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SUMMARY 

Existing models for deadlock detection and avoidance give practical solution only in 
the case of chains of independent tasks. 
In this paper we propose a non enumerative approach to deadlock avoidance when the work- 
load consists of a graph-structured task system. The avoidance algorithm is based on an 
extention of the Coffman and Denning deadlock model. 

i. Introduction 

The problem of deadlock avoidance has been widely examined by several authors [2,4,5,7J. 

However, most researches have been concerned mainly with systems of independent pro- 

cesses, and only a few results are known for the case of interacting processes [5] . 

Moreover, the deadlock detection and avoidance methods which have been defined for 

graph-structured task systems are essentially enumerative, and therefore quite time 

consuming; for practical implementation purposes sufficient and rapidly verifiable con- 

ditions are needed. On the other hand, the extensive development of parallel processing 

techniques and multiprocessor architecture is increasing the interest in process coope- 

ration as a very basic tool for programming methodologies and computer systems opera- 

tions; so, we feel that deadlock avoidance techniques for large systems of interacting 

processes should be improved. 

The aim of this paper is to present a practical method for deadlock avoidance when the 

workload is a system of interacting processes that can be structured as a graph of 

tasks. With respect to the basic assumptions our model is quite close to that developed 

by Coffman and Denning [2]; we made this choice because the model in [2] is perhaps the 

most widely known and the most suitable for the extension to the case of our interest. 

Therefore in the following we will often refer to [2], even if a number of fundamental 

definitions are reported here in order to allow a self-contained reading of the paper. 

The paper is organized as follows. In section 2 a set of basic definitions is present- 

ed, and a theorem is proved which allows the detection of deadlock in a general graph 

structured task system; in section 3 we discuss the problem of deadlock avoidance in 

the simplified case of a tree structured task system; in section 4 an approach to dead- 

lock avoidance with graph structured task systems is suggested. 
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2. Basic definitions and theorem 

We define a task system to be a pair G = (I,~), where I = TI,T 2 ..... T n is a set 

of tasks, and ~ is a partial ordering (precedence relation) on I. Given two tasks T 

and T', T~T' means that task T is to be completed before task T' begins. A task sys- 

tem can be represented by a precedence graph, where each vertex is a task and the ver- 

tices corresponding to two tasks T and T' ar% connected by a directed edge iff T<T'. 

A path of length k through the precedence graph G is a sequence of edges (TrlTr2) 

(Tr2Tr3) ... (Trk_iTrk) passing thorugh vertices Trl,Tr2 , ... ,Trk. 

For i and j such that I~ i< j~< k, Tri is a predecessor of Trj and Trj is a successor 

of Tri; if j=i+l then Tri is an immediate predecessor of Trj and Trj is an immediate 

successor of Tri . Let S i be the set of immediate successors of T i and Pi be the set 

of immediate predecessors of T°. A task with no predecessors is an initial task and a 
I 

task with no successors is a terminal task. The level of task T i (written /(Ti)) is k 

if the length of the longest path from T. to any terminal task is k. An execution se- 
1 

quence of a system G of n tasks is a sequence of task initiations and terminations 

= ala2...a2n satisfying the following conditions: 

I. For every task T¢I the symbols ~ (task initiation) and T (task termination) appear 

exactly once in ~ . 

2. If a.= T and a.= T, then i< j. 
1 j -- 

3. If a.= T and a.= ~, and T~T', then i< j. 
i -- j 

More details Can be found in [2]. 

Since a task represents a computation unit during which total resource requirements 

don't change, the only significant events are task initiations and terminations. If 

the physical system consists of m resource types , it is possible to define for each 

task T i a request vector** ~ qi = (qil,qi2, ... ,qim ), representing the number of units 

of each resource type which must be allocated to the task T. before its initiation, a 
i 

release vector ~i = (ril,ri2, ... ,rim) , representing the number of units of each re- 

source type which are released to the system by task T. on its termination, and a trans- 
I 

fer vector ij (tijl,tij 2 ..... tij m) for each Tj~ Si, representing the number of 

units of each resource type which are transferred to task T i by task T.l on its ter- 

mination. We suppose that every terminated task holds no unit of resource, and hence 

the following relation must be satisfied, for l~j~,<n: 

qj +Y = +>- . . . .  

~i:Ti¢ Pj ij j ~k:T k ¢ Sj tjk (2.1) 

Obviously we will consider only those resource types which satisfy all necessary 
conditions for deadlock [~. 

F r o m  h e r e  o n ,  v e c t o r s  w i l l  b e  d i s t i n g u i s h e d  b y  t h e  s y m b o l  ^ . 
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Given an execution sequence ~= ala2...a n , a corresponding state sequence 

= soSlS2...S2n can be defined, each state s k specifying the amount of available 

resources and the number of resources units allocated to and requested by each task 
A 

after the event a k. Hence, each state s k is defined by 2n+l vectors v(k), Pi(k) 

and Qi(k), l~k~n, where vector ~(k) specifies the number of available units of 

.(k) and ~i(k) specify respectively the number of each resource type, and vectors ~I 

units of each resource type hold and requested by task T. after the event a k . Vectors 
i 

~i(k) and Qi(k) are defined as follows*: 

i. ~.(k)l = 0 if 3j : (aj = T_i)^ (j~k) 

2. ~i(k) = ~:r/¢ P@z ~li if ~j : (aj= Ti)~ (j<k) 

where P*l is the subset of P.z such that T£ E P*z iff 

T£ ~ Pi and ~h : (a h = T_£) ̂  (h~<k). 

3. ~i(k ) = 7 ^ ¥£:r£e Pi tli + qi if ~j : (aj = Ti)^(j.~.< k) and 

~h : (ah= T_i) ̂(h~<k). 

4. ~i (k) = ~i if ~h : (a n = T j)^ (h~<k) for each rj E Pi and 

~l: (a/= Tj)^ (l~ k). 

5. ~i(k) = 0 otherwise. 

In the initial state s : 
o 

I. ~(0) ^ the vector specifying the total amount of system resources 

2. ~.(0) = 0 for l~<i~n. 
i 

A 
3. Qi (0) = qi if T i is an initial task, Qi(O) = 0 otherwise. 

Given an execution sequence ~= ala2...ak...a2n , event ak=~ i is allowable if 

Qi(k-l)~(k-l). Obviously task terminations are always allowable events. An execution 

sequence is valid if all initiation events are allowable. 

We give now a very intuitive definition of deadlock: 

definition i: Let G be a system of n tasks, ~= ala2...a k a partial valid execution 

sequence, ~ a set of tasks such that T i~ ~ iff ~i(k)> O. State s k contains a 

deadlock if there is at least one task T° £ ~ such that it is impossible to find a 
i 

valid partial execution sequence ~' = ala2...akak+l...a p defined as follows: 

* From here on we define a vector ~ = (vl,v2, .... v:) to be a null vector (~ = O) if 
v. = O for l~<i~j; a positive vector (~>0) is ~ not null v-~ctor---~uch that v~.> O 
f~r l~i~j; a negative'~ ( ~  "is a not null vector such that v.~O for i~<i~<j. 
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I. ~ is prefix of 

2. a = ~. 
p l 

Task T. is then said to be deadlocked. 
i . . . . . . . . .  

~T 

Definition 1 says that the system contains a deadlock if we are unable to initiate a 

task which is ready to be executed, all its predecessors being terminated. Clearly, 

if a task is deadlocked, all its successors are also blocked, and a whole subgraph 

cannot be executed. 

A deadlock detection procedure based directly on definition 1 is necessarily enumer- 

ative. Therefore, we must look for necessary and sufficient conditions which can be 

more easily verified. Such conditions are stated in the following theorem: 

Theorem I: Let G be a system of n tasks and ~ =ala2...a k a partial valid execution 

sequence. Suppose that there is a non empty set D of indices such that for each i in D: 

~i(k) ~ ~(k) + j~ DvD* ~j(k) (2.2) 

where D* is the set of indices such that £E D* iff T£ is a successor of Tj, for 

any i ~ D. Then s k contains a deadlock and every task Ti, i e D, is deadlocked. 

Theorem 1 is an obvious generalization of Denning's definition, but its proof is quite 

cumbersome and so it is not discussed here (see Appendix). This theorem is interesting 

mainly because it proves that the definition of deadlock given in [2] can be slightly 

modified to cover the case of graph structured task systems and gives a simple method 

to detect deadlock situations. However, our specific goal is avoidance rather than 

detection, and to avoid deadlock each state must be checked for safeness, according to 

the following definitions: 

Definition 2: Let ~= a la2...a k be a partial valid execution sequence: state s k is 

safe if there exists at least one valid complete execution sequence having ~ as a 

prefix. 

In the following sections a further step will be made, looking for sufficient conditions 

for safeness. We are restricting ourselves to sufficient conditions because we are un- 

able to find necessary and sufficient conditions that are not essentially enumerative. 

3. Tree structured task s~stems 

We will consider at first a special case, that of a tree structured task system. This 

model can represent a situation in which a process, at a particular stage of its activi- 



552 

ty, starts the execution on one or more processes, which run independently of each 

other, starting in turn new sets of processes and so on. 

A sufficient condition for safeness can be based on condition (2.2). In fact, suppose 

that if task T i can be initiated, then the whole subtree Gi, having T i as root, can be 

terminated; this means that there is at least one partial execution sequence, involving 

the whole set of tasks of subtree Gi, that is valid if the resources granted to T i 

become available to its successors. In such a case, if no task asking for resources 

is deadlocked, then the system is in a safe state. These remarks may be formalized as 

follows: 

Theorem 2: Let G be a tree structured task system, ~= a]a2...a k a partial valid 

execution sequence and I a set of indices such that i ~ I iff the immediate prede- 

cessor of T i is terminated but --~T" ~ . Each task T.l is the root of a subtree G..l 

Let M, be a vector representing the minimal amount of resources that must be allo- 
l 

cated to subtree G. to guarantee that all tasks belonging to G. can be terminated. Let 
i i 

= - P.(k), for each ie I. (k) 

for each i~D: 

If no set of indices D c I can be found, such that, 

then state s k is safe. 

X" 
Q$ ~(k) + J~ P (k) (3. i) 

D j 

Proof. If no set D exists satisfying (3.1), then at least one index il~ I exists, 
^* 

such that Qil~(k) (otherwise a set D = I would satisfy (3.1)). This means that 

the available resources suffice to complete subtree Gil. On completion, Gil release 
^ 

all allocates resources, which are Pil(k) plus all subsequently obtained units up to 
^ 

the maximum ~$i o Therefore, the amount of available resources is now $(k) +̂  Pil(k), 

but, by hypothesis, at least one index i 2~ I exists such that ~2~<~(k) + Pil(k); so 

subtree Gi2 can be completed and so on. 

Condition (3.1) is only sufficient, as can be proved by a simple counter-example. Con- 

sider the following system: 

= (3,3) 
^ 

~i = (2,2), ~i = (0,O), ~12 = tI3 = (l,1) 

~2 = (I,i), ~2 = (O,O), ~24 = t25 = (I,I) 

~3 = (I,I), ~3 = (2,1), ~36 = (O,I), ~37 = (O,O) 

44 = (I,O), ~4 = (2,1) 

~5 = (2,1), 95= (3,2) 

$6 = (3,1), ~6 = (3,2) 

~7 = (2,2), ~7 = (2,2) 
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Let ~= T I~I be the partial execution sequence. Then state s 2 is defined by: 

i. $(2) = (i,I) 

2. ~2(2) = ~3(2) = (I,I), ~i(2) = (0,0) for i~ 12,31 

Q2(2)^= , ~2,3j 3. ^ Q3(2) = (I,I) Qi(2) = (0,0) for i~ ~ 

4. M 2 = M 3 = (3,2) 

5. Q2(2) = ~3(2) = (2,1) 

It can be easily verified that the set of indices D = 12,31 satisfies (3,1) but the 

system is not deadlocked, because the sequence 

~' = TITITBT3T2__T2T4T__4Ts~sT6~T7T__ 7 

is a valid execution sequence. 

The central point in theorem 2 is the evaluation of the vectors M*'s. 

A truly minimal vector is quite difficult to define for two main reasons. First, it is 

not guaranteed that an unique minimal vector exists; in the above example we could de- 
A. 

fine a different vector M3 ' = (2,3), which is as minimal as M3, because if two units 

of the first type and three of the second type were allocate to subtree G 3 all tasks 

^*') Secondly, the problem of 
^ M3̂ * ~*~ of G 3 could be completed, and ~ (as well as M 3 

finding a vector M i for subtree G i is essentially the same as sequencing all the tasks 

of a tree to verify if, for a given set of system resources, the initial state is safe. 

To be sure that a set of resources is minimal, we must prove that substracting even 

one unit of resource we make the initial state unsafe; this test could be performed in 

a non enumerative way if necessary conditions for safeness were known, but theorem 2 

gives us only sufficient conditions. Therefore.~ to avoid enumerative methods, we will 
A ~, ^ • 

look for a minimal vector Mi>~Mi, trying to define M i as close as possible to M* A 
A 

recursive method to compute M i s can be based on the following theorem: 

Theorem 3: Let G a tree structured task system, G i a subtree having task T i as root, 

IGil,Gi2 , .... Gin ~ the set of subtrees having as roots the immediate successors of 

Ti, and T s the immediate predecessor of T i. 

Let I be the set of indices such that j~ I iff T.e S.. Let ~. be a vector of re- 
j i i 

sources such that no set of indices D¢ I can be found having the following property: 

~ ^ ^ k~_~D ^ J' t..lj ~ vi+ tik for each j ¢ D (3.2) 

^v 
Choose 3. such that no vector v.< ~. can be found which satisfies the above require- 

l i I 

ment. Then 

Mi = ~i + ~si + ~i - ~i (3.3) 

The proof is trivial and will be omitted. 

The computation of Mi can be performed only once for every subtree G i of G, because 

M. is independent of the specific execution sequence, as stated by (3.3) (in fact, no 
l 
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reference is made to any state of the sequence~). To compute M's the best approach is 

to find the immediate predecessors of terminal tasks, each identifying a subtree, to 

evaluate the resource requirements of this first set of subtrees, and to go on in this 

manner reducing step by step the tree to its root. 

4. Graph structured task systems 

In the case of graph structured task systems theorem 2 cannot be applied because of the 

complexity of precedence relations; therefore a different approach to safeness verifi- 

cation is needed. 

Informally, a criterion for safeness can be stated as follows. Given a task system G, 

suppose that a partial valid execution sequence ~k has been found, containing the 

terminations of all tasks at a level greater than j; suppose also that, if all tasks 

at a level j are terminated, then a valid completion sequence can be found. Then the 

state s k is safe if no task at level j is deadlocked. By recursion a general rule 

to verify safeness can be stated, which implies the possibility of executing the task 

system level by level. 

Consider, for instance, the following task system 

and suppose it can be executed level by level, that is the following execution sequence 

is valid: 

~*: T ITIT 2T2 T 3T3 T4~4TsT5 T6!6T 7~7 

Consider now the partial execution sequence ~ : TI~IT2T2T5 ; the activation of task T5 

does not lead to an unsafe state only if the amount of available resources after its 

termination allows us to execute tasks T 3 and T 4. 

We will now formalize the above criterion, proving at first the following lemma. 

lemma I: Let G be a system of tasks, ~ = ala2... ~ a partial valid execution sequence, 
^ ^ ^  

I a set of indices such that i ~ I if Qi(k)>O. Suppose qi-ri~> O for each i£ I. 

Let IpC I be the subset of I such that i ~ Ip iff ^qi - ~ O and In¢ I the subset 

^ ~. ~O. If no set of indices D < I exists such that, for of I such that j ~I n iff qj- J p p 
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each i ~ D : 
P 

A ~ A) 
qi~(k) + (rj - qj 

j CDp 
and no set of indices D ¢ I exists such that, for each i~D 

n n n 

ri~ v(k) + . (rj qj + (rj-qj) 

then a part ia l  valid completion sequence ~t exists,  such that 

(4.1) 

(4.2) 

~i ~ ~I for every iE I. 

Proof. If no set D exists such that (4.1) is satisfied, there is at least one task 
P 

Til , i I~ Ip, such that qil~V(k), otherwise a set Dp m I would exist. This means that 

task Til can be initiated with the currently available resources. Let Ipl be the sub- 

set of Ip made of all indices ie Ip except i I . No set Dp = Ipl exists such that (4.1) 

is satisfied; therefore there is at least one task Ti2 , i 2 ¢ Ipl , such that qi2< v(k)+ 

- ~ + ^- represents the amount of available resources -qil+ rll. But the quantity ~(k)- qi I rll 

after the termination of Til , and hence task Ti2 can be initiated after the termina- 

tion of Til. Proceeding in this manner it is possible to prove that a valid partial e~- 

ecution sequence ~2 = TII~IITI2~I2... exists, such that ~i £ ~2 for each ielp. After 

the execution of all tasks Ti, i~ Ip, the amount of available resources is 

~' = O(k) +'._~-¢--~]¢ ±P (~j- ~j)> ~(k) 

The execution of each task Ti, i~ In, does not increase the available resources, being 

ri-qi~ O . If no set D n exists such that (4.2) is satisfied, there is at least one 

task Tll such that 

jean qj rj) 

J #l I 

= . T£ I otherwise a set D n In would exist Therefore task can be initiated with the re- 

sources which are available after the execution of all tasks T l ,l~ Inl , being Inl = 

= I n - ll~ But no set D n m Inl exists, so that at the e~d a partial valid execution 
_ i 

sequence ~3 = " .... T1 T~ T l T£ can be found, such that Tl~ ~3 for each l~l 
~ ~,~ 2-- 2 I-- i n 

Therefore, 1 = 2 I; 3" 

Conditions (4.1) and (4.2) are also necessary if the set of possible sequences ~i is 

limited to sequences containing no events T. or T. with i~ I. The proof is trivial 
l --i 

and will be omitted. Also the following corollary can be trivially proved: 

corollary I. Let G be a system of tasks, ~= ala2...a k a partial valid execution se- 



556 

quence, I a set of indices such that i~ I iff Qi(k)> O. Suppose that a subset I'~ I 

"X exists such that ~i - ri 0 for each i~ I' For each ie I' substitute ~'l with a new 

' ' ,r~ ) such that r~ = = vector r~ = (r~ = (ril'ri2'"" im lj rij if qij ~ rij' and r!.lj qij 

if ~ij< ~.. . Then lemma 1 can be applied but conditions (4.1) and (4.2) are never 
lj 

necessary. 

Suppose now that a task system G can be executed level by level, that is a valid execu- 

tion sequence ~*= ala2...a2n* * * exists such that if a~ = _T, a~j = T' and l(T)> £(T'), 

then i<j. Let ~ = ala2...ak be any valid partial execution sequence, S' a set of 

integers such that s ES' iff: 

i. J- i : T. e~ ~(T i) = s, 
1 

2. and 

and 

and S a set of integers such that s 6S iff min ~lw s~<max ~S' I For each s¢S let 

I be a set of indices such that i~I iff ~i#~ and l(T i) = s. Modify every vector 
s s 

^ ^ - ~ ~ O. Let ri,. ~ieIs, ~saS, according to the assumptions of corollary I, if qi i 

Isp be the subset of I s such that i~Isp iff ~i - ~i <0' and Isn be the subset of I s 

such that i 6 I iff ~i - ~i >0" Under these assumptions, the following basic theorem 

can be proved: 

Theorem 4: For every s ~ S, if no set of indices D c I exists, such that, for each 
sp sp 

i¢D : 
. sp 

qi ~ O(k) - S 

sT> s 

F 
(qt- +~e~sp ~j) t ~I s , ~t ) ° (~j- 

J / Dsp 

and no set of indices Dsn~ Isn exists, such that, for each i ¢ Dsn: 

(qt- rt) + (~'-~j) + ri~v(k ) - ~Is, J (rj- qj 

sT> s 

(4.3) 

(4.4) 

then the state s k is safe. 

Proof. Let Smax, Smi n be respectively the maxlmum and minimum of set S. By assumption, 

, .~ Ti, then ~. e ~ " therefore task To is ready to be ini- for every i ~Ismax if Tj j ' l 

tiated or will be ready after a finite time interval. In any case, the initiation of T i 

is constrained only by the availability of resources. But, by lemma I, if conditions 

(4.3) and (4.4) are satisfied, a partial valid execution sequence ~Smax can be found, 

such that T. ¢ for every i E Ismax. max --l ~ Smax Hence all tasks at level s - i will be 
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ready for initiation after a finite time form event a k. But, by lemma I, if conditions 

(4.3) and (4.4) are satisfied, a partial valid execution sequence ~ Sma x- 1 can he 

found, such that --IT" • ~ Smax_ 1 for every i e Ismax_ 1 , and so on. Therefore, if condi- 

tions (4.3) and (4.4) are satisfied, all task at a level s~s . can be completed with 
mln 

the currently availabl~ resources; let ~I = ~Smax II ~ Smax- II~ .... II ~ Smi n be the va- 

lid partial completion sequence containing the terminations of all tasks Ti, for 

i e sVS Is" Consider now the partial execution sequence ~ 2 containing all and only 

all the terminations of all task T such that ~ ~ but T ~d ; a termination event 

does not decrease the amount of available resources, and therefore a new valid partial 
, 

execution sequence ~' can be built merging ~I and ~2 " If ~Smin is the prefix 

of the valid execution sequence ~* such that T e ~* _ Smin for every T such that £(T)> 

Sml n. and T'~Smin* for every T' such that £(T')< Smin, then the two sequences 

II~' and ~ * Smin contain exactly the same events; therefore, if ~'* in the comple- 

tion sequence such that ~*= ~Smin* II ~'* , then ~'* is also a valid completion sequence 

for the partial execution sequence ~II~', that is ~II d';~ ~'* is a valid execution se- 

quence, and consequently the state s k is safe. 

The last problem is to find sets D and D in lemma I, D in theorems 1 and 2, and D 
p n sp 

and Dsn in theorem 4. This problem is easily solved because: 

I. 

2. 

All sets can be searched independently of each other. 

The search always involves a set of tasks which, upon termination, do not increase 

(decrease) the amount of available resources; therefore the order of allowable ini- 

tiation events is not important [2 7 . 

Then the simplest algorithm for the detection of sets D 
P 

following: 

and D in lemma 1 is the 
n 

Algorithm i: 

Step I: detection of set D 
P 

io Initialize D = I and ~--~(k). 
P P 

2. Search for any index i eIp such that qi ; if none is found goto 4. 
A A ~ A 

3. D---D - ~il ; V~--V + (r i - qi); goto 2. 
P P 

Step 2: detection of set D n 

4. Initialize D = I and V~-V ^ ^ + .~ - (rj - ^^ qj )" 
n n ~ ¢ I n ^ ^ 

5. Search for any index i ¢ I such that ro V; if none is found terminate 
n i 

the algorithm. 
A ^ 

6. Dn~--D ~ - ~i I ; ~--~ + (qi - ri); goto 5. 

If the number of tasks in IpU I is z, the running time of the algorithm is 0(m.z 2) 
n 

Using more sophisticated techniques, it is possible to speed up the algorithm, reaching 
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a running time of 0(m.z) [2~. Sets D and D 
sp sn 

1 and 2 can be found in a very similar fashion. 

in theorem 4, and set D in theorems 

5. Conclusions 

The formulation of the deadlock detection and avoidance problem made by Coffman and 

Denning has been extended here to cover the more general case of a graph structured 

task system. The proposed approach preserves the basic property of the simpler models 

developed for independent chains of tasks, i.e. it allows the definition of non-enu- 

merative avoidance algorithms. The conditions on which such algorithms are based are 

only sufficient, and therefore it can happen that a resource request is not accepted 

even if it could be granted without entering an unsafe state; however, without this 

approximation, we are unable to design algorithms which are not essentially enumerative. 

APPENDIX 

Proof of theorem I. Suppose that at least one index i 6D exists such that it is pos- 

sible to find a partial valid execution sequence 4' = ala2.°.akak+l...a , m being a 
P 

prefix of ~' and ap = T'l . Let the sequence ~" = ak+l...ap be a subset of ~'. Sup- 

pose also that ~" does not contain the initiation of any task Tj, j £D. If this is 

not the case, and a set of events l akl,ak2 ..... akp I exists such that aks 6 ~ " and 

aks = ~is for is(D, l~s&p, it is always possible to impose new values to p and i 

such that a k akl , i = i I and ~" = . • = ak+ I. .akl_ 1 Task T i is initiated, hence 

~i(P-l)~(p-l). Let A be the set of indices such that j ~ A iff ~" contains the event 

~j and B the set of indices such that j ~B iff ~" contains the event T.; then: , --j 

~(p-l) = $(k) + ~ J q£ 

j Z~B^A u~ s~B^A 

j~_~B ^ ~- ,^ ~i~7~i ^ ^ > $(k) + r. - qu + - j u ~ A (r£ q£ 

being B' = B^(B^ A) and A' = A^(B^----A). If ~£,fin is a vector specifying the total 

amount of resources held by task T£ after its initiation (and before its termination), 

then we can write: 

. . . .  ~/(k) + Z___ ^ - ^ = v(p-l)~<v(k) + . rj + (r/ + s eB ts/ 

= v(k) + + + ($ + ~B^i B^A scB^A tag + 

A 

+ P£ (k) - Pg, fin) ~< 
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^ ^ ~" 

~< $(k) + . ~ j (k )  + ~I~B^A P£(k) = v(k) +~-~ ~j(k) 

Therefore it can be stated that: 

^ ^ ^ ~-~J(k) Qi(k) = Qi(P-l) ~ v(k ) + . 

By definition BAD = @, and consequently BAD*= @; hence Qi(k) ~'k)+~ ~ ~j(k), 

which contradicts the theorem. 

So far we have proved that (2.2) is a sufficient condition for deadlock detection. We 

will now prove that it is also necessary. Let D be a set of indices such that i eD iff 

no valid partial execution sequence ~. can be found leading to initiation of T. and 
l I 

having, as a prefix, ~ (every task Ti, i£D, is deadlocked). Then, in the best case, 

it is possible to find a partial valid execution sequence having ~ as a prefix and 

containing the termination of all tasks T. j#DvD ~. Let ~' = ala2...akak+l...a be J' p 
A 

v(p), and task T4 such a sequence. Being Ti, ~ieD, a deadlocked task, Qi(p)~ no 
3 

exists such that Qi(p)~<v(p), because only tasks Ti, ieD, are asking for resources 

in state s . Therefore set D satisfies condition (2.2). This means that, if state s k 
P 

contains a deadlock, a state Sp, p ~k, will be necessarily found, in which condition 

(2.2) is satisfied. 

6. References 

Coffman, E.G.jr., Elphick, M.J., Shoshani, A. "System Deadlocks", Computing Surveys 
2, (1971), 67-78. 

Coffman E.G.jr., Denning, P.J. "Operating Systems Theory", Prentice Hall, 1973. 
Habermann, A.N. "Prevention of System Deadlock", Comm. ACM 12, (1969), 373-377. 
Havender, J.W. "Avoiding Deadlock in Multitasking Systems", IBM Syst. J. 7, (1968), 

74-84. 
Nebalkar, P.G. "A Graph Model for Analysis of Deadlock Prevention in Systems with 

Parallel CompUtation" , Proceed. IFIP Congress (1971), 168-172. 
Howard, J.H.jr. "Mixed Solutions for Deadlock Problem", Comm.ACM 16, (1973), 427-430. 
Llewellyn, J.A. "The Deadly Embrace - a Finite State Model Approach", Computer Jour- 

nal 16, (1973), 223-225. 


