
WORKING SET SIZE REDUCTION BY RESTRUCTURING APL WORKSPACES

D. Kropp~ H. Wrobel

IBM Scientific Center Heidelberg

Tiergartenstrasse 15

6900 Heidelberg~ Germany

ABSTRACT

APL Workspaces usually have a random distribution of the defined APL

functions. The physical location of a defined APL function within an

APL workspace depends on its history of creation~ modification~ or

copying. Furthermore in APL a good programming style results in a

large number of small functions. The execution of an APL program in a

virtual storage environment usually leads to comparatively large

working set sizes because the APL functions are scattered over the

workspace. However~ the interrelation between the functions can be

analysed and exploited to reorganize a workspace and thus reduce the

working set sizes. Methods of restructuring an APL workspace are

proposed. Results of an investigation on a large APL/CMS workspace

using these methods are presented.

INTRODUCTION

Virtual storage computing sysZems have come into wide use in recent

years. Most APL installations on system /370 machines today ru D under

virtual storage operating systems, giving more freedom to the APL

programmer because of the availability of much larger workspace sizes.

Consequently large APL programs are being created. Running in a

virtual storage environment they can have bad performance

characteristics~ as has been observed in other large programs. Under

high machine load conditions a program will run most efficiently~ if

it has a high locality of reference corresponding with small working

461

sets. Experimental techniques have been developed, and methods

proposed to improve locality in a program by rearranging relocatab!e

sections of code (I-4) and by following certain guidelines in program

design (5).

Certainly one intention of virtual storage is to relieve the

application programmer from having to deal with physical storage

limitations. On the other hand, large programs in a virtual storage

environment tend to have performance problems, unless attention is

paid to locality of reference. For frequently used programs, the

application programmer needs to be concerned with the efficient

execution of his program.

APL systems more than any other programming language shield the

programmer from the internals of his workspace. On the surface there

seems to be no easy way to influence the structure of the internal

representation of an APL program. But the fact that APL programs

usually consist of many rather small Defined Functions suggests in

principle the possibility of locality improvements of APL workspaces.

This paper presents a feasible procedure to get a controlled internal

structure of an APL/CMS workspace. It describes how functional

interrelations are used for restructuring a workspace. Some results

from experiments with an APL workspace with 511 Defined Functions are

presented.

REARRANGING AN APL WORKSPACE

Control of workspace structure

The internal structure of an APL workspace depends on the history of

performing copy operations, erasing objects, and defining or modifying

Functions. The internal structure can be controlled by using the

)COPY,)PCOPY, and)GROUP commands. Investigating the effect of the

)COPY and)PCOPY commands in APL/CMS shows that they can easily be

used to control the internal relative location of Defined Functions

and/or Global Variables. These commands~ when executed for single

objects or defined Groups of objects, append the copied objects to the

content of the target workspace maintaining the sequence as specified

in the Group. For economic reasons one will use Groups to rearrange a

462

large number of objects. The normal APL capabilities to manipulate

Group definitions are somewhat limited. Fortunately, the Stack

Processor provides a means to define a Group from a large list of

names. In APL/CMS, the)COPY command places the portion of the symbol

table for the Group of objects copied adjacent to the Group~ thus

scattering the symbol table over the workspace. If one wants to avoid

this one can copy a Group representing the whole wa~ted structure.

~.e~ r.estfu~tur~ ing method

The intention of restructuring is increasing the degree of locality of

the program to be executed. Locality means "keeping a program's

address-space references confined to as few pages as possible for as

long as possible" (5). In terms of the working set good locality

corresponds with small working set sizes. Locality and working set

size of a program vary with time as a program proceeds through

different execution phases.

Improvements in performance by restructuring can in particular be

expected~ when the relocatable sections of a program are smaller than

the page size of the paging system. In an APL workspace the

relocatable sections are the Defined Functions and the Global

Variables. In the example discussed below the internal representation

of an average of 8 Functions fills one page of 4 k bytes. This figure

of about 8 Functions per page seems quite normal for common APL

coding.

Two kinds of restructuring are usually distinguished: static and

dynamic. Restructuring based on an analysis of the program prior to

execution is called static. Quite elaborate static analysis of

interrelations and cyclic structures can be performed and used for

restructuring algorithms (e. g. 6).

If one wants to make use of the dynamic behaviour of the program one

has to analyse run time data like instruction traces. By using dYnamic

restructuring substantial improvements of the paging behaviour are

possible (1,5,4).

A dynamic approach like the one described in (i) applied to an APL

workspace would be difficult and time consuming. So far we have

463

confined ourselves to a static restructuring procedure working on the

set of Defined Functions. The essential locality improvements may be

achieved by an algorithm that separates code of disjunctive program

phases into separate clusters and puts Functions as close as possible

to the calling Functions. Obviously compromises have to be made,

since many Functions are called from different parts in the program.

The algorithm to create the restructuring list was coded in APL. It

works as follows: First the name of the main Function is put into the

list. Next the names of all the Functions used by it are added to the

list. For each Function in the list the names of the Functions it

references are added to the list immediately after its name. If a name

has already appeared above its possible position, it is not added.

Duplicate names are removed starting from the bottom of the list. No

attempt to detect loops is made. The example in Fig. 1 illustrates

this process: Function 1 refers line by line to Functions 2,3,4 und 5.

After name i the names 2~3,4~5 are appended to the list. Next Function

2 is analysed providing the names 6~i0~7, and 4. 6~i0~ and 7 are

inserted into the list between 2 and ~. Then Function 6 is analysed

and so forth. The created list of this example is shown in Fig. 1.

Starting from a main Function, to which all other Functions are

connected directly or indirectly, the process of creating the

structured sequence of names can be done automatically. The program

which does the restructuring also accepts a list of Function names the

"subtrees" of which are to be excluded from the process. Thus existing

knowledge of the overall structure of the program can be included in

its restructuring.

Names of Functions which are called from several places and do not

call other Functions are extracted afterwards into a separate list of

names of "isolated" Functions. The objects of this list are comparable

with objects one would have put into a root segment of an overlay

structure.

From the lists of names Groups are defined and transferred to the

workspace to be restructured. With the)PCOPY command then a

restructured workspace can be built up in a Clear Workspace. Names

contained in more than one Group make no problems. The)PCOPY command

will copy a Function only the first time its name appears. From this

follows that groupings considered to be most important (e.g. the

464

"isolated" Functions) should be copied first.

EXPERIMENTAL RESULTS

The investigation was made with an APL workspace of 420 k bytes. This

workspace consists of 511 Defined Functions covering about 245 k bytes

and 17 permanent Global Variables needing 45 k bytes. The size of the

available work area is 130 k bytes. The Gobal Variables were not

considered to be put into a prefered place or sequence. The workspace

contains an interactive program having a number of distinct phases.

Obviously the area accessible to improvements is that with 245 k bytes

or about 60 pages of 4 k bytes. The experiment was run on a system

/370 model 145 with the APL/CMS microcode assist feature. The paging

technique used by VM/370 is demand paging with an LRU (Least Recently

Used) algorithm. The real storage available to the program was

controlled by use of the VM/370 LOCK command for a different user.

Runs of 4 minutes virtual CPU time were measured for each defined real

storage size. The VM/370 MONITOR facility was used to get the

presented data.

The runs took place in a "locked out" virtual machine, saying it had

to page against itself. A comparison is made of runs of the original

workspace with runs of the restructured workspace. In Fig.2 are the

"parachor" curves (5) shown derived from these runs, and in Fig.3 the

performance improvements as paging ratios are given. Considering the

numbers of page reads the greatest improvement is seen in the left

part where paging starts to be excessive, This corresponds with the

results in (i). More interesting with respect to "what is saved in a

multi user situation" may be to compare pages of real storage for

equal paging rates of the two workspaees. These savings are larger in

the right part of the curves. In fact~ the more desirable load

situation for the programs is~ when they can work right of the knee of

the parachor curves. The real storage savings in numbers of pages lie

between 8 and ii pages which is a 14-17~improvement. Taking into

account that essential parts of the working set are formed by the APL

interpreter, the APL variables, and some CP/CMS activity the

improvement is more significant.

465

More detailed information can be seen from Fig. 4-5. They show the

frequency distributions (in~) of "projected working-set sizes" as

defined in CP. The comparison is made at 4 paging rates for

interactive phases (Fig. 4a-d) and CPU-intense phases (Fig. 5a-d)

which are distinguished by CP. The curves reflect a common structure

of frequency of 2 prefered "projected working set sizes", and the

curves of the restructured workspace are relatively displaced to the

left. This can be interpreted as: smaller working set sizes are more

frequent all through the different program phases.

These results show that static restructuring of an APL workspace has a

reasonable effect. The algorithm used so far is a somewhat "ad hoc"

solution~ to get a first impression~ what might be possible in

restructuring APL workspaces. Clustering algorithms better exploiting

the static overall interrelation between Defined Functions in some

analogy to the "nearness matrix" of the dynamic approach of (1) seem

possible. On the other hand~ a program so intensively used like the

APL interpreter itself might gain performance in a virtual storage

environment by restructuring it either dynamically or with respect to

frequency of usage of APL Primitive Functions. One also might think of

some permanent feature in an APL system that does a static

restructuring when a workspace is copied into a Clear Workspace.

In virtual storage environments so far the aspect of locality mostly

is neglected by the userj probably~ since restructuring methods

usually are not easy to handle, and the effect~ though actually

present, becomes largely hidden in the multiprogramming situation.

But in APL as well as in other programming languages with an automatic

mechanism, available to the user as an option~ large programs can be

structured for better performance without special knowledge.

REFERENCES

(1) Hatfield~ D.J. and Gerald~J.:Program Restructuring for Virtual

Memory. IBM Systems Journal, iO, 3, 168-192, 1971.

(2) Hatfield, D. J.: Experiments on Page Size~ Program Access

Patterns~ and Virtual Memory Performance. IBM Journal of Research

and Development 16, i~ 58-66~ 1972.

(3)

(4)

(5)

(6)

466

Ferrari~D.: Improved Locality by Critical Working

Communications of the ACM, 17~ llj 614-620, 1974.

Sets.

Baier,J.L. and Sager~ G.R.: Dynamic Improvement of Locality in

Virtual Memory Systems. IEEE Transactions on Software

Engineering, SE-2, i, 54-62, 1976.

Morrison, J.E.: User Program Performance in Virtual Storage

Systems. IBM Systems Journal, 12, 3~ 216-237, 1973.

Baer,J.L. and Caughey,R.: Segmentation and Optimization of

Programs from Cyclic Structure Analysis. Proc. AFIPS 1972~ Spring

Joint Computer Conference, 40, 23-36.

FIGURES

Fig. 1:

Fig. 2:

Fig. 3:

Fig. 4a-d:

Fig. 5a-d:

Graph of "Function Call" interrelations and restructured

Function names list.

Page Reads ("parachor" curves) and Page Writes

against available real storage. The thick lines

curves of the restructured workspace.

plotted

are the

Relative performance as ratio of (page reads of original

workspace) to (page reads of restructured workspace).

Frequency distributions of "projected working set sizes"

at interactive phases of paging rates A,B,C,D (Fig. 2).

Frequency distributions of "projected working set sizes"

at CPU-intense phases of paging rates A~B,C~D (Fig.2).

467

©

1

2

6

10

7

4

9

II

3

8

5

Fig. I

468

t
H

|

v

I

160o0-

14000--
N

12000--

I0000--

8000-
N

60o0-

4O00-

20O0-

O,
I

45

-- ORIGINAL WORKSPACE

~ RESTRUCTURED WORKSPACE

A l

PAGE-
READS

} PAGE-
WRITES

I I I I
5o 55

I I I I
6O 65

REAL STORAGE AVAILABLE

I
70 PAGES (4k Bytes

Fig. 2

b
O

R
E
L
A
T
I
V
E

P
E
R
F
O
R
M
A
N
C
E

.
.
.
.

-
-

•
•

•
•

•
o o

I
I

1
l

I
I

I
I

1
I

I
I

I
1

I
l

1
1

l
I

l
I

I
I

I
1

Q
~

cn

0
i

0
-

-

O
--

Q

C
~

O
--

$

470

t 4o-f I ORIGINAL

I ~ RESTRUCTURED

J H 30-

m
0

20- -

i 0 - -

0 I ' " -

I] I I I I i I
0 i0 20 30 > 35 PAGES

PROJECTED WORKING SET SIZE f"

Fig. 4a

t 6o-I
1

4 o - j

Z

c~

20- -

I
I
I

0 ~

I i i I I I I i I
0 20 40 60 >70 PAGES

PROJECTED WORKING SET SIZE >

Fig. 5a

471

I
H

[O
m

C~

m

4O-

3o-

20-

l°- I
I
I °I
0

ORIGINAL

RESTRUCTURED

I I I .I I I I
i0 20 30 >35

PROJECTED WORKING SET SIZE ' >

PAGES

Fig. 4b

l
2:
H

t)
Z

D
C~

60-I

4O-

20-

0
I I I I I I I

20 40 60 >70

PROJECTED WORKING SET SIZE >

PAGE S

Fig. 5b

I

t 60-j

Z
H 40-

o

° t 20-

I

o

ORIGINAL

RESTRUCTURED

• i

I I I i i 1 1
i0 20 30 >35 PAGES

472

PROJECTED WORKING SET SIZE

Fig. ~c

t 60-

40- H

u

g
20--

o I I I I
0 20 40 60 >70 PAGES

PROJECTED WORKING SET SIZE >

Fig. 5c

473

40--

Z 30--
H

O

C~ 20--

i0--

° 1 ,
0

ORIGINAL /

I I I I t I I
I0 20 30 >35 PAGES

PROJECTED WORKING SET SIZE

Fig. 4d

40--

30-

20--

~o7_~ io i :,]] Y ~ l
0 20 40 60 >70 PAGES

PROJECTED WORKING SET SIZE

Fig. 5d

