
PROVING TERMINATION WITH MULTISET ORDERINGS

by

Nachum Dershowitz I and Zohar Manna 2

Stanford University and Weizmann Institute

ABSTRACT

A common tool for proving the termination of programs is the well-founded set, a

set ordered in such a way as to admit no infinite descending sequences. The basic

approach is to find a termination functio~ that maps the values of the program vari-

ables into some well-founded set, such that the value of the termination function is

continually reduced throughout the computation. All too often, the termination func-

tions required are difficult to find and are of a complexity out of proportion to the

program under consideration. However, by providing more sophisticated well-founded

sets, the corresponding termination functions can be simplified.

Given a well-founded set S, we consider ~Itisets over S, "sets" that admit

multiple occurrences of elements taken from S. We define an ordering on all finite

multisets over S that is induced by the given ordering on S. This multiset ordering

is shown to be well-founded. The value of the multiset ordering is that it permits

the use of relatively simple and intuitive termination functions in otherwise dif-

ficult termination proofs. In particular, we apply the multiset ordering to prove

the termination of production systems, programs defined in terms of sets of rewriting

rules.

An extended version of this paper appeared as Memo AIM-310, Stanford Artificial

Intelligence Laboratory, Stanford, California.

This research was supported in part by the United States Air Force Office of Scientific

Research under Grant AFOSR-76-2909 (sponsored by the Rome Air Development Center,

Griffiss AFB, NY), by the National Science Foundation under Grant MCS 76-83655, and

by the Advanced Research Projects Agency of the Department of Defense under Contract

MDA 903-76-C-0206.

iCurrent Address:
Department of Computer Science
University of Illinois
Urbana, Illinois 61801

2Current Address:
Department of Computer Science
Stanford University
Stanford, California 94305

189

I. INTRODUCTION

The use of well-founded sets for proving that programs terminate has been sug-

gested by Floyd [1967]. A well-founded set consists of a set of elements S and a

transitive and irreflexive ordering > defined on the elements such that there can be

no infinite descending sequences of elements. The idea is to find a well-founded set

and a termination function that maps the values of the program variables into that

set such that the value of the termination function is continually reduced throughout

the computation. Since, by the nature of the set, the value cannot decrease indefin-

itely, the program must terminate.

The well-founded sets most frequently used for this purpose are the natural num-

bers under the "greater-than" ordering and n-tuples of natural numbers under the lexi-

cographic ordering. In practice using these conventional orderings often leads to

complex termination functions that are difficult to discover. For example, the termi-

nation proofs of programs involving stacks and production systems are often quite

complicated and require much more subtle orderings and termination functions. Finding

an appropriate ordering and termination function for such programs is a well-known

challenge among researchers in the field of program verification. In this paper, we

introduce a powerful ordering that can sometimes make the task of proving termination

easier.

II. THE MULTISET ORDERING

For a given partially-ordered set (S,>), we consider multisets (sometimes called

"bags") over S, i.e. unordered collections of elements that may have multiple occur-

rences of identical elements. For example, {3,3,3,4,0,0} is a multiset of natural

numbers; it is identical to the multiset {0,3,3,0,4,3}, but distinct from {3,4,0}.

We denote by~(S) the set of all finite multisets with elements taken from the set S.

For a partially-ordered set (S,>), the ~lt~set ordering ~ on~(S) is defined

as follows:

M ~> M'

if for some multisets %,Yg~(S), where {}#XC_M,

M' = (M~X)WY

and

(VyeY) (~xEX) x>y.

In words, a multiset is reduced by the removal of at least one element (those in X)

and their replacement with any finite number - possibly zero - of elements (those in

Y), each of which is smaller than one of the elements that have been removed. Thus,

if S is the set N of natural numbers 0,1,2,... with the > ordering, then under the

corresponding multiset ordering >> over N, the multiset {3,3,4,0} is greater than

each of the three multisets {3,4}, {3,2,2,1,1,1,4,0}, an~ {3,3,3,3,2,2}. In the

190

first case, two elements have been removed; in the second case, an occurrence of 3

has been replaced by two occurrences of 2 and three occurrences of i; and in the third

case, the element 4 has been replaced by two occurrences each of 3 and 2, and in ad-

dition the element 0 has been removed. The empty multiset {} is clearly smaller than

any other multiset.

The multiset ordering is in fact a partial ordering, i.e. if > is irreflexive

and transitive, then >~ also is. We have the

THEORm~: The m~Itiset ordering (~(S),~) over (S,>) is we~l-founded,

if and only if (S,>) is.

Proof: The "only if" part is trivial. For the "if" part, assume that (S,~) is

well-founded. Let S' = S U {~} be S extended with a least element i, i.e. for every

element sES, s>~ in the ordering on S'. Clearly S' is well-founded if S is. Now~

suppose that (~(S),>>) is not well-founded; therefore, there exists an infinite

descending sequence MI~>M2>>M3~... of multisets of~(S). We derive a contradiction

by constructing the following tree. Each node in the tree is labelled with some

element of S'; at each stage of the construction, the set of all terminal nodes in

the tree forms a multiset in ~(S').

Begin with a root node with children corresponding to each element of

MI~ Then since MI)$M 2, there must exist multisets X and Y, such that

{}#XC_MI, M2=(MI~X)UY , and (VysY) ~x~X)x>y. Then for each ycZ, add a

child labelled y to the corresponding x. In addition, grow a child .L

from each of the elements of X. (Since X is nonempty, growing.Len-

sures that even if Y is empty, at least one node is added to the tree.

Since Y is finite, the nodes corresponding to X each have a finite

number of children.) Repeat the process for M2~M 3, M3~M 4, and so on.

Since at least one node is added to the tree for each multiset M i in the sequence,

were the sequence infinite, the tree corresponding to the sequence would also be.

But by Konig's Infinity Lemma, an infinite tree (with a finite number of children for

each node) must have an infinite path. On the other hand, by our construction, all

paths in the tree are descending in the well-founded ordering ~ on S', and must be

finite. Thus, we have derived a contradiction, implying that the sequence

MI,M2,M3,... cannot be infinite.

Remarks:

O If (S,>) is totally ordered, then for any two multisets M,M' ~(S), one may

decide whether M>>M' by first sorting the elements of both M and M' in descending

order (with respect to the relation >) and then comparing the two sorted sequences

lexicographically.

• If (S,~) is of order type ~, then the multiset ordering ~(S),~) over (S,>) is

of order type ~.

191

• Consider the special case where there is a bound k on the number of replacement

elements, i.e. take the (irreflexive) transitive closure of the relation M ~M' which

holds if M'=(M,X)UY and IYI < k. Any termination proof using this boanded multiset

ordering over N may be translated into a proof using (N, >). This may be done using,

for example, the order-preserving function

(M) = E k n
n~M

which maps multisets over the natural numbers into the natural numbers by summing the

number k n for every number n in a multiset M.

We turn now to consider nested nr~Itisets, by which we mean that the elements of

the multisets may belong to some base set S, or may be multisets containing both ele-

ments of S and multisets of elements of S, and so on. For example, {{i,i}, {{0},1,2},0}

is a nested multiset. More formally, given a partially-ordered set (S,>), a nested

multiset over S is either an element of S, or else it is a finite multiset of nested

multisets over S. We denote by ~*(S) the set of nested multisets over S.

We define now a nested multiset ordering >~* on ~*(S); it is a recursive version

of the standard multiset ordering. For two elements M,M's~*(S), we say that

if

• M,M' gS and M~M'

(two elements of the base set are compared using >), or else

• M~S and M' sS

(any multiset is greater than any element of the base set), or else

• M~M'ES, and for some X,YE~*(S), where {}#%_CM,

M '= (M.X)UY

and

(YyEz) ~x~x) x ~ y .

For example, the nested multiset {{1,1},{{0},1,2},0} is greater than {{1,0,0},5,

{{0},1,2},0}, since{l,l} is greater than both {i,0,0} and 5. The same nested multiset

{{i,i}, {{0},1,2},0} is also greater than {{{},1,2},{5,5,2},5}, since {{0},1,2} is

greater than each of the three elements {{},1,2}, {5,5,2}, and 5.

Let hi(s) denote the set of all nested multisets of depth i. In other words

~0(S)=~ and ~i+I(s) contains the multisets whose elements are taken from ~0(S),

~I(s) ~i(s), with at least one element taken from ~i(s). Thus, the set ~*(S)

is the infinite union of the disjoint sets ~O(s),~(S),~(S) The following

property holds:

For two nested multisets, M and M r, if the depth of M is greater

than the depth of M', then M ~M'.

192

In other words, themultisets of~i(s) are all greater than themultisets of~(S), under

the ordering ~*, for any j<i.

The relation ~>* is a partial ordering; it can be shown to be both irreflexive

and transitive. The following theorem gives the condition under which it is well-

founded:

THEOREM: The nested multiset ordering ~*(S),~*) over (S~) is well-

founded, if and only if (S,>) is well-founded.

In order to show that (~*(S), ~*) is well-founded, it suffices to show that each

~i(s) is itself well-founded under ~>*. This may be proved by induction on i.

Remark: It can be shown that if (S,~) is of order type less than ~0' then (~*(S), ~*)

is of order type s 0. (Gentzen [1938] used in E 0 ordering to prove the termination of

his normalization procedure for proofs in arithmetic.) []

In the following two sections, we shall apply the multiset ordering to problems

of termination, first proving the termination of conventional programs, and then

proving the termination of production systems.

III. TERMINATION OF PROGRAMS

In the following examples, we shall prove the termination of programs using

multiset orderings as the well-founded set.

EXAMPLE i: Counting tips of binary trees.

Consider a simple program to count the number of tips - terminal nodes (without

descendents) - in a full binary tree. Each tree y that is not a tip has two subtrees,

left(y) and right(y). The program is

S := (tJ

c:=O

loop until S=()

y := head(S)

if tip(y) then S := tail(S)

c := c÷J

else S := left(y).right(y).tail(S)

fi

repeat.

It employes a stack S and terminates when S is empty. At that point, the variable c

is to contain the total number of tip nodes in the given tree t. The termination of

this program may be proved using the well-founded set (Ng>). The appropriate termina-

tion function is

~(S) = ~ nodes(s),
ssS

where nodes(s) is the total number of nodes in the subtree s - not just the tip nodes.

Using the multiset ordering over trees, we can prove termination with the simple

193

termination function

~(S) = {s : ssS},

giving the multiset of trees appearing in the stack. The trees themselves are

ordered by the natural well-founded subtree ordering, i.e. any tree is greater than

its subtrees. Thus, removal of a tree from the stack decreases T in the multiset

ordering by removing an element, and the replacement of a tree with two smaller sub-

trees decreases r.

In general, any program in which elements are repeatedly removed from a stack,

queue, bag, etc. and replaced with any number of smaller elements (in some well-

founded ordering) can be shown to terminate with the corresponding multiset ordering.

EXAMPLE 2: McCarthy rs 91-function

The following is a contrived program to compute the simple function

f(x) = if x>100 then x-10 else 91

over the set of integers g, in a round-about manner. Though this program is short,

the proof of its correctness and termination are nontrivial, and for this reason it

is often used to illustrate proof methods.

The program is:

n::l

Z := X

lo__qo_p_ L: assert f(x)=/(z), n>_l

if z>lO0 then n := n-I

z :=z-lO

else n := n+l

z := z+11

fi

until n=O

repeat

assert z=f (x) .

The predicates f(x)=~n(z) and n>_l are loop invariants. The loop is exited if control

reaches the until clause with n=O; at that point f(x)=9(z)=z.

Consider the following well-founded partial-ordering > on the integers:

a>b if and only if a<b<lll.

(This is the same ordering on integers as in the familiar structural-induction proof,

due to Rod Burstall, of the recursive version of this program.) As the well-founded

set, we use the set (~(Z),~) of all multisets of integers, under the corresponding

multiset ordering. The appropriate termination function T at L yields a multiset in

~(Z), and is defined as

194

T(n,z) = {z,f(z) ~f~-l(z)}.

We must show that for each loop iteration this function decreases. There are

three cases to consider:

i. z>100 at L: In this case, the then branch of the conditional is executed and

both n and z are decremented. When control returns to L (assuming that the loop has

not been exited), we have, in terms of the old values of n and z,

T(n-l,z-10) = {z-lO,f(z-lO) /-2(z_10)}

: {f(z),f2(z) /-l(z) }.

Thus, the value of the termination function ~ has been decreased by removing the

element z from the original multiset {z,f(z) ,fn-l(z)}.

2. 90<z<100 at L: In this case~ the else branch is taken and both n and z are

incremented, yielding

r (n+l, z+ll) = {z+ll,f(z+ll) ,f2 (z+ll),... ,/(z+ll) }.

Either z+l=101 or else z+ljl00; in both cases f2(z+ll)=f(z+l)=91=f(z).

Thus, we get

~(n+l,z+ll) = {z+ll,z+l,f(~),...,/-l(z)}
Since z<z+I<z+II<III, we have z>z+ll and z>z+l. Accordingly, the multiset has been

reduced by replacing the element z with the two smaller elements, z+ll and z+l.

3. z<90 at L: The else branch is taken and we have

r(n+l,z+ll) = {z+ll,f(z+ll),f2(z+ll),...,/(z+ll)}.

= {z+ll,91,f(z) •-i (z) }.

Again z has been replaced by two smaller elements (under the ~ relation), z+ll and

91. D

EXAMPLE 3: Ackermann's function.

The following iterative program computes Ackermann's function a(m,n) over pairs

of natural numbers:

I95

s := ¢~)

Z "= n

loop L: assert a(m,n) = a(sk,a(Sk_l,...,a(s2,a(sl,Z))...))

y := head(S)

S := tail(S)

i_ff y=O then z := z+l

else

if z=O then S := (y-l).S

z:=l

else S := y'(y-1)'S

Z := Z-1

fi fi

until s=O

repeat

assert z = a(m,n),

where the stack S has k elements Sl,S2,...,8 k.

To prove termination, consider the set N×N of lexicographica]ly-ordered pairs of

natural numbers and use the corresponding multiset ordering over N × N. Let y=head(S)=s 1

The termination function at L is

(S,z) = { (sk+l , 0), (Sk_l+l, O) (s2+l , 0), (y,z)].

Thus, T(S,z) yields a multiset containing one pair per element in the stack S. Note

that at L, the stack S is nonempty, and all the elements of S as well as z are non-

negative.

The proof considers three cases, corresponding to the three branches of the

conditional in the loop:

i. y=O: If the loop is not exited, then the new value of r at L is

T((s 2 ,Sk) ,z+l) = {(Sk+1,0) ,(s2+1,0),(s 2,z+l)}.

This represents a decrease in ~ under the multiset ordering, since the element (y,z)

has been removed and the element (s2+l,0) has been replaced by the smaller (s2,z+l).

2. y#0 and z=0: In this case we obtain

T((y-l,s 2 Sk),l) = {(Sk+l,0) (s2+l,0),(y-l,l)}.

Thus, the element (y,z) has been replaced by the smaller element (y-l,l).

3. y#0 and z#0: Here we have

T((y,y-l,s 2 ,Sk) ,z-l) = {(Sk+1,0),...,(s2+1,0),(y,O),(y,z-1)}.

The element (y,z) has been replaced by the two smaller elements (y,0) and (y,z-l).

Remar, k: The previous examples suggest the following heuristic for proving termination:
/

given a program over a domain (D~>) that computes some function f(x), if the program

196

has a loop invariant of the form

f (x) = h (f($1 (y)) 'f (g2 (y)) 'f(gn (y)))'

where the gi are the arguments of occurrences of f in the right-hand side, then try

the multiset ordering ~(D),>>) and use the termination function

~(Y) = {gl (y)'g~)'''~'gn (y)L

The idea underlying this heuristic is that T represents Lhe set of unevaluated

arguments of some recursive expansion of the function f.

IV. TERMINATION OF PRODUCTION SYSTEMS

A production system ~ (also called a terr~-writ~n~ system) over a set of expres-

sions E is a (finite or infinite) set of rewriting rules, called productions, each of

the form

~(~,~,...) ÷ ~'(a,S,...),

where ~t and ~T are expressions containing variables a,B ranging over E. (The

variables appearing in ~' must be s subset of those in ~°) Such a rule is applied

in the following manner: given an expression eEE that contains a subexpression

~(a,b,...),

(i.e. the variables a,B,.., are instantiated with the expressions a,b,..., respective-

ly), replace that subexpression with the corresponding expression

~' (a,b).

We write e~e', if the expression e' can be derived from e by a single application of

some rule in ~ to one of the subexpressions of e.

For example, the following is a production system that differentiates an expres-

sion, containing + and ", with respect to x:

I Dx ÷ 1

Dy + 0

D(~+~) ÷ (D~ + D~)

,D,,(~.S) ÷ ((S.D~) + (~.DS)),

where y can be any constant or any variable other than x. Consider the expression

D(D(x,x)~).

We could either apply the third production to the outer D, or else we could apply

the fourth production in the inner D. In the latter case, we obtain

D(((x'Dx)+(x.~x))+y)

which now contains three occurrences of D. At this point, we can still apply the third

production to the outer D, or we could apply the first production to either one of the

inner D's. Applying the third production yields

197

(D((x.Dx)+(x.Dx)÷~) .

Thus,

D (D (x . x) + y) ~ D(((x 'Dx)+(x 'Dx))+y) ~ (D((x .Dx)+(x .Dx))+Dy) .

In general, at each stage in the computation there are many ways to proceed, and

the choice is made nondeterministically. In our case, all choices eventually lead to

the expression

((((l-l)+(x.0))+((1-1)+(x.0)))+0),

for which no further application of a production is possible.

A production system ~ terminates over E, if there exist no infinite sequences of

expressions el,e2,e3,.., such that el~e2~e3~.., and elSE. In other words, given any

initial expression, execution always reaches a state for which there is no way to

continue applying productions. The difficulty in proving the termination of a pro-

duction system, such as the one for differentiation above, stems from the fact that

while some productions (the first two) may decrease the size of an expression, other

productions (the last two) may increase its size. Also, a production (the fourth)

may actually duplicate occurrences of subexpressions. Furthermore, applying a pro-

duction to a subexpression, not only affects the structure of that subexpression, but

also changes the corresponding superexpressions, including the top-level expression.

And a proof of termination must hold for the many different possible sequences

generated by the nondeterministic choice of productions and subexpressions.

The following theorem has provided the basis for most of the techniques used for

proving the termination of production systems:

THEOREM: A production system over E terminates, if and only if

there exists a well-founded set (~) and a termination function

• :E÷W, such that for any e,e'sE

e~e ' ~mpl~es T (e)~ (e ').

Several researchers have considered the problem of proving the termination of

production systems. Among them: Gorn [1965] in an early work addresses this issue;

Iturriaga [1967] gives sufficient conditions under which a class of production systems

terminates; Knuth and Bendix [1969] define a well-founded ordering based on a

weighted size for expressions; Manna and Ness [1970] and Lankford [1975] use a

"monotonic interpretation" that decreases with each application of a production;

Lipton and Snyder [1977] make use of a "value-preserving" property as the basis for

a method of proving termination. Recently, Plaisted [July 1978~ Oct. 1978] has ap-

plied two classes of well-founded orderings on terms to the termination of production

systems.

In the following examples, we illustrate the use of multisets in proving termina-

tion. We begin with a very simple example.

198

EXAMPLE I: Associativ~ty.
Consider the set of arithmetic expressions E constructed from some set of atoms

(symbols) and the single operator +. The production system

] (a+~)+y ÷ ~+(8+T) t
over E contains just one production which reparenthesizes a sum by associating to

the right. For example, the expression (a+b)+((c+d)+g) becomes either a+(b+((c+d)+g))
or (a+b)+(c+(d+g)), both of which become a+(b+(c+(d+g))). Since the length of the

expression remains constant when the production is applied, some other measure is

needed to prove termination.

To prove termination, we use the mnltiset ordering over the natural numbers,

(~(N),>>), and let T:E÷~N) return the multiset of the lengths of all the sub-

expressions in e to which the production is applicable, i.e.

T (e) = { 1 (~ + ~) + Y f : (~+~)+~" i n e }.

For example,

T((a+b)+((c+d)+g)) = {I(a+b)+((c-+d)+9) I, l(c+d)+gl } = {9,5}.

I. The value of the termination function T decreases with each application of a

production, i.e. for any possible values of a, B, and y,

T((a+S) >> T(~+(~+~)).

Before an application of the production, the multiset T((~+$)+X) includes an occur-

rence of l(a+~)+yI, along with elements corresponding to the subexpressions of a, B,

and y. With application of the production, that element is removed; the only element

that may be added is 18+yI (if 8 is of the form (Bl+S2)) , which is smaller. The

multiset has accordingly been decreased.

2. Since the production does not change the length of the expression it is applied

to, i.e.

the length of superexpressions containing (a+8)+y is also unchanged.

The multiset T(e) consists of all the elements in T((a+~)+y) plus the lengths

of some of their superexpressions and other subexpressions. The only elements in

T(e) that are changed by the production are those in T((a+8)+X) and they have been

decreased by the production. Thus, e ~e' implies that ~(e)>> T(e'). o

199

EXAMPLE 2: Differentiation.

The following system symbolically differentiates an expression with respect to x:

Z~÷ 1
÷ 0

D(~+6) ÷ (D~+D~)
D(~.6) ÷ ((~.D~) + (~'DB))
D(-m) ÷ (-Dm)
D(~-S) ÷ (D~-O6)

D(~IS) ÷ ((D~I~) - ((~-D~)/(~+2)))
D(in ~) ÷ (D~/a)
D(~+S) ÷ ((O~'(6"(~+(S-I)))) + (((in~)-D6).(~)))

We present two solutions. The first uses a multiset ordering; the second uses

nested multisets.

• Solution I.

We use the multiset ordering over sequences of natural numbers. The sequences

are compared under the well-founded stepped lexicographic ordering >, i.e. longer

sequences are greater than shorter ones (regardless of the values of the individual

elements), and equal length sequences are compared lexicographically. The termina-

tion function is

~(e) = {(dl(m),d2(x)): x is an occurrence of an atom in e},

where d.(x) is the distance (number of operators) between x and the ith enclosing D.

For example, consider the expression

e = DD(Dy, (y+DDx)),

or in the tree form (with the D's enumerated for expository purposes),

/ \
D 4 Y Y }5

x

There are three atoms: y, y, and x. The left atom y contributes the element (0,2,3)

to the multiset, since there are no operators between D 3 and y, there are two

operators (- and D3) between D 2 and y, and there are three operators (D2, -, and D3)

between D I and y. Similarly the other two atoms contribute (2,3) and (0,i,4,5).

Thus,

r(e) = {(0,2,3), (2,3), (0,1,4,5)}.

Applying the production

D(~.S) ~ ((S.D~) + (~,DB)),

to e, yields e' = D(((y+DDx).DDy) + (Dy.D(y+DDx))). In the tree form (with the

labelling of the D's retained), we have

200

+

/ \ 12
~4 ~3 Y /+
~5 y Y \~4

x

and accordingly

T(e') = {(3),(0,1,5),(0,1,4),(0,3),(1,4),(0,1,3,6)},

Thus, T(e) ~ T(e'), since the element (0,1,4,5) has been replaced by five shorter

sequences and by the lexicographically smaller (0,1,3,6).

In general, applying any of the productions decreases r, and the productions

only affect the sequences in T(e) corresponding to the atoms of the subexpression

that they are applied to. Therefore, for any application of a production, e ~ e'

implies T(e)~ T(e').

• Solution 2.

For the alternative solution, we use nested multisets. Note that the arguments

to D are reduced in length by each production. One would therefore like to prove

termination using the well-founded set ~(N),>>) and a termination function that

yields the multiset containing the length of the arguments to each occurrence of D,

i.e.

~(e) = {f~f: D~ in el.

The value of this function is decreased by the application of a production, i.e.

~(~)>>T(~') for each of the productions ~-~'. The problem is that the size of

superexpressions increases, since l~'I>i~I; applying a production to a subexpression

of e will therefore increase T(e).

To overcome this problem, we need a termination function that takes the nested

structure of the expression into consideration and gives more significance to more

deeply nested subexpressions. Fortunately, this is exactly what nested multisets

can do for us.

Let the well-founded set be the nested multisets over the natural numbers,

(~(N),>>*), and let the termination function T:E-~*(N) yield lal for each occurrence

of D~, while preserving the nested structure of the expression. For example, the

arguments of the six occurrences of D in the expression D(D(Dx'Dy)+~j)/Dx are

D(Dx.Dy)+iTd, Dx. ZhJ, x, y, y, and x. They are of lengths 9, 5, I, i, i, and i, respec-

tively. Considering the nested depths of the D's, the structure of the expression is

201

Thus, for

e: D (~ (~ .~)+~) ID~
i

we have ' ,

~(e) = { { 9 , { 5 , { l } , { i } } , { i } } , { l } } .

For each production ~->~', we have T (~)>> *T(~') under the nested multiset order-

ing. It remains to ascertain what happens to the value of ~ for superexpressions.

The crucial point here is that the termination function gives greater weight to the

more deeply nested D's by placing their length at a greater depth in the nested

multiset. The effect of the productions on lower-level expressions is therefore

more significant than their effect on higher-level expressions, and the decrease in

T for the subexpression to which the production is applied overshadows any increase

in the length of a superexpression.

Consider, for example,

D(D(x.x)+y) ~ D(((x -~)+ (x -Dx))+y) .

The value of ~ for the expression on the left is {{6,{3}}}, while for the right-hand

side expression it is {{ii,{I},{i}}}. Note that this represents a decrease in the

nested multiset ordering over N, despite the fact that the element 6, corresponding

to the length of the top-level argument, has been increased to ii. This is the case

since the production has replaced the element {3} in the multiset {6,{3}} by two

occurrences of the smaller {i}, and {3} is also greater than ii - or any number for

that matter - on account of its greater depth.

Thus, e-~e ' implies r(e)>>*T(e').

In this section, we have illustrated the use of multiset and nested multiset

ordering in proofs of termination of production systems, by means of examples.

Along similar lines, using these orderings, one can give general theorems which

express sufficient conditions for the termination of broad classes of production

systems.

ACKNO~EDGMENT

We thank Bob Boyer, John Doner, Chris Goad, John McCarthy, Steve Ness, Amir

Pnueli, Adir Pridor, and Richard Weyhraueh for stimulating discussions.

REFERENCES

Floyd, R. W. [1967], Assigning meanings to programs, Proc. Symp. in Applied Mathe-
matics, vol. 19 (J. T. Schwartz, ed.), American Mathematical Society,
Providence, RI, pp. 19-32.

202

Gentzen, G. [1938], New version of the consistency proof for elementary n~ber
theory, The collected papers of Gerhart Gentzen (M. E. Szabo, ed.), North
Holland, Amsterdam (1969), pp. 252-286.

Gorn, S. [Sept. 1965], Explicit definitions and linguistic dominoes, Proc. Conf. on
Systems and Computer Science, London, Ontario, pp. 77-115.

Iturriaga, R. [May 1967], Contributions to mechanical mathematics, Ph.D. thesis,
Carnegie-Mellon Univ., Pittsburgh, PA.

Knuth, D. E. and P. B. Bendix [1969], Simple word problems in universal algebras,
Computational Problems in Universal Algebras (J. Leech, ed.), Pergamon Press,
Oxford, pp. 263-297.

Lankford, D. S. [May 1975], Canonical algebraic simplification in ca~utation~l
logic, Memo ATP-25, Automatic Theorem Proving Project, Univ. of Texas,
Austin, TX.

Lipton, R. J. and L. Snyder [Aug 1977], On the halting of tree replacement systems,
Proc. Conf. on Theoretical Computer Saience, Waterloo, Ontario, pp. 43-46.

Manna, Z. and S. Ness [Jan 197017 On the termination of Markov algorithms, Proc.
Third Hawaii Intlo Conf. on Systems Sciences, Honolulu, HI, pp. 789-792.

Plaisted, D. [July 1978], Well-founded orderings for proving the termination of
rewrite rules, Memo R-78-932, Dept. of Computer Science, Univ. of Illinois,
Urbana, IL.

Plaisted, D. [Oct. 1978], A recessively defined orderin~ for provir~ termination of
term rewriting systems, Memo R-78-943, Dept. of Computer Science, Univ. of
Illinois, Urbana, IL.

