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ABSTRACT

In this paper, we will observe that the notion of computability in
an effectively given domain is dependent on the indexing of its basis.
This indicates that we cannot identify two effectively given domains just
because they are order isomorphic. We propose a suitable notion of effective
isomorphism to compensate for this deficiency. Also we show that, for every
recursive domain equation, there is an effectively given domain which is an

initial solution to within effective isomorphism.

1. Effectively Given Domains

The fundamental idea of effectively given domains is to assume
effectiveness of finite join operations on a basis of each countably based
cpo and to define computable elements as the least upper bounds (lub) of
r.e. chains of basis elements. For details of results based on this idea

see Scott [ 7], Tang [61, Egli-Constable [1], Markowsky-Rosen [3] and Smyth [8l.

In this theory it is tempting to avoid questions of indexing. In fact,
initially it is not clear whether an effectively given domain is to be a
domain which can be effectively given in some unspecified manner or is a
domain where this is specified. One could ask if it makes any difference.
One of the main purposes of this paper is to show it does. This calls for

rather "tedious" definitions of effectively given domains (see definition 1.1).



A poset is directed complete iff every directed subset has a lub. A

directed complete poset with a least element (called bottom) is called a

complete partial ordering (cpo). An element x of a poset D is compact iff

for every directed subset ScD, s.t. LISeD, xdIS®xcs for some se¢S. A directed
complete poset D is countably algebraic iff the set ED of all compact

elements of D is countable and for every xeD, the set Jx = {ele € ED’ ecx}

is directed and x = UJX . In this case ED is called the basis of D. The
following extension property of bases is well-known : Let D be countably
algebraic, then for any cpo Q, every monotone m : ED+Q has a unique continuous

extension m : D*Q given by m (x) = U{m(e)]eeED, ecx}. A poset is said to

have bounded joins iff every bounded finite subset has a lub. If every

bounded subset has a lub, we say that the poset is bounded complete. It

can readily be seen that a countably algebraic cpo D has bounded joins iff

ED has bounded joins iff D is bounded complete.

Definition 1.1 (1) Let D be a countably algebraic bounded complete cpo

(countably algebraic domain) with the basis E_ . A (total) indexing

D
e : N->Ej is effective (or is an effective basis of D) iff the following
relations are recursive in indices :
1. {E(ll), e e(ln)} is bounded in Ep

n>0

2. e(k) = U{e(il),e(in)}

Notice that @ and L are effective according to this definition.

(2) An indexed domain is an ordered pair <D,e> when D is a countably

algebraic domain and € : N»E_ is a total indexing of E An indexed

D D’

domain <D,e> is effectively given iff € is an effective basis of D. We

will write D% for <D,e>.

(3) Given an effectively given domain D&, xeD is computable w.r.t.e (or

is computable in D®) iff there exists a recursive function p : NoN

s.t. e.p : NoEp is an y-chain and x = |g.p(n). The set of all computable

elements of D® will be denoted by Comp (DF).



|
(4) Given effectively given domains p¢ and D'F , a function £ : D»D'

1
is computable W.r.t. <e,e > iff the graph of £, which is {<n,m>|e'(m)5

f.e(n)}, is an r.e. set.

Notice that an indexed domain D is effectively given iff there exists

a pair of recursive predicates <b,>, which will be called the characteristic

Eair of DE s.t.

b(x)”{e(il),...,e(in)} is bounded in Ej and

L(k,x)®?e(k) = u{e(il),---,e(in)}

where fs is the standard enumeration of finite subsets of N and fs(x) =

. . . R e' . s .
{ll""’ln}' Notice that if D  and D' have the same characteristic pair,

then D° is merely a '"'renaming' of D'® . More formally, there exists an
order isomorphism f : D»D' s.t. f.e=ze'. We will denote this relation

]
by ¥ = D'° .

To within é we can introduce the following partial indexing of the
set of all effectively given domains. Let <¢i> and <Wi> to fixed (throughout
this paper) acceptable indexings [5] of partial recursion functions and r.e.

sets respectively s.t. range (¢i) = W,. We say that an effectively given

domain D€ has an acceptable index <i,j> iff <¢i,¢j> is a characteristic pair
of DY. We will denote this partial indexing of effectively given domains
by I. We will write E(i) to denote the effective basis of £ (i). Notice
that for a partial indexing T, we write t(i) iff i is a t-index, i.e. 1(i)

is defined.

Given an effectively given domain De, an r.e. set W is e-directed
iff e(W) is directed in ED. In this case we say that e(W) is effectively

directed via €. It can readily be seen that xeComp(DE) iff x = Le(W) for

some e-directed r.e. set W. Furthermore we can effectively "e-direct"

every r.e. set. More formally:



Lemma 1.2 For every effective given domain DE, there is a recursive
function d_ = N+N s.t. for every jeN, Wd (3) is e-directed, and s.t.
€
in case Wj is e-directed, Ue(Wj) = Ue(Wd (j))' This lemma gives us the
€

following total indexing GE of Comp(De). If x = Ue(Wd (j)) then we say
€

that x has a directed index j and denote it by x = Ge(j). 4]

Since we took the view that an effectively given domain is a domain
with a specified effective basis, domain constructors must relate not only
po structure but also effective structure. Thus we have to be explicit

about constructed effective bases.

1 ]
Definition 1.3 Given indexed domains p¢ and D'° , define p¥xp'® s

t

1
pE+D'® , and [D%5D'® ] to be the following indexed domains :

t
(1) D xDt& EEL <pxp', (exe')> where (exe') (n) = <e.ﬂl(n), e.nz(n)>.

'de

Hh

(2) DExp' <D+D', (e+e')> where (e+e') (n) = if n = O

then L else if n = 2m+l then <0,e(m)> else if n = 2m then <1,e'(m)>
]
(3) [pE»pt® ]g§£<[D+D'],[e+£']> where [e»e']l (n) = if o(n) has a lub then
LUo(n) else L, and o(n) = {le(i), ()] | <i,i> € P(n)} where P is the

standard enumeration of finite subsets of NxN, and [e,e'l(x) = if x3e

then e' else 1. 0

t
It is well known that if D% and D' are effectively given domains

€ €' €. &' € €' .
then so are D°xD'~ , D +D'  , and [D»D'" 1. The following theorem says

that x,+,> are "effective" constructors :

Theorem 1.4 There are recursive functions Prod, Sum, Func: NxN-N s.t.

]
if i, and j are acceptable indices of D¢ and D'°® , then Prod (i,7),

1
Sum (i,j), and Func (i,j) are acceptable indices of pExp'® s pE+D'€ .

\
and [D%>D'® ] respectively. 2



Smyth [ 7] showed that a function f : D*D' is computable w.r.t.
1]
<g,e'> iff f € Comp (Ip%+D'® 1). We can show that this equivalence is
"effective''. Let f : D»D' to computable w.r.t. <g,e'>. If wj is the

graph of f, then we say that j is a (<e,e'>-) graph index of f.

Lemma 1.5 There are recursive functions dg’ gd:NXN+N s.t.,
(1) If k is a graph index of f which is computable w.r.t. <g(i), £ (3)>
- . : 15)
then f G[E(i)*i(j)j (dg(k,<1,j> )
= . ; K ,<i,3>]
(2) If £ 6[5(1)+€(3)j (k) then f has a graph index gd( ,<i,3>) /i

In addition to 1.5, we have further evidence to convince us that our

notion of computability is really satisfactory.

Lemma 1.6 (1) A function from an effectively given domain to another is
computable w.r.t. their effective bases iff it maps computable elements to
computable elements recursively in directed indices.

(2) The composition of computable functions is recursive in directed
indices. More formally there exists a recursive function d-Compose
NxNxNxNxN+N s.t.
(1)

](j) =8 (d-Compose(i,j,k,t,m)).

S e ()+E(2)] S E(0)+E(m) [E(K)>E(m)]

2. Effective Embeddings

In this section, we will observe why the indexing of a basis of an

effectively given domain must be specified.

Theorem 2.1 (1) There is a countably algebraic domain D with two
different effective bases € and €' s.t. Comp (0%) = Comp (DE') but

s.t. Comp ([p%s®" 1) is not isomorphic to Comp ([DE'4¢W]), when © is the
two point lattice and m is an arbitrary effective basis of O.

(2) There is a countably algebraic domain D with two different effective

]
bases € and ¢' s.t. Comp (D°) % Comp (0% ).



proof (outline) (1) Let (D,£) be the following countably algebraic domain:

:g JB e v v
e
TR

Note that D has only one limit point © . Thus the basis ED of D is the

poset obtained from D by removing @ . Think of the following poset

(N u (NxN),c) where icj iff i<j , it<m,n> iff ¢m(n) takes at least 1 steps,
and <m,n>£<m’,n'> iff m=zm' and n=n'. Evidently the partial ordering <

is decidable in terms of the GSdel numbering of N u (NxN). Thus this Gddel
numbering provides an effective indexing €' of ED. Now think of the fecllowing
poset:(N u (NxN) u ({w}xN),&) s.t. icj iff i<j, ie<m,n> iff i<m,

and <m,n>e<m'n'> iff m=m' and n=n'. It is also easy to observe that the

GSdel numbering of N u (NxN) u ({W}xN) provides an effective indexing €

of E. Obviously Comp (d%) = Comp (De') = D. Now let £ : D® be a
continuous function s.t. f(x) = if xc® then 1 else 7. Then f is computable
w.r.t. <e,m> but not so w.r.t. <e',m>. Forlet M = {he[D¥] I {gel D] l gah}
is finite}. Then M = {hX | X is a finite set of leaves above compact elements
of D} where hX(x) = if xeyeX, then L else T. It can be readily seen that
MeComp ([DS-C"1) and McComp ([D -0"1). Let 0: Comp ([D%5@"1) » Comp ([D° @71
be a monotone isomorphism. Then ®(M) = M. Notice that f=[IM. Therefore
MNMeComp ([p%»0"1). Since ¢ is an isomorphism, ®(MM) = 'MeComp ([D€'+Cm]).

But it is easy to see that M has no greatest lower bound in Comp ([DE'+¢J]).
For suppose g is a lower bound of M in Comp ([D€'+¢F]). Then g(x) = L for
some xp®, since gcf. But then h(y) = if y=x then T else g(y) is also a

|
lower bound of M in Comp ([D° >0"]) and above g. "4

Notice that 2.1 is more than a counter-example to a careless definition
of effectively given domains. In fact (1)-2.1 indicates that
]

1
Comp (0%) = Comp (D% ) is not sufficient to identify ¢ and € . Remember

that in domain theory, domain constructors must preserve equality of domains,



. . € 1
more technically, they must be functors. But if we assume that D and °

. 1
are equivalent iff Comp (D%) = Comp (0° ), then '">'" does not preserve this
equality as shown in (1)-2.1. We claim that the following equivalence of

effectively given domains is appropriate :

1
Definition 2.2 Let D° and D° be indexed domains. We say that € and €'

are effectively equivalent (in symbols, € € ¢') iff there are recursive

functions, r,s, : N s.t. &' =¢e.s and e = €' .r.

1

It can readily be seen that if either € or e' is effective then ¢ = ¢

¥
implies both € and €' are effective and Comp (0%) = comp (D° ).

Notice that D and De' of (1)-2.1 are not effectively equivalent. In
fact, if € and e' were effectively equivalent then there could exist a
recursive function r : N+N s.t.¢m(n) terminates iff r(<m,n>) = <m',n'>
with m'¥®, and we could solve the Halting problem.

We can easily extend the notion of effective equivalence to isomorphism.

1
Definition 2.3 Let D€ and D'E be indexed domains. A function f : E _~E

D "D’
is an effective imbedding from € to €' (in symbol f : e>e') iff
1. f is injective
2. there exists a recursion function re ot N-N s.t. f.€=e‘.rf
3. {s(il),...,e(in)} is bounded iff {f.e(il),...,f.e(in)}
is bounded
u, f(U{e(il),..,e(in)}) = U{f.e(in),...,f.e(in)}, n=0. 0

1
In case both p® and D'®  are effectively given domains, then we have

f(Comp (D' ) < Comp (D'® ), where f is the continuous extension of f.

Remember that a continuous function f : D»D' is an embedding iff there

exists a continuous function g : D'»D s.t. f.g. c id_, and g.f = idD.

D
Every embedding f uniquely determines such g, which will be called the



adjoint of £. Also every embedding is strict. In case D and D' are

algebraic cpo's, we have f(ED) < Ep, and g(ED,) S Ep -

1
Theorem 2.4 (1) Let De, D'® be indexed domains and f be an effective
imbedding from ¢ to €', then f : D»D' is an embedding with the adjoint

g : D'»D given by g(y) = U{eeEle(e) < y}. Furthermore glf(ED) = £1.

t -
(2) 1In case p® and D' are effectively given domains, f is computable

w.r.t. <e,e'> and g is computable w.r.t. <e',e>. 7

We will call f an effective embedding when f is an effective imbedding.

A pair-wise computable embedding (p-computable embedding) is an embedding

which is computable as well as its adjoint. Thus by (2)-2.4, an effective
embedding from an effectively given domain to an effectively given domain is

a p-computable embedding. The converse of this is also true.

1

Theorem 2.5 Let D% and D' be effectively given domains s.t. £ : DD’

is a p-computable embedding, then f is an effective embedding.

proof  Let g : D'+D be the adjoint of f. Then both e'(n) = f.e(m) and
e(n) € g.e'(m) are r.e. in indices. We will show the existence of a
recursive function r : NN s.t. f.eze'.r. We claim that the following
terminating program computes such r(m) for each meN

- enumerate n s.t. €'(n) £ f.e(m).

- for each enumerated n, enumerate k s.t. e(k) £ g.e'(n).

- continue this process until we obtain a k s.t. e(k) = e(m).

The n for which this k is produced is r(m).
By a "dove-tailing" technique [5], we can compute the above process. We
can check that such r is actually the one desired.  Assume k,n are the
values when the above process terminates. Then e(k) £ g.e'(n)
€ g.f(e(m)) = e(m). Since e(k) = e(m), we have g.e'(n) = e(m).

But €'(n) 3 f.g.e'(n) = f.e(m). Therefore e'(n) = f.e(m). 4



In fact, we can observe that the equivalence of effective embeddings
and p-computable embeddings is "effective'. Given an effective imbedding

f:ere',ifr

t = ¢j we say that f has a recursive index j. In this case

we say that the effective embedding f has a recursive index j.

Theorem 2.6 (1) There is a recursive functicn Ed : NxNxN+N s.t. if i and J
are directed indices of a p-computable embedding f e Ccomp ([E(k) » £(2)]1)
and its adjoint g € Comp ([E(k) + E(2)]) respectively, then Ed(i,j,<k,L>)

is a recursive index of f.

(2) There are recursive functions dp’ da : NxN»N s.t. if i is a recursive
index of an effective embedding f € Comp ([E(S) » E(x)]) then dP (i,<3.k>)
is a directed index of f and da (i,<j,k>) is a directed index of the

adjoint g e Comp ([E(x) » E(3)]) of £.

Now we can define what an effective isomorphism is about.

t
Definition 2.7 Let D° and D'® be indexed domains. We say € and €'

are effectively isomorphic iff there exists an effective imbedding

f: e»e! s.t. f_l is also an effective imbedding from e' to €. We will

'
'€

denote this by € ; ', In this case we also say that p® and D are

] —
effectively isomorphic and denote it by p* 2 D'® . Evidently (F,f l) is

a continuous isomorphic pair. We will call f (or §_l) an effective isomorphism.

t
1f D° £ D'® and either of them is an effectively given domain, then

]
both of them are effectively given and Comp(De) ~ Comp (0'® ). Also an
jisomorphism between two effectively given domains is an effective

isomorphism iff both itself and its adjoint are computable.

Remember that we have claimed that the notion of effective
isomorphism gives an appropriate criterion for identifying two effectively
given domains. We can provide quite convincing evidence to this claim.
First, evidently £ is an equivalence relation. Furthermore we can show

e . . . . .
that = is invariant under the domain constructions x, +, and -».



More formally:

Theorem 2.8 Let Aa, BB, CY, and D6 be indexed domains s.t. A% £ ¢V and
BB £ 6. Then we have
(1) A% xB® &¢¥ x0° 2) A% +8P £ + 08

(3) [a* - BP7 & 1" » p1.

B

Note that if Aa, B, CY, DG are effectively given domains, then the

invariance of = immediately follows from 1.6.

3. Algebraic Completion

Smyth showed (in [8]) that for continuous cpo's, we cannot introduce
effectiveness as we did for algebraic cases in 1.1. He characterized an
effectively given continuous domain as a continuous domain which is
"isomorphic" to the completion of an effective R-structure but this
characterization ignores the precise indexing of the effectively given
domain, We will provide an algebraic version of Smyth's characterization,
taking care of effective isomorphisms. In fact we will observe that this

characterization is an alternative characterization to 1.1.

By the (algebraic) completion of a poset (E,£), we mean a poset

(Eti)where E is the set of all directed subsets of A which are downward
closed i.e. xeX & ytx implies yeX. In case (E,=) is a countable poset
with a bottom and bounded joins, then there exists an embedding

v : BE s.t. (E,E) is a countably algebraic domain with the basis
(t(E),€). 1In fact t(x) = {eeEleEx}. Conversely if D is a countably
algebraic domain then the basis ED is a countable poset with a bottom

and bounded joins, and DéfD.

Definition 3.1 Let (E,c) be a countable poset with a bottom and bounded

joins and e€:N»+E be a total indexing. We call <E,e>. indexed poset. In

case € is effective, which means e satisfies (1)-1.1, we call <E,e> an

_lo_



effective poset. The (algebraic) completion of an indexed poset <E,e>

is an indexed domain <E,e> where e:N>1 (E) is given by e(n)=t.e(n). O

Theorem 3.2 (1) Let <E,e> be an effective poset. Then the completion
of it is an effectively given domain.

(2) Given an effectively given domain D%, E; is an effective poset and
<ED’E>:<D,€>.

(3) An indexed domain is an effectively given domain iff it is

effectively isomorphic to the completion of some effective poset. 7y

u, Inverse Limits

Given an w-sequence <Dm,fm> of embeddings of countably algebraic
domains, the inverse limit of the sequence, in symbols(lim<Dm,fm>, is
the poset {<xm>[xm=gm(xm+l)} with the coordinate-wise ordering, where g
is the adjoint of fm. It is well-known that<lim<Dw,fm> is again a
countably algebraic domain (see Plotkin [4]). We will write D_ for
1im<D_,f >. Define f_:D »D and g :D =D_ by:

—— m’'m no'n e op " T T
fnw(X)=<go'gl""gp—l(X)""’gn-l(x)’x’fn(x)’fn+l'fn(X)"" >,

i

(<X R, ge.:>)ZX .
Eon* " Fo2%1 n

We call <f > the universal cone of <D _,f >. Evidently f is an
ne m> m ne

embedding with the adjoint Eon

As an obvious extension of this notion, we have the inverse limit
of w-sequences of embeddings of indexed domains. Let <D;m,fm> be an
w-sequence of embeddings of indexed domains. By the inverse limit of
this sequence, in symbolselim<D;m,fm>, we mean an indexed domain <D_,e_>

where ew:N->EDoo is given by :

g (0) = fom(eo(o)) e (1) = fow(eo(l))
e (2) = flw(el(o)) e (3) = fom(eo(Q))
e (4) = flw(el(O)) e (5) = fgw(eg(o))

- 11 -



In case D;m are effectively given domains,éiigﬁD;m,fm> need not be
an effectively given domain. Smyth [8] showed that if <D;m,fm> is
"effective" thenéiimsD;m,fm> is effectively given. We observe that
Smyth's effectiveness of w-sequences is essentially equivalent to the
constraint that the sequence of approximate domains can be obtained in

a uniform way.

Definition 4.1 Let <D;m,fm> be an w-sequence of effective embeddings of

effectively given domains. In case there exists a recursive function gq:

N-N s.t. m,.q(m) is a recursive index of f eComp ([D*m>D*m+1]1) and w .q(m)
1 m m m4l 2

is an acceptable index of D;m, we say that this sequence is effective. [

From 2.6 and 4.1, we immediately have the following alternative

characterization of effective sequences of effective embeddings.

Lemma 4.2 An w-sequence <D;m,fm> of effective embeddings is effective

iff there exists a recursive function q:N-N s.t. 7w .q(m) is a directed

1°™

index of fmeComp ([D;m+D ﬁ{l])’ .q(m) is a directed index of the
m

Mooy
adjoint & and wz.q(m) is an acceptable index of D;m. Z

Theorem 4.3 (The Inverse Limit Theorem)

Let <D;m,fm> be an effective sequence of effective embeddings of
effectively given domains. Then <D_,e > is an effectively given domain.
Also £ :D »D is an effective embedding from € to € . Therefore f ¢

m" " m m o mee
Comp ([D°m>D =) and g __eComp (IDf=>Dm]). Furthermore there exists
m m © m

recursive functions A § . :N-N s.t. Ad(m) and Gd(m) are directed indices

a® 'd

of fmm and oo respectively. 7l
To obtain further affirmative evidence for the notion of effective

isomorphism, let us examine if it is invariant under the inverse limit

construction. Notice that unlike previously studied domain constructors

the inverse limit constructor works not only on domains but also on

- 12 -



embeddings among them. Thus we need the following notion to be preserved

under the inverse limit construction.

s . - . 3 e!
Definition 4.4  Given two effective sequences <Dmm,fm> and <Dé f%>

of effective embeddings, we say that they are effectively isomorphic

fleo

e! . . . .
(in symbols <D;m,fm> <D% m,f&>) iff there exist recursive functions

u,v:N-N s.t. u(m) is a recursive index of an effective isomorphism ime

~
Comp ([D;m-*Dr;]b m]) and v(m) is a recursive index of the adjoint jmeComp

'E E-]_ g 4 = r L - 1 1
([Dm m+DmmJ), and fm.¢m R PR S B Y -S4 where g, and g, are the

adjoints of fm and fé respectively.

e ' . e . ! ‘
Theorem 4.5 Let <D€m,f > & <p'® m,f'> then llm<D€m,f > = 1im<D'" m,f£'>.[
—_—— m ’Tm m m «— "m ’"m & m m

5. Effective Categories and Effective FPunctors

Smyth-Plotkin {93«proposed a theory of w-categories and w-functors
which admits an initial solution to each recursive object equation
X = F(X) where F is an w-functor, but without consideration of effectiveness.
By showing that the category of cpo's and continuous embeddings is an
w-category where x,+,+ are w-categories, they guaranteed an initial solution
to each recursive domain equation which involves these domain constructors.

We will play an effective version of this game.

Definition 5,1 An E-category is a category K together with (possibly

partial) object indexing x, and a morphism indexing 3(K,K'): N-Hom(K,K')
for each pair (K,K') of objects, s.t. the composition of morphisms is
effective, i.e. there is a recursive function 9-compose s.t.:

3(x(i),k(k)) (9-compose(i,j,k,2,m))=3(x(3),x(k)) (m).3a(x(i),k(3)) ().

Definition 5.2 (1) w is the category of non-negative integers and <,

pictorially: 0O<1<2<...... .

(2) An effective diagram in an E-category (K,k,3) is a functor G:w>K

- 13 -



s.t. G(n)=K(ﬂl.q(n)) and G(ns<n+1)=3(G(n),G(n+1)) (w2.q(n)) for some
recursive function g:N-N.

(3) Given an effective diagram G in an E-category (K,k,3), an effective
cone of G is a cone <An:G(n)+K> of G s.t. n=a(G(n),K) (c)n)) for some
recursive function c.

(4) An effective diagram G in an E-category (K,k,d) has an effective
colimit, in symbols ef-colim G, iff there exists an effective cone <6n
G(n)»ef-colim G> of G s.t. for every effective cone <An:G(n)+K> of G,
there exists a unique morphism o:ef-colim G*K s.t. the following diagram

commutes:

= G(o) —>G(1)——>G(2)—>

%///

ef-collm G where Gn=G(nSn+l).

O"‘

<6n> will be called an effective colimiting cone.

(5) An E-category is an effective category iff every effective diagram

has an effective colimit.

Definition 5.3 Given effective categories (K,k,3) and (K',x',3') a

functor F:K>K' is an effective functor iff it maps effectively on both
objects and morphisms, and it preserves effective colimits and effective
colimiting cones. More formally, iff there are recursive functions fo
and f s.t. (F(k(n))=x" (fo(n)) and F(3(k(i),k(3)) (n)=8(x(nl.wl.fm(n)),

k(

LPPLID f (n))) (w .f (n)) and F preserves effective colimits and effective

colimiting cones.

Let (K,k,d) be an effective category and F:K+K be an effective

functor. For every KeK and 6:K+FK, define an w-~diagram A :w>K by

(F,K,8) =

)=F"(K) and A (n<n+l)=F"(0). Evidently A=A is an

epk,0) O (F,K,6) (F,K,8)
effective diagram. Let <6n:A(n)+ef-colimA> be an effective colimiting

cone. Then by the effectiveness of F,<F(6n):P(A(n))+F(ef-colimA)> is an
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effective colimiting cone of F.A, Since <6n>n>l is an effective cone of

F.A, there exists a unique morphism p:F(ef-colimA)+ef-colimA. Now define
<A_> by A_=F(8_ . .) for nzl and A =F(§ ).8. Then <\ _> is an effective

n n n+l o o n
cone of A. Thus there is a unique morphism n:ef-colimA -+F(ef-colimA).
Therefore (p,n) is an isomorphism pair. In summary we have observed

F(ef-colimA) = ef-colimA.
Given an effective category (K}K,B) and an effective functor F:K>K

an Fe—algebra is a triple (a,x,y) s.t.:
8
o Fa
x4$—l—— Fx commutes

An Fe-homomorphism from an Pe-algebra (a,x,y) to an Fe—algebra (a',x",y")

is an K-morphism w:x>x' s.t. the following diagram commutes:

It can readily be seen that the class of all Pe—algebras and the class

of all Fe—homomorphisms form a category, which we will denote by AFe.

Theorem 5.4 Let (K,«,3) be an effective category and F:X»K be an
effective functor. Let 6eHom(K,FK) and <6n> be the effective colimiting

cone of A Then (Go,ef-colimA,p) is an initial object in the

(F,K,0)°

category AFe, where p is as above. 2

Lemma 5.5 Given two effective categories (K,k,3) and (K',k',3"'), the
product category K x K' together with the evidently induced objects indexing

and morphism indexing is an effective category. Z

Lemma 5.6 Let (K,k,3), (K',kc',3'), (K",k",3") be effective categories.

A bi-functor F:Eﬁﬁfﬁﬁf is effective iff it is effective in both E,and.ﬁ"
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Lemma 5.7 The composition of two effective functor is an effective

functor. 2

Theorem 5.8 The category of effectively given domains and effective
embeddings together with £ as an object indexing and the recursive (or
directed) indexing as a morphism indexing is an effective category. The
effective diagrams are effective sequences and effective colimits are
the inverse limits of effective sequences. We will denote this category

by EDE without explicitly mentioning the indexings. 7

Definition 5.9 The arrow functor +:EDExBDE—>EDE is defined on objects

! t
by +(D°,D'® )=[D°+D'® ], and on morphisms by +(p:DJ>D},q:D D, )=Af.q.£.p"
where p' is the adjoint of p. We can similarly define product functor

and sum functor from the domain constructors x and +. O

Theorem 5.10 The arrow functor, product functor, and sum functor, are

effective functors. Z

Notice that 1.6 coincides with 5.10. In fact 1.6 is a part of a proof

of this theorem.

In summary we have guaranteed initial solutions, which are effectively
given domains, to recursive domain equations. In fact these solutions
are up to effective isomorphisms. This is very satisfactory for we have
observed that we should identify two effectively given domains iff they

are effectively isomorphic.

Notice that the theory of effective categories developed here is not
unconditionally satisfactory. In fact the abstract notion of effective
categories does not include effectiveness (or acceptability) constraints
to the object indexing. There seems to be no easy way to axiomatize this

effectiveness. A fundamentally different approach for defining more
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appropriate notion of effective categories,which does not have this

problem is currently being developed by Smyth.
There are more examples of effective categories (in our sense).

Theorem 5.11 (1) Let D° be an effectively given domain. Comp(DE)

together with the directed indexing as an object indexing and the evident
morphism indexing is an effective category.

(2) Let D° and D'el be effectively given domains. Every computable
function feComp ( D€+D'E' ) restricted to Comp(DE) is an effective
functor.

This indicates that Comp(De) is more substantial than De, and suggests a
theory of effective domains (see Kanda [2]) . Furthermore we can show
that the category of effectively given SFP objects (and effective
embeddings), the category of effective domains, and the category of
effective SIP are effective categories where %, +, are effective functors.

Thus we can solve recursive domain equations within these categories up to

effective isomorphisms. Details of these results will appear elsewhere.
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