which contains y, length k-l, as left and z, 

length k-l, as right substring. Based on these simple 

observations, a construction of Qk' k=],2,...,m, is given: 

loop: 

set k:=O and Q]:=Alphabet; 

k:=k+] until m 

count frequencies of REQk in S; 

redefine Qk by deleting qk~QkWith f(q~<t; 

define %+I : qk+] e Qk+1 consists of a q~eQk and 

a ~ ~Qk as left resp. right substring; 

goto loop; 

This algorithm guarantees that no substring s with length ~m and 

with a frequency f(s)et is deleted. The proof is evident by 

assuming the contrary. 

A little example explains the generation of candidates. Let 

Q3 = {CNO (100) ,H20(500) ,NOH(150) ,CH2 (50), 20C (60) ,CA5 (200) ,HCL (300) } 

and t=50. Then, only for the following combinations 

%=cNo.<!?? !, c.2o{ 9), .2oc( 9)} 
the frequencies in F have to be counted. The underlined numbers 

in Q4 are only estimates (upper limits) for the final 



444 

frequencies. They are applied to improve the hash table 

generation necessary for counting. The combinations with high 

estimated numbers are used first when the probability for hash 

conflicts is low. 

3.3 Determination of Refstring Combinations 

Since a refstring may not be longer than the substrings in S 

between delimiters (refstrings do not go beyond attributes or 

single words), the frequency count of certain refstrings may be 

still too high. Therefore, the above algorithm is applied again 

but now one level higher: instead of analysing the co-occurrence 

of characters within strings in S now the co-occurrence 

statistics of refstrings within the next larger context are 

determined. Depending on S and the application this larger 

context is defined to be one query or one sentence of one 

document, generally one record in S. 

The same technique as for the refstring generation is applied for 

refstring sequences: Firs% candidate sequences are determined up 

to a maximum length and then the refstring sequences are selected 

out from them using the formula (3). The sequence order and the 

adjacency condition can be removed depending on the anplication 

considered. 

The described algorithm exploits the hyperbolic distribution 

already for the refstring generation. It has only a complexity of 

O(n) and seems to be suitable particularly for the production of 

longer refstrings and their combinations. The sort step in 

/BA75/needs O(n.logn) operations and the method described there 

seems to he more suitable for a small refstring set with short 

lengths. 

3.4 Quantitative Results, Examples 

As mentioned in the introduction the realistic assumption of 

having hyperbolic-like occurrence or usage statistics is 

essential for the number of refstrings. The fig. I shows the 

distribution of substrings with length 3 occurring in more than 

35000 German words. 



445 

3OOO-- 

2000-- 

I000-- 

Occ's 

...... .,,p~ 

Fig. I: Distribution 
of Substrings with 
Length 3 in a List 
with 36000 German words 

I . . . . . . . . . .  

I I I I I I I I No. of diff. 
0 2000 4000 6000 8000 triples 

A refstring index to a list of 44000 chemical substances contains 

only appr. 2000 refstrings with lengths between 3 and 5 and gives 

a mean selectivity of 0.2 percent (Each refstring occurs in at 

least 50 and, as a mean value, in 90 substances). 

Tab. I 

REFSTR WEIGHT REFSTR WEIGHT 

METH 
MINE 
AMIN 
TION 
MINO 
LINE 
LINO 
IONE 
HYDR 
DINO 
LING 
DING 
ROLI 
OLIN 
PHEN 
IDIN 
STER 
CHEN 
NYL- 
GENE 
ATIC 
RINE 
RING 
ETHI 

55 
86 
83 
85 

101 
73 

111 
141 

72 
70 

100 
82 

168 
90 
75 

50 ETHYL 888 
62 HYDRO 814 
89 ATION 628 
39 77009 566 
61 AMINO 360 
O1 YDROX 387 
52 DROXY 378 
08 -METH 336 
86 IDINE 340 

DINE- 69 
LINE- 64 
PHENY 345 
HENYL 339 
AMINE 266 
OLINE 207 
THYL- 303 
ANALO 284 
HALOG 286 
-ACID 283 
CHLOR 279 
RIDIN 271 
-ANAL 277 
ALPHA 273 
STERO 172 

Sample of Refstrings with 
Length 4 and 5 Generated 
with a List of 44000 
Chemical Words 

REFSTR I~IGHT REFSTR WEIGHT 

TERM 
MINI 
ICPU 
OOOO 
SCPU 
OFDE 
SWIT 
OTHR 
DASD 
ELAS 
MEMO 
O001 
LCPU 
1000 
2000 
01OO 
TAPE 
00O2 
6000 
0007 
0200 
0020 
TCUS 
0030 

572 =3750 
450 =SYS7 
338 =SYS3 
19 =5320 

227 =3740 
197 =3270 
183 =2260 
179 =3420 
170 =3600 
166 =$306 
146 =3330 
23 O1O00 

112 =3145 
15 00200 
11 00500 
14 00300 
92 02000 
19 OPABX 
11 =3135 
24 00030 
19 =2740 
12 =XX34 
33 =2365 
25 =3168 

162 
t15 

96 
7t 
61 
48 
42 
43 
37 
37 
25 
15 
27 
13 
11 
15 
13 
23 
22 
13 
20 
20 
13 
19 

Tab.2 Sample of Refstrings with 
Length 4 and 5 Generated 
with the 3000 DP Product 
Records 



446 

Table 1 shows the beginning of the refstring list with length 4 

resp. 5 from this application. Table 2 contains the beginning of 

the refstring list from a DP products application. These 

refstrings are generated from 3000 formatted records with 4 

searchable attributes. In a current larger test~ 3000 refstrings 

have been generated to a formatted file with more than 30000 

records and 9 searchable attributes each containing 

organizational data on IBM customers. 

The maximum length of these automatically generated refstrings 

was m=5. Therefore strings like PHENY and HENYL could not be 

combined to PHENYL. 

4. Follow-on Problems of the Refstring index 

Critical points in the application of the refstring index are 

(I) the detection of refstrings in a partial match query 

(2) the number of refstrin~s and their inverted lists to be 

processed 

(3) the number of records in P to be accesssed, especially 

the ratio between the number of real matches and the 

number of candidates to be inspected. 

Starting with the last point first~ one observes that it contains 

two separate problems: the overall number of accesses of P 

regardless of matches or mismatches and the mismatch-ratio (false 

drops). Both critical points are improved by the following. 

4.1 Clustering by Refstrings 

If one assumes that the refstrings are parts of records with a 

suitably high reference frequency - and with this obiect~ve they 

have been generated - and that a PMR-action qualifies more than 

one record, then it is desirable that all qualifying record 

candidates are collected in one or a few blocks to be transferred 

from external to internal storage. Since access is organized by 

refstrings~ blocks have to be defined by common refstrings~ in 

other words~ by common pieces of record contents. This is 



447 

usually called clustering. The following approach generalizes 

the remarks in /SCHET5/: 

Let be MXRS the set of the longest non-redundant refstring as 

related to a string x and p(.) a positive weight function 

defined for refstrings (e.g. proportional to reference 

frequency). A positive valued function ri(x) called "reference 

importance" is defined for each string x by 

ri(x)= ~p (rs) 
rse MXRS 

If one applies this function on P, records can be sorted in 

descending order of this "importance". Roughly spoken) the first 

record contains the longest and most often referenced ~eference 

strings. A proximity measure between two strings xaP and yeP may 

be defined by 

prox(x,y) = ~__ p(rs) 

rss M.RS 

MXRS resp. MYRS belongs to x and y resp. and M.RS contains 

refstrings common to x and y. Obviously, prox is symmetric: 

prox (x,y) = prox (y,x) 

and satisfies the inequality 

prox (x,y) ~ min (ri(x), ri(y)). 

These functions will be used to define clusters: 

let 0<~I; k=O; next:M 
A A. , 

loop: set r:=rnext; r1=n(~); k:=k+1; 

(rnext is the record in P being not yet 

element of a cluster) 
A >A define next cluster Ck:={rj~Plprox(r,rj)_ari}i 

redefine F by deleting records rjsC k from P; 

Goto loop; 

One observes that this algorithm defines clusters with pairwise 

disjoint elements. Each record is in exactly one cluster and 

each cluster contains at least one record because 
prox (~, r% A. A. =r1~rl for each~ . The factor ~ is responsible for the 



448 

size of the cluster. The number of clusters decreases fora ÷ O 

Such an algorithm has a complexity of O(n 2) whereas sorting with 

respect to the ri-function needs only O(nlogn). Experiments in 

/NUT6/ show that conventional blocking after the ri-sort compares 

favorable with the original clustering regarding the number of 

data transfers. 

More important for the access method using the refstring index is 

the fact that the inversion to be computed for the refstrings is 

related to the clusters not to the records. Therefore, the 

maximum number of inverted list entries is reduced to the number 

of clusters which can be an order of magnitude smaller than the 

number of records. The advantage of this method is that the 

secondary data overhead regarding storage size and processing 

time is reduced. Several matching records can be found in a 

single cluster. The disadvantage is the higher number of false 

drops In fact, a cluster candidate contains all specified 

refstrings but not necessarily within single records. 

4.1.1A Worst Case Simulation 

To quantify the above remarks a worst case test was simulated in 

the following way: The file P was a list of 32000 different 

German words. Each word is a record. Clustering was introduced by 

using every NC words (NC=1,3,5,10) as one cluster after having 

sorted P alphabetically. Search arguments were simulated by 

selecting 500 fragments at random from the interior of the 

words. The refstring index contained only letter pairs as 

(basic) refstrings. No additional longer refstrings were allowed 

which again simulates the worst case behaviour of the access 

method with respect to the number of data accesses and false 

drops. 

In the following table 3 the number of words in each cluster is 

NC=]O. N-ACCESS is the number of primary data (cluster) 

accessesj and N-~TCH is the umber of found matching words in 

these clusters. 



449 

INPUT STRING 
(RANDOM) 

AUPTVERB 
SOZIALET 
EINTRAGU 
INTERPRE 
NERSCHAF 
STRIENAT 
STENSPAR 
HEINKEHR 
GROSSKRE 
PERSONEL 
NZUNGSAU 
RWALTUNG 
HANDELSP 

N-ACCESS 
(CLUSTER) 

I 
4 
5 
5 

48 
4 

13 
2 
I 

12 
4 

54 
6 

N-MATCH 
(WORDS) 

2 
4 
2 
3 
9 
2 
1 
7 
1 
5 
1 

96 
4 

Table 3: Extract of the Worst Case Test with Random Fragments, 
Length 8 in a Word Component Search Application 

The table 4 shows the distribution of the access rate, defined as 

the number of cluster accesses divided by the total number of 

clusters. One recognizes that in 55 percent of the 500 queries 

with length-6-fragments and NC=3, the access rate is lower or 

equal 0.1 percent corresponding to 10 clusters or less. 

ACCESS NC=I NC=3 NC=]O 

RATE 

INTERVAL LENGTH LENGTH LENGTH 

(PERCENT) 4 5 6 7 8 4 S 6 7 8 4 5 6 7 8 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

O-O.1 30 55 70 83 87 16 37 55 70 79 4 14 24 34 45 

O.1-I 49 39 27 15 12 45 47 38 27 19 25 39 45 47 43 

1-5 20 6 3 2 1 32 16 7 3 2 33 32 24 16 12 

>5 I O O O O 7 O O O O 38 15 7 3 O 

Tab.4 Access Rate Distribution in the Worst Case Test 

The match-access ratio is defined as the quotient between the 

number of matching words and the number of cluster accesses which 

are necessary to answer a fragment search. In table 5 the 

distribution of this quotient is shown for the 500 search 

fragments. The match access ratio can be greater I for NC greater 

I. 



450 

MATCH NC=I NC=3 NC=5 NC=IO 

ACCESS LENGTH LENGTH LENGTH LENGTH 

RATIO 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8 

> I. 22 40 60 76 82 48 53 62 76 80 42 54 60 68 76 40 41 50 56 59 

4 . 7 5 - 1 .  36 28 18 12 10 t4 10 10 4 6 18 8 8 4 4 14 10 6 4 

. 5 - . 7 5  20 16 9 8 8 14 14 10 10 10 14 13 9 8 8 14 14 12 12 10 

. 2 5 - , 5  12 8 9 4 0 t4 12 12 6 2 14 12 11 12 4 16 16 14 14 1512 

0 - . 2 5  10 8 4 0 0 10 11 6 4 2 12 13 12 8 8 16 19 t8 14 

Tab.5 Match Access Ratio in the Worst Case Test 

4.2 Decomposition of a PMR-Query into its Refstrings 

This problem does not exist in classical inverted file 

approaches for unformatted and formatted DE-systems. Either a 

keyword inversion or inversion for certain attributes has been 

provided for or not. In the more general refstring inversion, 

the attribute values or keywords specified have to be inspected 

to determine which refstring inverted lists are applicable and 

which are suited best. For the determination whether a certain 

substrin~ within an argument of a query is a refstring, a special 

hashing technique has been applied based on hashing by division 

and chaining /MA75/. The modification applied needs three bytes 

for each refstring with length 3 and four bytes for each 

refstring with length 4 or 5 including the link field and a chain 

flag. So, hash tables for more than 1000 refstrings with length 

4 or 5 may be stored in one page of 4k bytes. Details are 

described in a separate note /SCHE77/. 

Sequential application of the hash function on necessary string 

positions within the specified query arguments may therefore lead 

directly to the set MXRS. In order to reduce the number of 

refstrings further, the string positions which have to be tested 

may be selected in such a way that also highly correlated 

refstrings, (not only completely redundant ones) are avoided. If 

e.g. in the search argument ATOMIC the refstrings ATOM,TOMI,OMIC 

are contained, one could omit TOMI and use only the intersection 

of the lists between ATOM and OMIC because of the 



451 

three-characters overlapping TOMI. 

In general, instead of testing each position, a number of s<k 

(e.g. s=k-]) characters is skipped after having found a refstring 

with length k. 

The following examples show how a query in a component search 

application is transformed into refstrings. They belong to the 

list with 44000 chemical terms. 

Query Refstrings 

AMINO ACID 
BETA HYDROXYLASE 
BETA-HYDROXY LASE 
HYDROXY PROPYL METHYL 
DICHLOR ACETAT 
HALOGEN 
CHLOROFORM 
SULFONAMID 
IONISATION 
GEN-MUTATION 
FUZZY 

AMINO ACID 
HYDRO BETA OXY YLA AS~ 
BETA- -HYDR LASE ROX XY 
HYDRO PROPY METHY OXY YL 
CHLOR ACETA DIC TAT 
HALO OGEN 
CHLOR FORM RO OF 
AMID SUL FON LF NA 
ATION IONI ISA 
ATION GEN N-M UTA MU 
ZZ UZ FU ZY 

4.3 Processing of Inverted Lists 

For certain basic refstrings the number of occurrences may be 

very high, (e.~. the strings ER, EN, NE occur very often in 

German language). In a question for all clusters, containing ER 

and EN and VE simultaneously, no longer, additional refstrings 

may be used. Therefore, intersection of these three inverted 

lists is necessary. Considerations due to Haerder /WE75/ with 

respect to storage and processing of inverted lists and own 

experiments resulted in an implementation of uncompressed bit 

lists a n d index lists. As a rule of thumb - gained 

experimentally by timings - an inverted list is implemented as 

index list if the frequency of the corresponding refstring is 

less than 0.2 to 0.5 % of the number of clusters. This is the 

same order of magnitude as commonly used for a decision whether 

access should be direct using the inverted list or sequential 

neglecting the access path. Haerder gives an upper limit of 

I-5 % for direct access. 

According to the splitting into bit and index lists, the 



452 

intersection between inverted lists is executed 

1. as an operation between two bit lists or 

2. as testing bits at ~iven index positions in case of 

intersection between a bit and an index list 

3. as an intersection between two index lists which is 

solved by locally changing one index list into a bit list 

and subsequent application of method 2. 

The advantage of this approach is that the lists may be unordered 

- an important point because of update actions. Union is 

performed similarily but instead of testing bits at the index 

positions, one bit is set in the bit list which now contains the 

result of the union. 

Corresponding to these possibilities for execution, complexity 

bounds may be found easily. The remarks are restricted to the 

intersection case. Assume that k refstrings rs I, ... , rs khave 

been found. Assume further that rs are sorted in ascending 
1 

order of their frequencies denoted by m i . So, rsj is the most 

selective refstring. If one denotes with e the elementary 

operation to test or to set a bit at a certain position then the 

total number tc of elementary operations is between 

m1-<t~-< (k-1)m1+~ m i 
i=2 

From timing results one finds that one elementary operation 

e needs 22 microseconds CPU time on an IBM /370-145. This means 

that the intersection of I 1 refstrings with occurrence 

frequencies m~=100 needs less than 44 milliseconds CPU time on 

this model confirming that CPU time for list processing is not a 

problem. 

A critical point, however, is the number k of lists to be 

transferred from external to internal storage. One should note 

that the main advantage for additional longer refstrings is the 

reduction of the number of inverted lists to be processed. A 

further reduction is obtained by the elimination of refstrings 

from MXRS which are estimated to be highly correlated. Now, as a 

third possibility for the reduction of k during execution, let 



453 

ql resp. qc be the cost to read and process an inverted list 

resp. one cluster and denote by rc(~) the number of cluster 
A 

candidates after the processing of the first ~ list (k< k), 

Assume further that an estimate ~ for the reduction of 

rc (~+I) = ~ .rc(~) is known. Then inverted list processing may be 

terminated after ~ if 

re (~) < - ql 
-qc (I-~) 

This formula is valid even for the optimistic estimate ~ =0 (next 

intersection would lead to an empty list) or for the pessimistic 

8=I (next reduction does not reduce rc). 

5. Applications 

The access method by the refstring index is non hierarchical and 

not influenced by a special sequence of the clusters to be 

accessed, Several different applications are obtained by a 

special interpretation of the clusters and the related 

refstrings. 

5.1Refstring Indexing in Non-Formatted Data 

Documentation systems with automatic indexing such as the STAIRS 

system generate a dictionary which contains each document string 

between delimiters apart from strings contained in a "negative 

list". In the application of such a system for a language with 

composita as for the German language but also for medical 

diagnosis texts or for descriptions of chemical substances etc., 

the problem arises that important components are contained in the 

interior of the dictionary strings which means that a query 

specifying only components of a dictionary entry may not be 

answered directly with the aid of the prepared inversion. A 

common solution to this wellknown problem is either to add 

c e r t a i n components to the dictionary or to establish a 

compound word relation within a thesaurus. 

The disadvantage of such a method is that the components to be 

introduced have to be defined m a n u a I 1 y They are 



454 

application-dependant and necessarily are not complete if new 

documents containing new terms are introduced. Furthermore, one 

knows from programs performing a compound word decomposition 

/SCH077, IZ77/ that a high number (7000-15000) components has to 

be maintained for the German language. This number of "reference" 

components even will be increased if documents are used 

containing also chemical elements or technical compound 

Cartificial) words or if documents in several languages have to 

be processed. 

In this situation it seems to be a good solution to replace the 

reference components by automatically generated reference 

strings. They have the advantage to allow the specification of 

a r b i t r a r y search fragments independantly of a 

language or of the occurrence of artificial terms. 

A further problem in systems with automatic indexing is the high 

number of dictionary entries (SOOOOO is a usual size). It leads to 

the question whether all these words are needed at all. In /HE74/ 

and /GE76/ it is pointed out that a saturation of dictionary 

entries may not be observed. A high number of very short 

inverted lists has to be administrated without being ever used. 

Since each word may appear also in different ~flexion) forms such 

as 'atom', 'atoms', 'atomic', 'atomar', etc., a user being aware 

of this fact would specify his query in the above examFle as 

'atom~' in order to include all documents containing the keyword 

atom with at most two additional characters at the end. In order 

two answer this example question, 4 accesses to the 4 related 

inverted lists and their union have to be performed. 

On the other hand, the dictionary contains also few words which 

are very frequent and which occur also frequently in a sequence 

with another frequent word. A typical example may be the sequence 

'pattern recognition'. If this sequence is specified in a query, 

two inverted lists have to be transferred and their intersection 

has to be computed. A solution to this problem by using 

refstrings and refstring combinations as document index is 

currently under investigation. Experiments known from the 

literature (e.g. /SA68, LUS67/) show that statistical term 

association give reasonable results, especially for the 



455 

application in a floating dictionary /STE 74/. The refstring 

index applied on documents is a generalization. 

The following two examples from a terminal session are taken from 

experimental programs (PL/] and ASSEMBLER) for a word component 

search running under VM-CMS on a /370-145. Virt, Time is the CPU 

time in milliseconds. The first example is taken from a word 

component search through a list with 32000 German words (NC=]). 

SEARCH COMPONENT(S) VERSICHERUNG RENTE GESETZ 

VIRT. TIME 311 

FOUND WORDS FOR VERSICHERUNG RENTE GESETZ 

KNAPPSCHAFTSRENTENVERSICHERUNGSGESETZES 
RENTENVERSICHERUNGS-NEUREGELUNGSGESETZ 
RENTENVERSICHERUNGS-NEUREGELUNGSGESETZE 
RENTENVERSICHERUNGS-NEUREGELUNGSGESETZEN 
RENTEN~ERSICHERUNGSAENDERUNGSGESETZ 
RENTENVERSICHERUNGSGESETZ 
RENTENVERSICHERUNGSNEUREGELUNGSGESETZE 

In the second example the same programs search through a list 

with 120000 mixed language words. One cluster contains 5 words 

(NC=5) 

SEARCH COMPONENT(S) PHOSPH SULF 

VIRT. TIME 349 

FOUND WORDS FOR PHOSPH SULF 

BIS(TRIARYLPHOSPHORANYLIDENE) SULFAMIDES 
BIS(TRICHLOROPHOSPHORANYLIDENE)SULF&~dIDE 
SULFIDPHOSPHORE 
SULFIDPHOSPHOREN 
TRICHLOROPHOSPHOK&NYLIDENE)SULFAMIC 
ZINKSULFID-PHOSPHOREN 
ZINKSULFIDPHOSPIIORE 

5.2 Refstring Index as Multi-Attribute Index in Formatted Data 

Because attributes in formatted files may also consist of natural 

language words or personal names, addresses etc., the possibility 

for a search with components of attributes or arbitrary masking 

seem also relevant here: A refstring index can be provided for 

certain attributes to allow partially specified attribute values. 

In addition~ the refstring index method may support queries which 



456 

specify more than one attribute value. The usual approach for 

processing such queries is to prepare inverted lists for each of 

those "important" attributes or to use combined indexes in the 

sense of /LU 70/. A new proposal by the refstring inversion is 

obtained in the following two ways: 

I. If one attribute is more important than all others and often 

further attributes together with the dominant one are 

specified, than an improvement over the single attribute 

inversion is obtained if additional refstrings from other 

attributes are selected which occur often in combination with 

frequent refstrings of the dominant attribute. Compared with 

the combined index appraoch, this proposals combines only 

c e r t a i n attribute v a 1 u e s instead of whole 

complete attributes. 

2. For several applications it seems to be a reasonable solution 

to re~ard the whole records or a subset of "searchable 

attributes" as "document" for a refstring generation. 

Therefore, one s i n g 1 e refstring index is valid for 

s e v e r a I record attributes. This means that for the 

computation of the direct record access the attribute 

information is neglected. Here, again only attribute value 

combiantions as refstring sequences will occur and not 

complete combined attributes. 

This idea has been applied on a file with 3000 records containin~ 

information on DP-products distributed over 8 attributes. Four 

of them have been assigned to be searchable. Quantitative results 

are summarized in table 6. They are obtained by a usage 

simulation in the following two ways: 

I. A record out from the 3000 is selected at random and two 

values of its four searchable attributes are selected again at 

random to give the arguments of a partial match query. This 

procedure is iterated to get 1OO partial match queries. 

Obviously, these queries simulate a worst case usage because 

each attribute value has the same probability to be specified 

in such a query and therefore do not correspond to the 

prepared index. 



457 

2. The records are sorted corresponding to the function ri, (see 

4.1). Then, the two most frequent attribute values are 

selected in every record, starting with the first record in 

the new sequence. These two values are considered as arguments 

of a partial match query. The procedure is iterated until 100 

different partial match queries are found. In this case the 

usage simulation corresponds to the prepared index and is the 

favorable case . 

The following table shows the results of these simulations with 

respect to secondary data accesses (IOS), primary data accesses 

(IOP), number of secondary data accesses if only pairs as 

refstrings are used (IOSB) and the related number of primary data 

accesses (IOPB). MATCH is the number of found matching records. 

If the number of candidate records is less than NCM during the 

processing of the query, the secondary data accesses are stopped 

and the primary data are accessed. Values of I and 10 for NCM are 

used in the tests. 

worst case 
favor.case 

worst case 
Ifavor.case 

NCM IOS IOP IOSB IOPB MATCH 

I 2.8 10.2 
I 2.5 10.7 

10 2.3 11 .6 
10 2.0  t l  .4 

5.7 t 0 . 2  10.1 
5.7 11.9 10.5 

5.2 10.9 10.1 
5.0 12.4 10.5 i 

Table 6: Refstring Index Applied as Multi-Attribute Index 

The main influence is the reduction of secondary IOs due to 

longer refstrings~ even in the worst case simulation. The optimal 

value for the number of secondary IOs is 2.0 which is obtained in 

the usual approach where all attributes are completely inverted. 

This value can be kept smaller only if combined indexes or 

combined refstrings are used. 

Acknowledgement 

I want to thank Barbara Ruhbach, Rainer Nussbaum and Hans Peter 
yon Reth students at the Universities of Heidelberg and Mannheim 
for their great assistance in implementing the programs and 
evaluating the experiments. 



458 

R e f e r e n c e s  

AH075 

AHO74 

BA75 

BAY73 

BE75 

BU76 

CLA72 

GE76 

HA71 

HE74 

IZ77 

KNU73 

KNU74 

LUS67 

LU70 

MAU75 

MCR74 

NU76 

SA68 

A. V. Aho, Margret Jo Corasick, Efficient String 
Matching: An Aid to Bibliographic Search, Commo ACM 
(1875), Vol. 18, No. 6, pp. 333-340 
A. V. Aho, The Design and Analysis of Computer 
Algorithms, Addison-Wesley Publishing Company, Reading, 
(Mass.) 1974 
Jo Jo Barton, S. E. Creasy, M. R. Lynch, M. J. Snell, 
An Information-Theoretic Approach to Text Searching in 
Direct Access Systems, Comm. ACM (1974), Vol. 17, No. 
6, pp. 345-350 
Ro Bayer, E. McCreight, Organization and Maintenance 
of Large Ordered Indexes, Acta Informatica I (1972), 
pp. 173-189 
J. L. Bentley, Multidimensional Binary Search Trees 
Used for Associative Searching, Comm. ACM (1975), Vol. 
18, Noo 9, pp. 509-517 
W. A. Burkhard, Hashing and Trie Algorithms for 
Partial Match Retrieval, ACM Transactions on Data Base 
Systems, (1976), Vol. %, No. 2, PP. 175-187 
A. C. Clare, E. M. Cook, M. F. Lynch, The 
Identification of Variable-Length, Equifrequent 
Character Strings in a Natural Language Data Base, 
Computer Journal Vol. 15, No. 3, pp. 259-262 
F. Gebhardt, Wortstatistiken an groesseren 
Textsammlungen, Nachrichten f. Dokumentation, 2-1977, 
Hrsg. yon der Deutschen Gesellschaft f. Dokumentation 
e.V., Seite 53-58 
M. C. Harrison, Implementation of the Substring Test 
by Hashing, Comm. ACM (1971), Vol. 14, No. 12, pp. 
777-779 
R. Henzler, Quantitative Beziehungen zwischen 
Textlaengen und Wortschatz, Hrg. Zentralstelle fuer 
maschinelle Dokumentation, Frankfurt, Nr. ZMD-A-23, 
Beuth- Verlag, Frankfurt, 1974 
H. Izbicki, Composita Program, Documentation Draft, 
IBM Laboratory Vienna, March 1977 
D. E. Knuth, The Art of Computer Programming, Sorting 
and Searching, Addison-Wesley Publishing Company, 
Reading, (Mass.) 1973 
D. E. Knuth et al, Fast Pattern Matching in Strings, 
Technical Report No. STAN-CA-74-440, 1974 
G. Lustig, A New Class of Association factors, in 
Mechanized Information Storage, Retrieval and 
Dissemination, (ed. K. Samuelson), Proeedings of the 
FID-IFIP Conf., Rome, 1967, North-Holland Publ. Comp. 
Amsterdam 1968. 
V. Y. Lum, Multi-attribute Retrieval with Combined 
Indexes, Comm. ACM, (1970), Vol. 13, No. 11, pp. 66-665 
W. D. Maurer, T.G. Lewis, Hash Table Methods, 
Computing Surveys, (1975), Vol. 7, No. I, pp. 6-19 
E. M. McCreight, A Space-Economical Suffix Tree 
Construction Algorithm, JACM (1976), Vol. 23, No. 2, 
pp. 262-272 
R. Nussbaum, Diskussion verschiedener 
Aehnlichkeitsanordnungen in grossen Wortlisten, 
Diplomarbeit Universitaet Mannheim, Institut f. 
Wirtschaftsinformatik, 1977. 
G. Salton, Automatic Information Organization and 



459 

SCHE7S 

SCHE77 

SCHO77 

STE74 

WA73 

~7S 

W071 

YA77 

Z149 

Retrieval, Mc Graw-Hill, New York, 1968 
H.-J. Schek, Tolerating Fuzziness in Keywords by 
Similarity Searches, IBM Scientific Center, Heidelberg 
(1975), Technical Report TR 75.11.010 contained in 
Kybernetes 6 (1977) Special Issue on Fuzzy Systems 
H.-J. Schek, The Reference String Access Method and 
Partial Match Retrieval, IBM Scientific Center 
Technical Report TR77.JZ.OO9. 
G. Schott, Automatische Kompositazerlegung mit einem 
Minimalwoerterbuch, Vortrag bei der Fruehjahrstagung 
GMDS-GI, Giessen~ April 1977 
I. Steinacker, Indexing and Automatic Significance 
Analysis, Journal of the American Society for 
Information Science~ (1974), Vol. 25, No. 4, pp. 
237-241 
R. E. Wagner, Indexing Design Considerations, IBM 
Systems Journal, (1973), No. 4, pp. 351-367 
H. Wedekind, T. Haerder, Datenbanksysteme II, Reihe 
Informatik)18, Bibliographisches Institut 
Mannheim/Wien/Z@rich, B.I.-Wissenschaftsverlag 1976 
Eo Wong, T. C. Chiang, Canonical Structure in 
Attribute Based File Organization, Comm. ACM, (1971), 
Vol. 14, No. 9, pp. 593-597 
S. Yamamoto, S. Tazawa, K. Ushio, H. Ikeda: Design of 
a Balanced Multiple-Valued File Organization Scheme 
with the Least Redundancy, Proc. of the Very Large Data 
Base Conf., Tokio, Oct. 1977, p.230. 
G. Zipf, Human Behaviour and the Principle of Least 
Effort, Addison-Wesley, Cambridge, Mass. 1949. 


