
Lecture Notes in 
Computer Science 
Edited by G. Goos and J. Hartmanis 

66 

Neil D. Jones 
Steven S. Muchnick 

TEMPO: A Unified Treatment of 
Binding Time and Parameter Passin 
Concepts in Programming Languag 

Springer-Verlag 
Berlin Heidelberg NewYork 1978 



Editorial Board 
P. Brinch Hansen D. Gries C. Moler 
J. Stoer N. Wirth 

Authors 
Nell D. Jones 
Steven S. Muchnick 
The University of Kansas 
Department of Computer Science 
18 Strong Hall 
Lawrence, KS 66045/USA 

G. SeegmL]ller 

AMS Subject Classifications (1970): 68A05, 68A30 
CR Subject Classifications (t974): 4.22 

ISBN 3-540-09085-1 Springer-Verlag Berlin Heidelberg NewYork 
ISBN 0-387-09085-t Springer-Verlag NewYork Heidelberg Berlin 

This work is subject to copyright. All rights are reserved, whether the whole 
or part of the material is concerned, specifically those of translation, re- 
printing, re-use of illustrations, broadcasting, reproduction by photocopying 
machine or similar means, and storage in data banks. Under § 54 of the 
German Copyright Law where copies are made for other than private use, 
a fee is payable to the publisher, the amount of the fee to be determined by 
agreement with the publisher. 
© by Springer-Verlag Berlin Heidelberg 1978 
Printed in Germany 
Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr, 
2145/3t40-543210 



PREFACE 

The design of TEMPO was motivated by difficulties encountered in teaching the 

semantic and pragmatic concepts of programming languages with current texts and 

languages. If the topic is taught as a comparative exposure to programming in 

several languages, a disproportionate amount of time must be spent teaching the 

irrelevant and trivial but exceedingly bothersome details of syntactic peculiarities, 

local hardware representations, and operating system interfaces. These variations 

of detail in turn obscure the essential issues--both the similarities and the 

differences in such basic areas as name-value binding, storage allocation, and pro- 

cedure parameter passing. On the other hand it is difficult to be precise and 

concrete in teaching these concepts without reference to specific languages. TEMPO 

is designed to reconcile this need for precision with the problems inherent in the 

multiple language approach by providing first a base language known as the "dynamic 

version", characterized by virtually the latest possible binding times, and then 

a series of syntactic extensions and concurrent semantic restrictions which modify 

the language in the direction of earlier binding times and make greater implementa- 

tion efficiency possible. 

The language is useful in a variety of ways. Study of the language definition 

itself provides insight into the formal techniques for the specification of syntax 

and semantics. Hand simulation of the execution of a TEMPO program (or reading an 

annotated execution trace produced by an implementation) clarifies the ideas of 

information binding as to what is bound, and when and how binding occurs. The effect 

of a change in binding time discipline may be discovered by executing the same 

program in different versions of the language. Discussion of efficient implementa- 

tion techniques made possible by the restrictions in the various versions makes it 

possible to observe the consequences of design decisions with respect to execution 

speed, compilability, runtime data structures, ease of programming, and so on. 

To summarize the design goals of TEMPO, we have the following: 

i. It must be precisely specified with respect to both syntax and semantics; 



IV 

2. It must be as simple as possible, so complete exposition is practical; 

3. It must allow binding times which are late enough to encompass relevant 

aspects of the behavior of such languages as APL and SNOBOL, yet be easily 

modifiable to produce versions with earlier binding times; 

4. It must be completely unambiguous; 

5. It should be a convenient and powerful programming language. 

These goals, as might be expected, have numerous and far reaching consequences. 

The first and second dictate the omission of such features as nested statements and 

the do statement. While these are essential to the coherent structuring of programs, 

both may be straightforwardly expressed in terms of the statement types available in 

the language and contribute nothing to the understanding of binding time concepts. 

On the other hand, it is easy to envision such structural augmentations to TEMPO, 

either as syntax macros or as extensions to an implementation, and in fact we discuss 

such extensions in Appendix B. 

The third goal was set to make it possible to discuss the more restricted 

versions of the language from a teleological viewpoint. On encountering a feature 

of TEMPO which is particularly inefficient for machine implementation, the student 

is moved to consider how to restrict the language just enough to provide a particular 

type or degree of efficiency. In this way concepts such as stack or static storage 

allocation and pre-execution type checking suggest themselves quite naturally. 

The fourth goal is satisfied to a considerable degree by fulfilling the first, 

but it goes further as well. Thus procedure calls during expression evaluation 

are ruled out because of their interaction with the order of evaluation of the 

expression. 

The fifth goal is viewed as secondary to the others. The language is as 

powerful as it can be in the theoretical sense of being universal, i.e., capable 

of expressing all algorithms, but it lacks some elements of convenience, as was 

noted in the discussion of the first and second goals above. A version of TEMPO 

with these structural conveniences and improved input/output facilities could 

easily prove to be a particularly powerful and versatile language for a variety 

of applications areas. 



We gratefully acknowledge the thoughtful comments provided by James Arnold, 

Nigel Derrett, Michael Dyer, Margot Flowers, and Uwe Pleban on earlier versions of 

these notes. We also thank Susan Walker and Linda McClain for their excellent 

typing of the final version. 





CONTENTS 

i. Introduction 

i.I. Overview 

1.2. Bindings and Binding Times 

1.3. Organization of This Volume 

2. Examples from TEMPO and Some Current Programming Languages 

2.1. A Simple Algorithm Expressed in Seven Different Languages 

2.2. Some Features of TEMPO 

2.2.1. 

2.2.2. 

2.2.3. 

2.2.4. 

Dynamic Data Structures 

Symbolic Indirect Addressing 

Dynamic Generation of Program Text 

Procedure Parameter Substitution 

5 

5 

16 

16 

17 

17 

18 

3. Syntax of TEMPO 20 

4. Semantics of TEMPO 

4.1. Introduction and Informal Overview of TEMPO Semantics 

4.2. Values of Variables 

4.3. Snapshots and Segments 

4.4. The Abstract Interpreter 

4.4.1. 

4,4.2. 

4.4.3. 

4.4.4. 

4.4.5. 

4.4.6. 

Utility Routines 

Routines to Handle Blocks and Scopes of Names 

Expression Evaluation and Assignment 

The IF Statement 

The Goto Statement 

Procedure Call and Return 

23 

23 

25 

28 

34 

37 

38 

39 

42 

43 

44 

5. Implementation Techniques for TEMPO 

5.1. Semantics Versus Implementation 

5.2. Linked Lists 

46 

46 

47 



6. 

VIII 

5.3. The TEMPO Implementation Data Structures 

5.4. The Program List 

Machine Efficiency & Programmer Convenience 

6.1. The Extremes--TEMPO versus FORTRAN 

6.2. Trading Machine Efficiency for Programmer Convenience 
(and Vice Versa) 

6.3. Sources of Inefficiency in T~O 

7. Improvements to Increase Machine Efficiency 

7.1. Overview 

7.2. Storage Allocation 

7.3. Creation and ~nipulation of Program Text 

7.4. Variable Names and Labels in the Snapshot 

7.5. Data Types 

7.6. Conditions for Compilability 

8. Parameter Passing and Reference Variables 

9. 

i0. 

8.1. Procedures and Parameters 

8.2. Reference Variables and Operations 

8.3. Methods of Parameter Passing and Their Relative Effieiencies 

8.4. Comparison of the Six Methods of Parameter Passing 

8.5. The Dangling Reference Problem 

Binding Times in Some Current Programming Languages 

9.1. Introduction 

9.2. Languages Designed for Efficient Execution: 
FORTRAN~ COBOL, ALGOL 60, PASCAL 

9.3. Multipurpose Languages: PL/I, ALGOL 68 

9.4. Languages Designed for Programmer Convenience: 
LISP, SNOBOL 

9.5. Summary 

APL, 

Conclusions 

I0. i. Summary 

48 

48 

53 

53 

55 

56 

59 

59 

59 

67 

70 

77 

80 

84 

84 

84 

88 

93 

94 

96 

96 

96 

97 

98 

I00 

103 

103 



JX 

10.2. Implications for the Design of Programming Languages 

10.B. Further Topics in Programming Languages 

104 

106 

Appendix A. 

Appendix B. 

References 

Extended Backus-Naur Form Syntax Notation 

TE~O/SP - A Syntactically-Enriched Version of TEMPO 
for Structured Programming 

108 

iii 

ll6 




