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Abstract

For any rzl and any i, 0<i<r, an i-dimensional cell (in E') is a

subset of r-dimensional Euclidean space E" homeomorphic to the i~
. . . r ., .
dimensional open unit ball. A subset of E° 1is said to possess a

cellular decomposition (c.d.) if it is the disjoint union of fi-

nitely many cells (of various dimensions). A semi-algebraic set S

(in E') is the set of all points of E" satisfying some given finite
boolean combination ¢ of polynomial egquations and inequalities in

r variables. ¢ is called a defining formula for S. A real alge-

. . . . r
braic variety, i.e. the set of zeros in E of a system of polyno-
mial equations in r variables, is a particular example of a semi-

algebraic set. It has been known for at least fifty years that

any semi-algebraic set possesses a c.d., but the proofs of this

—fact-have-been-nonconstructives—Recently-it-has-been-noted-that

G. E. Collins' 1973 guantifier elimination algorithm for the ele-
mentary theory of real closed fields contains an algorithm for de-
termining a c.d. of a semi-algebraic set S given by its defining
formula, apparently the first such algorithm. Specifically, each
cell ¢ of the c.d. C of S is itself a semi-algebraic set, and for

every ¢ in C, a defining formula for ¢ and a particular point of ¢

are produced. In the present paper we give a description of this
c¢.d. algorithm, in the form of a constructive proof of the theorem
that any semi-algebraic set has a c¢.d. We then show that the al-
gorithm can be extended to determine the dimension of each cell in
a c.d. and the incidences among cells. A computer implementation

of the algorithm is in progress.

lA condensed version of the present paper will appear in the
Proceedings of the 1979 European Symposium on Symbolic and Algebraic
Manipulation, to be published in 1979 by Springer-vVerlag in the
series Lecture Notes in Computer Science. Various corrections to
the condensed version are incorporated in the present version.

2This research has been supported by NSF Grants MCS74-13278
Aol and MCS78-01731.



1. Introduction

For any izl, the i-dimensional open unit ball B in

i~-dimensional Euclidean space ET is the set of all

<Xl’°'°'xi> eFT such that X12 + .. + X12 < 1. We define
0

B~ to be a single point. For any rzl and any i, O<isr,

.o . . . r .
an i-dimensional cell, or i-cell, in E~ is a subset of

E" homeomorphic to BY. A subset of E° is said to possess

a cellular decomposition (c.d.) if it is the disjoint

union of finitely many cells (of various dimensions).

The following figure illustrates a cellular decomposition
3 2 i th

of the curve y2 - x° - x° = 0; c, denotes the j i-cell:
J
(c?=<—1,0>;cg=<0,0>)
FPigure 1
An i-cell ¢’ is incident on a j-cell cd if i<j,
¢t ncd o= ¥, and ¢! is contained in the closure of cJ.

For example, cg is incident on ci in Figure 1. Suppose,
for a subset X of E" possessing a c.d., that one knows

the dimension of each cell and the incidences among cells




in some c.d. of X. It is intuitively evident that one
can then infer certain information of a global, topologi-
cal character about X; for example, the dimension of X
(namely the dimension of the cell of largest dimension in
the c.d.) and the number of connected components of X.

In algebraic topology one formalizes this intuition by
using the dimensions and incidences of the cells of a
c.d. of X to define certain groups, called the homology
groups of X, from which a good deal more information
about X can be obtained. Thus one important reason for

interest in cellular decompositions is the possibility,

if the dimensions and incidences of cells are known, of

using—a o dv—as—a means of h()mOlugy group calculatiomn.

For any m21, let Im denote Z[xl,...,xm], the ring
of polynomials in m variables over the integers. For any
F in any Im' we call the equation "F = 0" and the ine-

quality "F > 0" atomic formulas. Any finite combination

of atomic formulas built up using the boolean operations

"and" ("&") and "or" ("v") will be called a gquantifier-

free formula (g.f.f.). The polynomials occurring in the

atomic formulas of a g.f.f. ¢ will be called the polyno-

nials of ¢. If all the polynomials of some g.f.f. ¢

are in Ir, we will also write ¢(xl,...,xr) for ¢. Given
a g.f.f. ¢(xl,...,xr), the set of all points in Euclidean

space E" satisfying ¢, which we denote by S(¢), is the




semi~algebraic set defined by ¢. ¢ is a defining formula

(3.f.) for S(¢). We remark that the collection of semi-
algebraic sets would not be enlarged if we were to allow
any of the relations "<", "<", "2", or "#" in atomic for-
mulas, or the boolean operation of negation in g.f.f.'s.
An example of a semi-algebraic set and a d.f. for
it is the set of points of the line y = x in E2 having
nonnegative coordinates and the gq.f.f. ¢(x,y) = [y - x = 01
& [(y»>0) v (y - 0)J. Real algebraic varieties (also
called "algebraic sets") are an important particular sort

of semi~-algebraic set; they are the semi-algebraic sets

which have a d.f. which is a conjunction of equations,

i.e. a "system of polynomial equations". The topology ol
real varieties has long been studied; for example, Hil-
bert's thh problem is concerned with the mutual dispo-
gsition of the connected components of real algebraic

curves and surfaces.

Fifty years ago van der Waerden [1929, p. 3601 pub-
lished a proof that any semi-algebraic set has a c.d.
His argument, however, was nonconstructive, as is that of
Hironaka [19741. 1In 1973, G. E. Collins [1975], [1976]
discovered a new quantifier elimination algorithm for
the elementary theory of real closed fields, quite dif-
ferent from previous algorithms. The principal compo-

nent of Collins' method is an algorithm which, for a giv-



en rzl, determines a certain decomposition of EX into
connected subsets. Collins called this decomposition a
"cylindrical algebraic decomposition" (c.a.d.) and
called the connected subsets of E* which comprised it
"cells". For quantifier elimination, however, the rele-
vant property of each "cell" is that certain polynomials
in Ir are invariant on it. (FEIr is invariggg on UcE"
if the sign of F{a) is the same for all 0eU.). P. Kahn
[1978] recently noted that the "cells" of a c.a.d. are
in fact cells as defined above, hence a c.a.d. of EY is

a c.d. of E°. It follows that the c.a.d. algorithm can

be used to determine, in a sense we now explain, a c.d.

Fat
g

th
o

Define a c.d. to be semi-algebraic if each of its

cells is a semi-algebraic set. For rzl, a point of E"
is algebraic if each of its coordinates is a real alge-

braic number. For any cell c, a sample point (s.p.) for

¢ is an algebraic point in c. If for every cell of some
semi~algebraic c.d. we have a d.f. and an S.P., we will
say that we have d.f.'s and s.p.'s for that c.d. (We
remark that in the present paper we assume available
algorithms for needed arithmetic operations on real al-
gebraic numbers; Rubald [1974] and Loos [1973] discuss
such algorithms.)

When applied to a d.f. ¢ of some semi-algebraic set,




the output of the c.a.d. algorithm consists of d.f.'s

and s.p.'s for a (semi-algebraic) c.d. C of S(¢). At
first sight there may appear to be little connection be-
tween having d.f.'s and s.p.'s for C, and the objective
proposed above of obtaining the dimensions and incidences
of the cells of C. 1In Section 3, however, we will pre-
sent dimension and incidence algorithms which make essen-
tial use of d.f.'s and s.p.'s for C. In addition, these
d.f.'s and s.p.'s are quite clearly of interest in their
own right. For example, if ¢ is a system of polynomial

equations, the d.f.'s and s.p.'s for C can be considered

a solution of ¢. By a "cellular decomposition algorithm

for—semi=algebraic——sets",we meamran algorithmwhichbe=

haves as the c.a.d. algorithm does: given ¢, d.f.'s and

s.p.'s for a (semi-algebraic) c.d. of S(¢) are produced.
Our main objective in the present paper is to de-

scribe Collins' c.a.d. algorithm in its usage as a c.d.

algorithm for semi~algebraic sets. Our presentation
takes the form of a constructive proof, in Section 2, of
the theorem that any semi-algebraic set has a c.d. Thus
our proofs of the Main Theorem and its auxiliary theor-
ems in Section 2often consist of outlines of the various
subalgorithms of the c.a.d. algorithm. We remark that
proofs by induction correspond to recursive algorithms.

In Section 3 we prove that the c.a.d. algorithm is




easily extended so as to determine the dimension of each
cell in the c.d. of a semi-algebraic set. We also give
an algorithm for determining the incidences among the
cells of a c.d., however it seems likely that a signifi-
cantly better algorithm can be found.

Computing time analysis carried out by Collins
[1975] suggests that the c.a.d. algorithm is feasible in
practice, at least for semi-algebraic sets whose d.f.'s
are "small", e.g. contain only a small number of poly-
nomials in a small number of variables. As will become

clear in Section 3, extending the c.a.d. algorithm to

determine the dimensions of cells would add little to

its computing time. The incidence algorithm we describe
would add substantially to the computing time. A compu-
ter implementation of the c.a.d. algorithm is in prog-
ress.

Algorithms for solving systems of polynomial equa-

tions have been implemented in computer algebra systems
for nearly twenty years (see e.g. Yun [19731, who has
references to most prior work). The algorithms used
have been based on the classical elimination theory of
algebraic geometry (see e.g. van der Waerden [19501).
For a zero-dimensional variety, i.e. a variety consist-
ing of finitely many points, there is little difference

between the output of an elimination theory algorithm



and a c.d. algorithm. Both produce the (necessarily al-
gebraic) points of the variety. 1In the positive-dimen-
sional case, however, the output of an elimination the-
ory algorithm is a parametrization of the variety, rath-
er than a decomposition of it. For example, given the
equation y2 - x3 - x2 = 0 of the curve of Figure 1, the

ALGSYS algorithm of MACSYMA [1977, p. 98-99]1 produces

the parametrization y = tx-dx + 1.

2. Construction of defining formulas and sample points
for the cells of a cellular decomposition

In this section we give a constructive proof of

the following theorem, which we refer to as the "c.d.

theorem"

Cellular Decomposition Theorem for Semi-algebraic Sets

Let S be a semi-~algebraic set in Er, rzl, and let
¢(xl,..,xr) be a given defining formula for S. Then

there is a semi-algebraic c.d. of S for which we can

construct d.f.'s and s.p.'s.

The proof will rely on what we call the Main Theor-

em. For any set A of polynomials in Ir, and any cell cin

Er, ¢ is said to be {-invariant if every A in (I is in-

variant on ¢. A c¢.d. C is ~invariant if every cell

of ¢ is (l-invariant.

Main Theorem Let O= {Al,...,An},nZI, be a finite set



of nonzero polynomials in Ir,rzl. Then there is an
(-invariant, semi-algebraic c.d. of EY for which we can

construct d.f.'s and s.p.'s.

Once we have the Main Theorem, the proof of the c.d.
Theorem is brief:

Proof of the Cellular Decomposition Theorem Let A be

the set of polynomials of ¢. By the Main Theorem, we
can construct d.f.'s and s.p.'s for the cells of an
(-invariant c.d. C of E . Clearly the truth value of ¢

is invariant on each cell ¢ of C, i.e. for any cell c

of C and for any aec,¢(a) is true if and only if ¢(B) is

true for every Bec. Thus by evaluating ¢ at the s.p.'s
of the cells of C, we can determine which cells belong
to S. Clearly we obtain a c.d. of S in this way, for

each cell of which we have a d.f. and an s.p.U

We now turn to the Main Theorem, whose proof will
occupy the rest of Section 2 (except that an example of
the c.d. algorithm is given following the proof). An
outline of the proof by inductionis as follows. Having
treated the case r=1, we suppose rx2. The objective is
to construct from L a set P(A) of polynomials in
I._y such that s.p.'s and d.f.'s for a P((l)~-invariant
c.d. of Er_l can be extended to d.f.'s and s.p.'s for an



(l-invariant c.d. of E°. Then applying the inductive hy-
pothesis to P((L), the theorem will be proved. Theorems
1-5 establish sufficient conditions on a c.d. of Er~l
for its d.f.'s and s.p.'s to be extendable to d.f.'s and
s.p.'s for an (L-invariant c.d. of E¥ (conditions 5.1-
5.3 of Theorem 5). We then, in the course of Theorems
6-10, define the appropriate P(({,) and establish that it
satisfies conditions 5.1-5.3. We call the P((L) we de-
fine the "augmented projection" of (.

The c.d. algorithm for semi-algebraic sets we ob-

tain from our proofs ahove of the c.d. theorem and the

Main Theorem can be summarized as follows. Let

¢(xl,...,xr) be a given g.f.f. For any set 8 of polyno-
mials in I+ m22, let P( Q) denote the augmented projec-
tion of Q. Let (L denote the set of polynomials of ¢.
Let PO(GL) = (L. Then we compute Pl(CL) = p(A),

p* (@) = p(R(A)), P>(A) = P(R(AL)), ... , B" (A).

Pr_l(CL) is a set of polynomials in one variable. We

construct d.f.'s and s.p.'s for a Pr"l(C()—invariant
c.d. of El. Then we extend these to d.f.'s and s.p.'s
for a Pr-z(CL)—invariant c.d. of E2, and continue ex-
tending until we have obtained d.f.'s and s.p.'s for an
(.-invariant c.d. C of EY. Then we evaluate ¢ at the

sample point of each cell of C. Retaining those cells

whose sample points satisfy ¢, we have obtained d.f.'s
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and s.p.'s for a c.d. of S(¢).

Proof of the Main Theorem

We will take occasional liberties with the syntax
of g.f.f.'s; in each such case it will be clear how an
equivalent, syntatically correct g.f.f. could be ob-
tained. We let R denote the real numbers.

Suppose first that r=l. Let H(x) be the product
of all the Ai's in d. 1If H(x) has multiple roots, then
replace it with its greatest squarefree divisor, i.e. a

polynomial in I. having the same roots with multiplicity

1

one, Now suppose H has k20 real roots YyreeerYyo Clear-

ly the c.d. of E1 defined by taking each Yj as a 0-cell

1

and each of the k+l open intervals of E= - {Y } ag a 1=

ik
cell is fl-invariant and semi-algebraic. We call it the

(L -induced c.d. of El, and denote it with CCl(El) or

C(CL,El). If k=0, we take 0 as the s.p. and (x<0) &

(x = 0) & (x>0) as a d.f:. for the one cell of the c.d.

If k21, we compute disjoint isolating intervals
Jl,...,Jk (with rational number endpoints) for the

yj's. For each j, 1l<js<k, we take an exact representa-

tion for y. as a real algebraic number to be the s.p.

for the cell Yj’ and where Jj = (aj,bj), we take

(H = 0) & (aj<x<bj) as a d.f. for Yj' Suppose for a

moment k=2, CCl(El) is then as indicated in Figure 2:
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&

<
D
v

Figure 2
- : 0 _ - C
Suppose Jl—(al,bl) isolates cy = Yy and J2—(a2,b2) iso
0 _ . . . 1, _
lates 02 = Y2’ SO al<bl<a2<b2. Then b1 is in 02’ let o=

] as an s.p. for c% and (oH>0) &

(a]<x<b2) as a d.f. for c%. The idea used in this exam-

ple can be extended to an algorithm for constructing

sign(H(b,)). We take b
1

¥ P £

|} he | s N oed Wd 1.1 b e W | Fond ey ford
Depde O dilU UeselL, o LUL LIS L=Ccl 1o OUL La{ﬁ: ] LOL dIlY

kzl. This completes the proof of the case r=1l.

Now suppose r22 and let c be any given i-cell in

Er~l’ with O<i<r-l. Define Y(c), the cylinder over c,

to be cxE, a subset of Er. When considering Y(c) it

will often be convenient to regard c as identical to the

subset ¢x{0} of ¥Y(c). For example, Figure 3 shows the

five cylinders in E2 over the cells of the c.d. of E

we had in Figure 2:

v(c]) V(c3) Y(c))

Figure 3
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‘Let F be any given nonzero element of Ir. We write

V(F) to denote the real variety defined by F = 0. We

say that V(F) is empty on c if V(F) n Y(c¢c) = ¢. For
example, if F(x,y)eI, is the unit circle y2 + x2 - 1,

2
V(F) is empty on ¢ = (-«,=-2) in El. We say that V(F)

is cylindrical on ¢ if V(F)n¥(c) = ¥(c). For example,

if F(x,y) = %, then V(F) 1is cylindrical on ¢ = 0 in El,

We say that V(F) is delineable on c if V(F)nY¥Y(c) con-

sists of finitely many disjoint i-cells Ll’°'°’Lk' k=1,
such that for each j, 1sjizk,

1) Lj is the graph of a continuous function f. from

J
c to E.

2) there is an integer ejzl such that for any

dec,fj(a) is a root of F (u,xr) of multiplicity

e..

J
The Lj are called the branches of V(F) on c. For exam-
ple, if F(x,y) = y2 - x3 - x2, then V(F) is delineable

with two branches on ¢ = (-3/4,-1/4) in Elz

o

—

Figure 4
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but V(F) is not delineable on ¢ = (-1/2,2) since the

"branches are not disjoint":

Figure 5

2
If F(x,y) = y~ - %, then V(F) is not delineable on

c = (-1,1):

«<0,0>

Figure 6

The reason 1is that F(l/2,y) = y3 - 1/2 has one real root

of multiplicity one, but F(0,y) = y3 has one real root
of multiplicity three. As Figure 5 illustrates, a given

FEIr may be neither empty, cylindrical, nor delineable
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on any given cell c in Er_l. If V(F) is empty (cylind-
rical, delineable) on ¢, we will also say that F is
empty (cylindrical, delineable) on c.

If V(F) is delineable on c, there is an obvious
F-invariant c.d. of Y(c), consisting of the k branches
of V(F) as i-cells and the k+1 connected components of
Y(¢c) - V(F) as (i+l) cells. (It is straightforward to
verify that each of the connected components of Y(c) -

V(F) is indeed an (i+1)-cell.) We call this the F-in-

duced c.d. of Y(c), and denote it with CF(Y(C)) or

eE e We-also-define C (Y(c)) in case V(F) is

3

: F

empty on c; it then consists of the single (i+1) -cell

Y(c). With the following theorem we show that an s.p.
for ¢ can be extended to s.p.'s for CF(Y(c)) when V (F)

is delineable ©on c. By an dlgebraic polynomial we mean

a polynomial with real algebraic number coefficients.

Theorem 1 Suppose FeIr is delineable on-a cell cin
Er-l. Then given an s.p. o for c, we can construct
s.p.'s for CF(Y(c)).

Proof Let g(xr) be the algebraic polynomial F(a,xr).
Let bl""’ 2k+1

structed as in our argument above for the case r=1 of

b . k20, be the s.p.'s for Cg(El) con-

the Main Theorem. (We assume we can isolate real roots
and do other required operations on algebraic polyno-

mials; Rump [1976], for example, presents the algorithms
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‘we need). Then <o,b,>,..,<0,b

1

1
k41 a;e s.p.'s for

CF(Y(C) Yo

For any commutative ring I and any G in I[x], sup-

pose G#0 and G = I ?zo gixl, gm#()° Then m is the degree

of G, written deg(G), and = is the leading coefficient

of G, written 1ldcf(G). If G = 0, then deg(G) = 0 and

1dcf(G) = 0. TFor any k, O<ksdeg(G), let der™(G) denote

th

the k derivative of G. Hence derO(G) = G, derl(G%=G',

etc. We define the derivative set of G, written DER(G),

to be

{derk(G)IOSdsdeg(G) & der™(G)#0}.

We apply these definitions to Ir by viewing it as

I[xr] with I = Z[xl,...xr_l]. For an FeIr delineable on
a cell ¢, the next theorem establishes the conditions
under which a d.f. for c can be extended to d.f.'s for

CF(Y(C))’

Theorem 2 Suppose Fel is delineable on a cell c in
Er—l. Suppose also that every element of DER(F) is de-
lineable or empty on c. Then given an s.p. o and a
d.f. ¢C for c, we can construct d.f.'s for CF(Y(C)).

As an immediate conseauence of Theorem 2, we have

Corollary 1 If FeIr is delineable or empty on a cell c

in 851, then Cp(¥(c)) is a semialgebraic c.d.

Proof of Theorem 2 The proof of Theorem 2 is long, and
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contains Lemmas 1-10.

Let g(x) be any real polynomial, i.e. any polyno-
mial with real coefficients. Suppose g has distinct
real roots Yp<eeo<Yy for some tzl. Then

Cl = (—OolYl)

Cr T 11

Cor T V¢

are the cells of Cq(El). We associate three sets of

nonnegative integers with g as follows:

3 4= y
|5 S e e Sy s ey

2

FAP AN £
[SrEN W i R

U

1

root of g.
Oi(g), for 1l<i<t+l, is the sign of g on Coio1*
Xi(g), for 1l<is<t, is the number of distinct real

roots of g'(x) less than or equal to Yy

and A (g) is the total number of distinct

t+1
real roots of g'(x).

We now show that given the u's, o's, and A's for g and

certain of its derivatives, we can construct d.f.'s for

Cg(El) of a special form.

Lemma 1 Let g(x) be a real polynomial with deg(g)=1.

If g(x) has no real roots let m = -1; otherwise let

m=0 be maximal such that derj(g) has at least one real

root for 0O<js<m. Suppose that for 0sjsm, we are given
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the u's, o's, and A's associated with derj(g). Then we
can construct d.f.'s for Cg(El) such that every polyno-
mial occurring in any d.f. is either + h for some ele-
ment h of DER(g) or the zero polynomial.

Proof We proceed by induction on deg(g). If deg(g)=1,
then g(x) = ax + b for real numbers a and b, a#0, g has
one real root Y, = -b/a, and Cg(El) consists of the
three cells cq = (-w,Yl), Cy = Yqr and cy = (Yl’m)‘

and o

Let o be the o's for g. Then where ¢4 denotes

1 2
a d.f. for C;s we may set ¢l+(clg>0), ¢2+(g = ), and

¢.<(0,9>0) .
- P

Suppose now that deg (g)>1l. Let y1<y7<...<yk,k20,

be the distinct real roots of g. If kK = 0, then Cg con-
sists of the single cell cy; = El. (For the remainder

of the proof of Lemma 1, we will write Cg for Cg(El)

and Cg, for Cg,(El)). Hence we can set ¢l+(0 = 0). If

k=21, then Cg consists of the 2k+1 cells cq = (—m,Yl),

Cp = YprC3 = (Ypr¥p)rewesCop = YyuCopyy = (Vyr®) e By
the inductive hypothesis, we can construct d.f.'s for

Cg' such that the only polynomials occurring, up to sign,
are elements of DER(g')c<DER(g) or the zero polynomial.
Let ¢i denote the d.f. we wish to construct for the cell
cy of Cg for 1=<i<2k+1l. Let Hy (l<icgk), 04 (lsisk+1),

and Ai (1<i<k+1) denote the u's, o's and A's associated

with g. We recall Rolle's theorem: between any two real
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roots of g is a real root of g'. We note also that, by

definition of X +1 cells. We let cj

h

]
k+1’ Cg has 2h,

denote the jt cell of Cg‘ and ¢; the d.f. we assume we
have for it.

Consider first the cells Chy = yi,lsisk. If ui>l,
then Y is also a root of g', in fact the Aith real root
of g'. Hence ¢;Ai is a d.f. for y; as a cell of Cg' 1o
we may simply set ¢2i+¢;x.' If ui=l, then Yy is not a
root of g'. The Kith real root § (take § = —» if Ai=0)
of g' is less than Yir and the (Ai+l)St real root ¢

(take £ = «» if there is no such real root of g')of g' is

1
greater than Y hence Y; is in (8,8) = 02ki+l' Fur-

thermore, by Rolle's theorem, Y; s the unigueroot—of
' ]
g in CZAi+l' Hence we may set ¢2i ~ {g = 0) & ¢2Ai+l'
Consider now the cells Chiq = (Yi—l’yi)' 2<ic<k.

Suppose for some Chi-1 that ui_l>l and ui=l. Intuitive-—

ly what we want to do is form the disjunction of the

d.f.'s for the cells of Cg' which overlap c,; ;. At the

lower end of Cri-1 this works out neatly, because since

“i—1>l' Coion = szi—l = Yj.yr SO for C,;_q1 We can start
off with
¥ ¥
d) v ¢ v o @
2h; 171 21 _qt2 '

But at the upper end of Chs_q We have Yy in the interior
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L
Con.+1°
1 ]

ly three cells of Cg meeting CZki+l’ namely Coi1r €957

of By Rolle's theorem, however, there are exact-

Y and ¢ By definition of the o's,

2i41 = (rgrvien)-

., = 1 implies o; = i.e. the sign of g is differ-

i TS

c and c,. Hence the g.f.f.

2i-1" 217 2i+1°
1 1
(oig>0) & ¢2Ai+l is a d.f. for Cos-1 N CZAj+l' Thus our

erent on each of c

d.f. for Chi_q 1S
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From the above discussion 1t snould be Cclear now to
handle the other three combinations of values of Wi q

and My which can occur: W >1, ui>l is the easiest,

1

ui_1=l,ui>l is similar to the above, and ui_l=l, ui=l

requires special attention to both ends of Coi_1°

There remain only the cells ¢, = (—w,Yl) and

1

Copal = (Yk,w) to consider. For ¢l, one begins by form-
1] ]

ing the disjunction ¢l v ¢2 vV ... and, by exactly the

considerations we had above, terminates it according to

the value of ul. For ¢2k+l' it is the beglnnlpg of the

disjunction that requires care; one then takes the dis-

junction of all remaining d.f.'s of Cg' up to and in-
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]
cluding ¢2A . This campletes the proof of Lemma 1 [

k+1tt

Returning to the FeIr and the cell ¢ we are given
in the hypotheses of Theorem 2, let gB(xr) = F(B,xr) for
any Rec. Then since F is delineable on ¢, there is a
k21 such that for every BRec, = has k distinct real

roots YB < For any Bec, let

..l< L]
' 1 Y8,k

B (o

Cl“‘ (— ’YB,l)
B _

€2 = Yg,1

PB = (v )
2k+1 IR,k

be the cells of C(gB,El). For each i, 1l<i<2k+1l, let
¢S(Xr) denote the d4.f. for cf we could construct by Lem-
ma 1 if we had the necessary p's, o's, and A's associat-

ed with Ig and its derivatives. Every polynomial occur-

&)
ring 1in ¢£ 1s either *h for some heDER(gB) or the zZero
polynomial. Suppose now that for some Bec we are ac-
tually given ¢§(x y for 1l<is<2k+l. For each i,
r

1<i<2k+1, define ¢B i(Xl""'xr) to be the g.f.f. we ob-
!
B

tain by replacing every occurrence of derj(gB) in ¢i
with derj(F), for each j, Osjsdeg(gB). Where F(j) =

F(j)(xl,...,xr) denotes derj(F) for any j, it is easily
verified that F(j)(g,xr) = derj(F(E,xr)) for any j and

and for any EeEr—l. It follows that for each i,
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1i<2k+1l, ¢g 4 (B,x,) = 0B

i Xr)° We now show with Lemmas

2-7 that, given the hypotheses of Theorem 2, ¢B,i does
not depend on the particular choice of Bec (for each i,
1<i<2k+1). We can then state, in Corollary 3, the key
property of the ¢B,i's that enables us to use them in

d.f.'s for CF(Y(C)).

Temma 2 For any GsIr, suppose G is delineable with m>1

branches on c¢. For any Bec, let hB(Xr) = G(B,xr), and

let § €eea¥ be the distinct real roots of hE

.
D

Br1 6B,m
Then for any j, 1l<j<m, and for any B, Bec, uj(hB) =

M. (hB) .
J )

Proof Immediate from the definition of delineability [

Lemma 3 Suppose Gf-:Ir satisfies the hypotheses of Lemma
2. Then for any j, l<j<mt+l, and for any B, Bec, aj(hB) =

Oj (hé) . _
B B

Proof For any j, l<jsm+tl, ij_1 and C,._y are both con-

=4

tained in the same cell of CG(Y(C)). Then since CG(Y(C))
is G-invariant, Oj(hB) = Gj(hé) 0
Lemma 4 For any GeIr, suppose G and G' are delineable
on c. Let L be any branch of V(G) on ¢, and let
VC(G') = V(G') n Y(c). If L n VC(G‘) # g, then

' = I
L n VC(G ) L.

Proof Let f:c»E be the continuous function whose graph

is L. By hypothesis there is some fec such that £(B) is
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a root of G(B,xr) of multiplicity ez2. But then by def-
inition of delineability, f£(&) is a root of G(E,xr) of
multiplicity e for every £&ec, i.e. f£(£) is a root of
G'(E,xr) for every £cc, i.e. L n VC(G') = I, [

Lemma 5 For any GsIr, suppose G and G' are delineable
on ¢. Let L be any branch of V(G) on ¢, and suppose

L n VC(G') # @. Then there is some branch L' of V(G')
on ¢ such that L = L'.

Proof The assertion is trivial if ¢ is a 0O-cell, so as-

?
sume ¢ is an s-cell with s21l. Suppose m22 branches Ll’"'

]
L of V(G') on c meet L. Let f£,f.,. .., fr; be the continu-

A
ous functions from ¢ to E whose respective graphs are 1,

1
Ll""’Lm' Choose B,fcec such that £(B) = fl(B) and
]
f(g) # fl(E). Since ¢ is homeomorphic to an open con-
nected subset of ES, ¢ is pathwise connected. Let

t:[0,1]>c be a path from B to &, i.e. t(0)=8, t(l)=E.

it

Let V = {xe[0,1]|£f(t(x)) f;(t(x))}. V is nonempty and

bounded ahove, hence has a least upper bound v. Suppose
veV. Then v<1l, and there is some f;# fiﬁédéﬁ that for
all &6>0, there is a y>v with y - v<d, and £(t(y)) =
f;(t(y)). Let p = |£(t(v) - f;(t(v))l. If p>0, then
choosing e=p/2, by continuity of f and f; at V( there is
a §>0 such that |x - v|<¢ implies |£(t(x) - £(t(v))|<e
and If;(t(x)) - f;(t(v))|<€. But this contradicts the

]
existence of a y>v with y - v<§ and £(t(y)) = fj(t(y)).
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"Hence we must have p=0, i.e. f;(t(v))'= F(t(v)) =
fi(t(v))e But this contradicts the disjointness of Li
and L;. If v¢v, by a similér argument we again arrive
at a contradiction. Hence we must have m=1, i.e. only
one branch of V(G') on ¢ meets L. But then by Lemma 4,
there is some branch L' of V(G') on ¢ such that L = L'[

Corollary 2 For any GeIr. suppose G and G' are deline-

able on c. Then every branch of G' on c is either a
branch of G on ¢ or disjoint from all branches of G onc.

Lemma 6 For any GeIr, suppose G is delineable with m=z1

branches on c and G' is delineable or empty on c. For

any Bec, let hB(Xr) = G(B,xr), and let 68,1<"'<68,m be

the distinct real roots of hB' Then for any Jj, 1Zjsm¥l;
and for any B,Esc,lj(hs) = Xj(hé).
Proof If G' is empty on ¢, then for every j, 1l£jsmtl,

and for every Bec,Aj(hB) = 0. So assume G' is deline-

able on c. By Corollary 2, every branch of G' is either

a branch of G on ¢ or disjoint from all branches of G

on ¢. Thus for any j, 1l<j<m, and any B,Bec, the num-

]
ber of roots of h, less than or equal to 58 5 is the
14

B

same as the number of roots of h

B

6§,j' i.e. kj(hg) = Aj(hé). By the delineability of G'

on c, Am+l(h8) = Am+l(hé)[]

less than or equal to

Lemma 7 Assume the hypotheses of Theorem 2, i.e. FeIr

1

is delineable on a cell ¢ in E' " and every element of
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DER(F) is delineable or empty on c. For any Bec,
YB,1<...<YB,k are the distinct real roots of gB(Xr) =
F(B,xr). Then for each i, 1l<i<2k+1, and any B,ésc,¢8’i=
¢§,i’
Proof For any jz0, let F(j) denote derj(F), Since
every element of DER(F) is delineable or empty on c,
F(j)(B,xr) has the same number of real roots for every
Bec, for any F(j)eDER(F). Also, for any delineable F(j)
in DER(F), the u's, o's, and A's associated with
F(j)(B,xr) = derj(gB(xr)) for any Bec are independent of
the particular choice of B, by Lemmas 2-6. Hence when

we examine the recursive algorithm implicit in the proof

of Lemma 1, we see that for any 8,Bec and any i,

1<i<2k+1, when we apply this algorithm to construct Q?
from gB, and ¢§ from gé, we end up with only the follow-
ing difference between ¢§ and ¢§ : every occurrence of
derj(ge), for any j, in ¢§ is replaced by an occurrence

of der](gé) in ¢E. But then by definition of ¢, 5 and

¢§,i' ¢B,i = ¢§,i for each i, ls<i<2k+1 [J
Henceforth, for any i, 1<i<2k+l, and any Bec, we
shall simply writedﬁ‘instead of ¢8 E
r

Corollary 3 Assume the hypotheses of Lemma 7. Then

for 1l<i<2k+1, and for any B8,&ec, ¢B i(E;,xr) = ¢i(E,Xr) =
' . -

g
¢i(xr)'
We now show, with Lemmas 8-10, that we can con-

struct the u's, o's, and A's associated with F(u,xr).
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This enables us to construct ¢l’ ¢2,. and

cerbopgrr
thereby to construct the d.f.'s for*CF(Y(c)). Lemmas
8-10 are concerned with an arbitrary algebraic polyno-
mial g(x) with k21 real roots Yoo <Yy We let Cqr
, 1 o

CoressrCoyiq be the cells of Cg(E ), defined as was
done prior to Lemma 1.

Lemma 8 For 1l<is<k, we can compute ui(g).

Proof We compute a squarefree factorization

e e e

gl(x) 1 go (%) 2 .. gm(x) m

of g(x). That is, the gq's are nonconstant, palirwise

relatively prime polynomials without mulitiple roots:
Then, e.g. by isolating the real roots of each g r we
determine, for l<ic<k, which 9 has Y; as a root, and

set ui+es 0

Lemma 9 For lsisk+l, we can compute Oi(g).

Proof Clearly for sufficiently large values of x,

sign(g(x)) = sign (ldcf(g)). Hence ¢ = gign(ldcf(g)).

k+1

Suppose for any j, 1l<j<k, that we have determined 0.

jH1°

Let hj(x) be such that
- UL
i
%) = (x - v.) “h.(x).
g(x) ( Yy j()
. o . . 1§
hj(x) is invariant (and nonzero) on CZj—l 02j+1'

Hence we may set
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Lemma 10 For l<ic<k+l, we can compute Ai(g).

Proof Let t(x) = g'(x) / gcd(g(x),g'(x)). Then the
real roots of t are precisely the real roots of g' which
are not also roots of g. By obtaining isolating inter-
vals for the real roots of t disjoint from any isolating
interval for a y;, we can determine nonnegative inte-

gers ni,lsisk+l, as follows. n. is the number of real

1
roots of t less than Yqi for 2=<iczk, n, is the number of
real roots of t between Yi-1 and Yii and Ny 1S the
number of real roots of t greater than Vi * Then the

Y;'s are determined with the following algorithm:

A +nl; if ul>l then A1+Al + 1;

1

for—j=2, v 7k do

ALl + n.; if p.>1 then A.<«A. + 1};
Dyehyog +ny 3 3 ;

A A, +

k+1 Mt k4 U

Corollary 4 Assume the hypotheses of Theorem 2, i.e. F

is delineable with k=1 branches on c, every element of
DER(F) is delineable or empty on c, and for any Bec,we set
gB(Xr) = F(B,xr). Furthermore, we are given a sample
point @ for c. Then we canconstruct¢l,¢2,...,¢2k+l.
Proof By Lemmas 8-10, we can construct the u's, o's,

and A's corresponding to F(j)(@,xr) = derj(ga) for any
delineable F(j) in DER(F). Then by Lemma 1, we can con-

a o . e
struct ¢1""’¢Zk+l’ Then by applying the definition of
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¢a,i for 1l<i<2k+1, we can construct ¢l"'°'¢2k+l 0

Continue proof of Theorem 2

We now conclude the proof of Theorem 2. For

1<i<2k+l, define c; = {<B,b>|Bec & be CE}. Clearly
A ~ N\

Cpr CoreeerCorin
each i, 1<i<2k+1,

A

C.
1

are the cells of CF(Y(C)). Then for

i

(<g,b>|Bec & bes(of (x )}
= {<B,b>|pec & baS(¢i(B,xr))}, by Corollary 3,
= S(d)C & ¢i), where ¢C is the given d.f. for c.

Hence ¢c & ¢i is a d.f. for cy O

r-1
14

{a ,An} of polynomials in I.. For any cell ¢ ¢ E

1’-'.
we let WCAi denote the product of those Ai's in (L which
are delineable on c¢; if no Ai is delineable on ¢ we set

ﬂCA. = 1.
i

Theorem 3 Suppose that for every.AieCL, V(a;) is either

cylindrical, empty, or delineable on a cell c in Er~l.

Let H = ﬂcAi, and suppose V(H) is delineable or empty
on c¢. Then CH(Y(C)) is A -invariant.

Proof Clearly any Aj for which V(Ai) is empty or cylin-

drical on ¢ is invariant on CH(Y(C)). V(H) is.empty on
¢ if and only if H=1, i.e. if and only if every V(Ai)

is empty or cylindrical on ¢, in which case the single
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cell Y(c) of CL(¥Y(c)) is clearly @ -invariant. Suppose
V(H) is delineable on c. For every delineable A;, any
branch Li of V(Ai) on ¢ is contained in one or more
branches of V(H) on ¢. Then by an argument similar to
that given in Lemma 5, Li is a branch of V(H) on c.
Hence each branch of V(H) on c¢ either is a branch of
V(A;) or does not meet any branch of V(A;) on c. Hence
CH(Y(C)) is Ai—invariant, since C(Ai,Y(c)) is Ai—invar~

iant [

The next theorem establishes that, when the hypo-

theses of Theorem 3 are met, to obtain d.f.'s for

CH(Y(c)) it is enough to have d.f.'s for C(Ai,x(c)) for
each delineable Ai in (L. For we can then "merge" the
d.f.'s from the various c.d.'s C(Ai,Y(c)) into d.f.'s
for CH(Y(C)). Obtaining s.p.'s for CH(Y(c)) is

straightforward.

Theorem 4 Suppose that for every Aia(L, V(Ai) is either
cylindrical, empty, or delineable on a cell ¢ in Er"l.
Let H = WCAi, and suppose V(H) is delineable or empty
on ¢. If V(H) is delineable on ¢, suppose we are given
d.£f.'s for C(Ai,Y(c)) for each Ai delineable on c. If
V(H) is empty on c, suppose we are given a d.f;

¢c(xl""'xr~l) for ¢. Then if we are also given an

s.p. a for c, we can construct s.p.'s and d.f.'s for



29

Cy(x(e)).

Proof 1If V(H) is empty on c, then CH(Y(C)) consists of
the single cell Y(c). We may take <a,0> as an s.p. for
Y(c) and ¢c as a d.f. for Y(c). Suppose H is deline-
able on c. By Theorem 1, we can obtain s.p.'s for
CH(Y(C)). As we saw in the proof of Theorem 3, the
branches of any delineable Ai on ¢ are a subset of the
branches of H on c¢c. For any delineable Ai, by compar-
ing the isolated real roots of Ai(a,xr) with the isolat-
ed real roots of H(a,xr), we can determine which

branches of H are also branches of Ai. Thus we can use

the d.f.'s from C(Ai,Y(c)) for the branches of H which

are also branches of Al- We-—now—indicate—w
ple how one constructs d.f.'s for the cells of C.(Y(c))
which are not branches of H. Suppose

(A = {Al’AZ}’ r=2, ¢ is a l-cell, Ai is delineable on

¢ with two branches, and A2 is delineable on ¢ with one

branch. Let ci denote the cell of C(Al,Y(c)) between

the branches of Al' and cg

low the branch of A2. So we have

the cell of C(AZ,Y(C)) be-




Figure 7

Suppose now that in V(H), the branch of Az lies between

the branches of A., and we wish to obtain a d.f. for the
A

shaded cell in CH(Y(C)).

Figure 8

Then where ¢l is a d4.f. for ci in C(Al,Y(C)) and ¢2 is
a d.f. for cg in C(Az,Y(C)), ¢l & ¢2 is a d.f. for the
shaded cell in CH(Y(C)). The idea used in this par-

ticular example can be extended to an algorithm for
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~constructing d.f.'s for CH(Y(C)) for any (L O

We now summarize the point to which Theorems 1-4
have brought us.
Theorem 5 Given a finite set C{=‘{Al,...,An} of polyno-
mials in Ir,r22, suppose we have d.f.'s and s.p.'s for
a (semi-algebraic) c.d. C of Er"l such that the follow-
ing conditions are met on every cell c of C:

5.1) Each A, in (L is delineable, cylindrical, or

enmpty on ¢,

5.2) ﬂcAi is delineable or empty on c.

5.3) For each Ai in CL, if Ai is delineable on c

themrevery elememnt—of DmR(Ai) is—delineable
or empty on c.
Then we can construct d.f.'s and s.p.'s for a semi-alge-

braic (l-invariant c.d. of Er.

Proof It is sufficient to show that, for every cell c

if ¢, we can construct d.f.'s and s.p.'s for a semi-
algebraic -invariant c.d. of ¥Y(c). For any c in C,

let H = ﬂcAi. By Corollary 1, C_(Y(c)) is a semi-alge-

H
braic c.d. By Theorem 2, for each Ai delineable on c,
we can construct d.f.'s for C(Ai,Y(c)). Then by Theor-

em 4, we can construct d.f.'s and s.p.'s for CH(Y(C)).

By Theorem 3 CH(Y(C)) is (L-invariant [
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Detailed proofs of Theorem 6 and Lemmas 3 and 4
are given in [Collins 1975, p. 6~9] and so are omitted
here.
Theorem 6 For any FEIr, if 1dcf(F) wvanishes nowhere on
a cell ¢ in Er_l, and the number of distinct (real and
complex) roots of F(u,xr) is the same for every oec,
then V(F) is delineable or empty on c.

(We note that Collins uses a stronger definition of
delineability than ours; if F is delineable by his def-
inition then it is delineable by our definition, but

the converse need hot be true).

For any m=I, any nonzero F,Gel ; and any jwith

0<j< min (deg(F),deg(G)), let §,(F,G) denote the jth

subresultant of F and G. Define the jth principal sub=-

resultant coefficient of F and G, denoted pscj(F,G), to

be the coefficient of xrj in Sﬁ(F,G). From the funda-

mental theorem of polynomial remainder sequences [Brown
and Traub 19711 we obtain
Lemma 11 For any mzl, let F and G be nonzero elements
of Im. Then deg(gcd(F,G)) = k if and only if k is the
least j such that pscj(F,G) # 0.

From Leibnitz's rule we obtain
Lemma ]2 Let g(x) be a univariate polynomial with real
coefficients, such that deg(g) = dz1l, and let k=

deg(gcd(g,g')). Then d-k is the number of distinct
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(real and complex) roots of g.

For any F,GEIm,mzl, define the psc set of F and G,
denoted PSC(¥,G), to be

{pscj(F,G)]0$j<min(deg(F),deg(G)) & pscj(F,G) # 0},
From Lemmas 11 & 12 and Theorem 6 we have immediately
Theorem 7 Let F be a nonzero element of Ir, and let c¢
be a PSC(F,F')-invariant cell in Y"1 such that ldcf (F)

vanishes nowhere on c¢. Then V(F) is delineable or

empty on c.

For any commutative ring I and any nonzero GeIlx],

“““““ < i . .th

N

h o JE NP o WO P PN i o
PN U =N =1y 0P A N S8 5 L S WP 1 Y s

reductum of G, denoted redk(G), to be Z?;ggixl. The

I?

suppose—G—==1 X 750
i=07i" "“m

reducta set of G, denoted RED(G), is defined to be

{redk(G) O<ks<deg(G) & redk(G) # 0}.

Suppose for some nonzero FeIr that for some k21,

ldcf (red? (F)) vanishes everywhere on a cell ¢ in gt~1 for

0<3j<ky; - but. ldcf(redk(F)) vanishes nowhere on c¢. Then
setting K = redk(F), F = K on Y(c), hence if c is
PSC(K,K')~invariant, V(F) is delineable or empty on c
by Theorem 7. Thus given a nonzero Fel , we define a

set of polynomials in I called the projection of F

r-1"

and denoted PROJ(F), as follows. PROJ(F) is the set

consisting of 1ldecf(K) and the elements of PSC(K,K'), for




34

every K in RED(F).

Theorem 8 Let ¢ be a PROJ(F)-invariant cell in Er~l, F
a nonzero element of Ir' Then V(F) is delineable, emp-
ty, or cylindrical on c.

Proof Suppose there is some k, O<ks<deg(F), such that
ldcf(redk(F)) does not vanish everywhere on c¢. Then
since ldcf(redk(F))ePROJ(F), it is invariant on ¢, hence
vanishes nowhere on ¢. Let H = redk(F) for the small-
est such k. By definition of PROJ(F), ¢ is PSC(H,H')~-

invariant. Hence by Theorem 7, V(H) is delineable or

empty on ¢, and so since F =H on Y(c), V(F) is delin-

eable or empty on c. If there is no k as specified

above, then Fvanishes at every point of Y(c), hence
V(F) is cylindrical on c [

Clearly if we took P(l) to be the union, over all
A, in Q, of the sets PROJ(Ai), we would satisfy condi-

i
tion 5.1 of Theorem 5. We now define a still larger set

of polynomials with which condition 5.2 will also be

satisfied. Let B be the union, over all A, in a, of the

sets RED(A,). We define PROJ () , the projection of 4,
to be the union, over all Ai in a, of the sets PROJ(Ai),

together with the union, over all B B, in B, of the

ll
sets PSC(Bl,BZ).

Theorem 9 Let ¢ be a PROJ(A)-invariant cell in Er_l.
Then

9.1) Each Ay inlis delineable, cylindrical, or
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empty on c.
9.2) ﬂcAi is delineable or empty on c.

Proof

9.1 is immediate since PROJ() contains PROJ(Ai) for
every Ai in . cCollins (1975, p. 10-11] gives the
proof that WcAi is delineable on ¢ if it is not empty

on c [J

We now enlarge PROJ(A) in such a way that condi-
tion 5.3 of Theorem 5 is satisfied. Let<5 again be the

union, over all A, in (, of the sets RED(A,) . Let 2 be

the union, over all B in f, of the sets DER(B). Define

_____________AERQJ#Z;T_the—augmen%eé—pfe%ee%ieﬁ—ef%%7—to—be—the———"———————""""""""‘_

union, over all B inzg, of the sets PROJ(E), together

with the union, over all Bl’BZ in'ﬁ, of the sets
PSC(Bl,Bz).

Theorem 10 Let ¢ be an APROJ(A)-invariant cell in Er_l.

Then
10.1) Each A, inllis delineable, cylindrical, or
empty on c.
10.2) WCAi is delineable or empty on c.
10.3) For each Ai in a, if Ai is delineable on c
then every element of DER(Ai) is delineable
or empty on c.
Proof

10.1 and 10.2 are immediate since PROJ(U)cAPROJ Q) .
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Suppose Ai is delineable on c¢. Then there exists a k,
Osksdeg(Ai), such that ldcf(redk(Ai)) vanishes nowhere
on ¢; let H = redk(Ai) for the smallest such k. Then Ai
= H on Y(c) r hence derj(Ai) = derj(H) on Y(c) for all
j, 0<j<deg(H). Since ldcf(H) vanishes nowhere on c,
ldcf(K) vanishes nowhere on c¢ for every KeDER(H). By
definition of APROJ({), ¢ is PSC(K,K')-invariant for
every KeDER(H). Hence by Theorem 7, every element of
DER(H) is delineable or empty on c. Hence every ele-

ment of DER(Ai) is delineable or empty on c [J

This completes the proof of the Main Theorem [J

As a simple example of the c.d. algorithm, consider
again the curve F(x,y) = y° - x~ = x2 in E2. We have
(L= {F}, and omitting inessential elements, APROJ]) =

{x3 + x2} = {x2 (x + 1)}. ©So we obtain the c.d. of El

we saw above in Figure 2 with cg = -1 and cg = 0. V(F)
is empty on ci and delineable on each of the other four
cells. Thus we obtain the followingll -invariant semi-

algebraic c.d. of E2:
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Figure 9

Evaluating F at the sample point for each cell and re-
taining those cells on which F = 0, we get the c.d. we
saw inFigure 1 for V(F).

3. Dimension and Incidence Determination for the cells

of a cellular decomposition

Recalling the proof of the c¢.d. Theorem, we sece
that the following theorem implies that we can determine
the dimension of every cell in the c.d. of a semi-alge-
braic set.

Theorem 11 Let d= {Al,...,An}, n>l, be a finite set of

nonzero polynomials in I r2l. Let C be the@-invari-

ant c.d. of E° determined by applying the c.d. algor-
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ithm described by the proof of the Main Theorem. Then
we can determine the dimension of every cell of C.

Proof By induction on r. If r=1, by the definition of
CafEl) we know the dimension of each cell in it. Sup-

pose that r>1, and that we know the dimension of every

cell in the APROJ(@)-invariant c.d. Cr—l of Er—l deter-
mined by the algorithm. Let ¢ be any cell in Cr-l’ and

let H = TrCAi. If H =1, then Y(c) will be a cell of C,

i

and dimension (Y (c)) dimension(c) + 1. If H # 1, then
the cells of CH(Y(c)) will be cells of C. By the def-

inition of CH(Y(C)), if the dimension of ¢ is known, the

dimension of every cell of CH(Y(C)) is known [

We now show that if we have d.f.'s for the cells of
a c.d. C of Er, and know the dimension of each cell in
C, we can determine the incidences among cells. We em-

phasize that our algorithm is probably far from optimal.

Given an i-cell c' and a j-cell cd in C with i<j, we

show that the statement "ci is incident on cj" is de-
cidable. Following a suggestion of Collins, we do so by
expressing this statement as a sentence in the elemen-
tary theory of real closed fields. Collins' quantifier
elimination algorithm could then be applied to‘decide

the truth of the sentence.

Let ¢l and ¢] be the d.f.'s we assume we have for
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C e s Co i, ..
c* and c7. By definition of incidence, ¢ is incident

on cJ if and only if every point of ¢! is a limit point

of cJ. a point x = <xl,,..,xr> of ¢’ is a limit point

of ¢J if and only if every open ball of radius e>0 with

center x contains a point y = <yl,...,yr> of ¢J with

X # y. We let d(x,y) denote the Euclidean distance

from x to y. Then the statement "every point of ct is

a limit point of ¢J" can be expressed in the elementary
theory of real closed fields as follows (">" denotes

logical implication) :

VxVe) (o7 () & (e50) 15y o7 (v) & (0<d(x.v) <e)1}.
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