A calculus for proving

properties of while-programs

Ingrid Glasner

Jacques Loeckx

Fachbereich 10 der Universitat
des Saarlandes
D-6600 Saarbricken

W-Germany

June 1978

A 78/09

1. Introduction

Most commonly used methods for proving program properties -
such as the inductive assertion method or the well-founded
sets method - are only partially formalized. On the other
hand, methods allowing completely formalized proofs - such
as those proposed by Hoare [4], Manna and Pnueli [7] or
Milner [8] - generally lead to lengthy calculations and are
wearisome when performed by hand. The goal of the present
paper is to propose a calculus which allows formal proofs

of properties of while-programs according to the inductive
assertion method, the subgoal induction method and the well-
founded sets method; while being completely formal the proofs

remain understandable and may easily be performed by hand.

The method to be described bears strong similarities with
LUCID[1]. As a main difference the authors of LUCID propose
a new programming language while the present paper refers

to while-programs.

2. While-programs

2.1 Definitions

Informally, a while-program (see e.g. [6], p. 203) consists

of a sequence of statements, each statement being either an

assignment or a while-statement.

A while-program is called elementary when all while-statements

are nested. Syntactically such a while-program is defined by

the non-terminal symbol E together with the context-free

productions

L1

Figure 1: The flowchart of an elementary while-program with
nesting depth n, n > 0,

E = begin P end
P ::= Q; while B do P od; Q | Q
Q ::=Q; A | €

where A stands for an assignment, B a boolean expression

and ¢ the empty string. An elementary while-program with
nesting depth n is represented by the flowchart of Figure 1;
in this flowchart QI’QZ""’Qn’ Ro’Rl""’Rn are elements

of the syntactical class Q and 81,82,...,8 elements of

n
the syntactical class B.

A while-program is called normalZzed when the following
three conditions are satisfied. First, each variable

occurs at most twice in the lefthand side of an assignment;
next, in the case of two such occurrences one must be in

a block Qi and the other in the block Ri (1 < i <n);
finally, in the case of one such occurrence this occurrence
must be in a block R, (0 < i < n). Examples of normalized

while-programs are in Figure 2 and in the Appendix.

In the sequel only elementary normalized while-programs will
be considered. This restriction is not essential as results
from the following two arguments. First, each elementary
while-program is easily transformed into a normalized one

at the cost of a few supplementary variables; an algorithm
performing this transformation is described in [5]. Second,
the results of the present paper may easily be generalized

for (non-elementary) while-programs.

b
Fbl:i=o (A1)
el Fbl oz § o= 1 (A2)
J =1 _
F 11 : it 4 n (A3)
1'1

T :E:{:E F + le : 1 =n (Ad)

F 11 1= i + 1 (A5)

.- y F 11 : 3 = 3" x i A6
i o:= T+% T J=1 (A6)
1= jxi r le : out = j (A7)

[
1

Figure 2: A while-program and its semantics

The rank of a variable is defined as the index i of the
block Qi and/or Ri in which it occurs as the lefthand side
of an assignment (0 < i < n). In Figure 2, for instance,

the rank of j is 1 and that of out is O.

2.2 An operational semantics

Consider the flowchart of a while-program with nesting
depth n and introduce the n+2 cutpoints b,e,1,2,...,n

as indicated by Figure 1.

It is then easy to define an operational semantics of
this while-program. To this end one may introduce confi-

gurations of the form

(i,2)

where i is a cutpoint and z the vector constituted
by (the values of) the different program variables.

A computation is defined as a sequence of configurations

(i1527) = (i5525) = oo = (i52) (m > 2)
with

(i5.25) = (ij+1,2j+1) (1 <j < m-1)

meaning that the flow of control passed from cutpoint ij

to cutpoint i (without passing a cutpoint in between).

Jj+l
Of course one is interested essentially in the computations

with Ty = b and Tm = e,

For a more detailed description of the operational

semantics the reader is referred to [3].

3. The calculus

3.1 Definition

The calculus is defined as an extension of the first-order

predicate calculus.
Let n be an integer, n > 0.

In addition to the vocabularies required in the predicate
calculus a vocabulary of program variables is introduced.
With each program variable X is associated an integer called

rank and noted rank(x), with 0 < rank(x) < n.

If x is a program variable then x, x' and x" are
called Znstances of this program variable; the rank

of an instance is that of its program variable.

A sentence i1s either a sentence of the first-order
predicate calculus or it has one of the following

four forms:

(i-1)i : q with 1 < i <n (1)
ii 1 q with 0 < i <n (2)
i(i-1) : g with 1 < i <n (3)
i q with 1 < i <n (4)

where q is the expression obtained from a sentence of the
first-order predicate calculus by replacing a certain number -
possibly zero - of free variables by instances of program
variables with a rank not superior to i; in other words,

q is a sentence of the predicate calculus being understood
that the instances of program variables x with rank(x) < i

may be used in the place of free variables. As a notational
convention intended to facilitate the description of the

interpretation of the calculus we write

bl : q instead of 01 : ¢q
be : q instead of 00 : q
le : q instead of 10 : q

Examples of sentences are for instance in Figure 2.

3.2 The intended interpretation

The interpretation of a sentence of the predicate

calculus is the classical one.

The interpretation of another sentence is a property
of a while-program with nesting depth n. Roughly

speaking, a sentence such as

ij 1 q

expresses a property of computations starting in
cutpoint i and ending in cutpoint j; the instances X,
resp. x', of a program variable are interpreted as the
value of this program variable in the last, resp. the
first, configuration of this computation; the instance
x" is interpreted as the value of the program variable
at a moment which is not further specified (*). The
interpretation of these sentences will now be considered

more carefully.

A sentence

For instance

(*) such instances stand for dummies and will be of use

in the subgoal induction method only,

(see Figure 2) expresses that the value of the program
variable j (contained in the vector 22) is 1 whenever

reaching cutpoint 1 from cutpoint b.
A sentence
il q

expresses that q holds for all computations
(i, El) = waes T (3 Em) (m > 2)
where ... stands for configurations with cutpoints > i.

For instance

expresses that in a loop leading from cutpoint 1 to
cutpoint 1 (possibly through some inner cutpoints) the
value of i is increased by 1. By the way, a sentence

such as

ii 2 x $ x
implies rank (x) = i because the while-programs considered
are normalized.

A sentence
i(i-1) : q

expresses that q holds for all computations

(1,2} =.00= (i-1, 2 (m > 2)

i)

where ... stands for configurations with cutpoints > 1.

3.

3

A sentence
it q

expresses that q holds for all computations

(1 = 1uBg) = cme = fis2 (m > 2)

where ... stands for configurations with cutpoints > 1.
For more precision and details the reader is referred

to [3].

Applying the calculus for proving program properties

In section 4 it will be shown how the semantics of
a while-program may be expressed as a set of axioms
of the form

P (i=1)1 % 9

i1t g

or Foi(i-1) : q

In sections 5 to 7 it will be shown how some methods
for proving program properties may be implemented by

a few rules of inference.

As the calculus is an extension of the first-order
predicate calculus all of its axioms, inference rules

and theorems hold. Moreover, if

(m > 0)

is an inference rule of the first-order predicate

calculus then

* *
l-a:Al v-a:Az .. F o : A

+ o : B*

. . g s * *
is also an inference rule; in this rule Al,...,B

are obtained from AI,...,B by consistently replacing
a certain number (possibly zero) of free variables
by instances of program variables such that

- u:AI,..., a : B are sentences of the form (1) to

(4) of section 3.1

The consistency of these inference rules with the
intended interpretation is intuitively clear; see [3]

for a proof,

The following notation will be used in the sequel.
If w is a substring of a sentence containing no primed

instances of program variables of rank i, then

W,
(1)
is the string obtained from w by replacing each in-

stance of rank i, say x, by x'. The notation
w'(1)

is defined similarly.

4, The semantics of a while-program

Consider the while-program of Figure 1. Its
semantics is expressed by the following (2n+s)

axioms, s being the number of assignments.

To the predicate p of a block Bi correspond two

axioms:

Foi(i+l) o op if i <n
or F onn : ptn) ifi=n
and Foi(i-1) : 1pt1_1)

Intuitively these axioms express that p holds when
leaving Bi through the T-exit and does not hold when
leaving B through the F-exit; the introduction of
the primes in the case i = n is necessary because the
program variables of rank n are updated (in block Rn)

on the path leading from cutpoint n to cutpoint n.

To an assignment of block Qi such as

X = f(u,v)

with rank (u) < i and rank (v) = i corresponds the axiom.
- (i-1)i @ x = f(u,v) .

To an assignment of block Ri’ i <n, such as

X 1= f(u,v,yX,y,2)

with

rank (u) < i

rank (v) = i and the assignment to v in
the block Ri precedes

rank (x) = i

rank (y) = i and the assignment to y in
the block Ri follows

rank (z) = i+l

corresponds the axiom

v (i+1)7 @ x = f(u,v,x',y',2)

An assignment of block Rn leads to a similar axiom but

with (i+l)i replaced by nn.

An example is in Figure 2; more elaborate examples

are in the Appendix.

The consistency of these axioms with the model of
Section 3.2 is proved in [3]; note that this proof
heavily draws upon the fact that the while-program

is normalized.

5. The inductive assertions method

The inductive assertion method is implemented by two

inference rules :

 {(i-1)i : q 1t - q&i) 5 q

(I1)
Fio:oq

(1l <1< n, qcontains no

primed instances of rank i)

i :r v oi(i-1) ¢ rii-l) >

F (i-1)(i-1) : q

(12)

(1 < i <n, r contains no

primed instances of rank

i-1 or rank i)

Intuitively the rule (I1) ihductively proves that

F 1 :q, i.e. that q is an invariant of cutpoint iy
the rule (I2) deduces from the invariant of cutpoint i
and from the properties of path i(i-1) a property of
the loop (i-1)(i-1).

The consistency of the inference rules with the model
of Section 3.2 is proved in [3]. This proof is based
on the fact that the while-program is normalized and
that according to the definition of a sentence e.g. q

of rule (I1) may only contain instances of rank < i.

A simple example is the proof of the partial correctness

of the program of Figure 2, i.e. the proof of

v+ be : out = n! (a)
We first prove j = i! to be an invariant, i.e.
F 1§ o= il (b)

According to rule (I1) it is sufficient to prove

+ bl : j = il (bl)
and 1l : ' o= i'1 o § = il (b2)

- 14 -

(bl) directly follows from the axioms (Al) and
(A2) of Figure 2; (b2) follows from the axioms
(A5) and (A6) because

F 11 o §t o= it ot ox (3 + 1) =(i' + 1)!
We now prove
+ le : j = i! o out = nl (c)

This directly follows from (A4) and (A7).

(a) directly follows from (b) and (c) by the

inference rule (I2) with j = i! for r.

A less trivial example is in Appendix I.

6. The subgoal induction method

The subgoal induction method [9] is also implemented by

two inference rules

Fi(i-1) @ q oo qzi-l) =1 (qti))zi-l)
y i(i-1)

, (S1)
©)

{1l < i < n, qcontains no
primed instances of rank i

or i-1)

F(i-1) o (rigy) oy 2 a0 v (=D sy
Fo(i-1)(i-1) : q

(S2)

(1 < i <n, r contains no primed

instances of rank i or i-1)

Intuitively (S1) inductively proves (by "backward"
induction) that the loop ii defines a function with
property qii); (S2) deduces a property of the loop
(i-1)(i-1).

The consistency of these rules is proved in [3].

A simple example is the proof of the partial correct-

ness of the program of Figure 2. Again
+ be : out = n! (a)

is to be proved.

First we prove the subgoal

!
+ le : out = j' «x 0.

i

According to (S1) it is sufficient to prove

——

F le : out = j x & (bl)

14

and

| |
F 11: out"= j x %% > out"= j' x %#T (b2)

(bl) directly results from (A4) and (A7) of Figure 2,
(b2) directly results from (A5) and (A6) because

Consider rule (S2) with i = 0 A j =1 for r; for

proving (a) it suffices to prove
+ le: (i' =0 A j' = 1)>oout = n!

This is trivially true because of (b).

7. The well-founded sets method

Expressing termination requires the introduction of a
supplementary symbol T. The set of sentences is augmented

as follows: if

with 1 <1 <n is a sentence containing no

instances of rank i then

i & QT

with 97 being obtained from q by the replacement of

some free variables by T is also a sentence.

The interpretation of the sentence

a7

is as usual but with the following supplementary rule:

in a computation

(i-1,2;) = ... = (1,Em) (*)

where ... stands for configurations with cutpoints > i,

the value of T is true if and only if the computation -

when pursued - eventually leads back to cutpoint i-1.
Less formally, in i:qT T expresses that the iEﬂ loop
terminates. For more precision the reader is referred

to [31].

Proving that a program terminates for input variables

(**) satisfying the property q consists in proving
1 : 9g>T1

The well-founded sets method is then implemented by

a single rule of inference

(*) cf the interpretation of i:q in Section 3.2
(**) an input variable is a variable not occurring in
the lefthand side of an assignment; it behaves as a

program variable of rank 0.

F i:qot>0 F ii:q&il:t£1)>t + i+l:soT Fi:rogas

(1 < i <n-1, g,t and s contain no primed

instances of rank i, t has an integer value)

For i = n the inference rule is the same except that
the third premise is lacking and that s is taken to

be true.

A trivial example is the proof of termination of the
program of Figure 2 under the assumption n > 0. We

have to prove

1 :n>00>T (a)

Applying the inference rule with n-i+l for t and

i < n for g we have to prove

+ 1 : i <no>n-i+tl > 0 (al)
11 1 i' < n>on-it+l > n-i+l (a2)
and 1 :n>0>1<n (ald)

(al) trivially holds; (a2) holds by (A5) of Figure 2;
for proving (a3) we apply the inference rule (Il) and

prove

F bl : n>0>21>n (a3-1)

F 11 : (n>0>1i'" <n) > (n>0>1<n) (a3-2)

(a3-1) holds by (Al); (a3-2) holds by (A3) and (A5).

8. Concluding remark

The calculus has been applied to three proof methods:
the inductive assertion method, the subgoal induction
method and the well-founded sets method. The calculus
may in principle also be applied to other methods or
used for proving other properties. Non-termination,

for instance, is expressed by

+~ le : false

Note also that different proof methods may be combined.

In Appendix I, for instance, the lemma
+ 11 : r mod d = r' mod d

may be proved by the inductive assertions method and the

theorem
+ be : out = a mod d

by subgoal induction.

Appendix I: Illustration of the inductive assertion method

and the subgoal induction method.

A.1. The program and its semantics

- e e e e e e e e e e e e e e = e = e e

The program computes a mod d (see [2],

-
1
[+1]

1 F 12:

s-dd r := s
dd := dd+dd

F le:

- 12:

- 21:
F 21:

S = r : F 22:

p. 59)

:dd=dd'+dd'

The partial correctness of this program will now be

proved successively by the inductive assertion and the

subgoal induction method.

(A1)
(A2)
(A3)
(A4)
(AS5)
(A6)
(A7)
(A8)
(A9)
(A10)
(Al1)

A.

A.

A

A.

2.

2.

oL

2

1

2

3

The inductive assertion method

- e e e A B e e e e e e e e e e e e e e e e e e e

Lemma (invariant in cutpoint 2):

+ 2: (s mod d = r mod d) A (dd mod d = 0)
Proof
According to rule (I1) it suffices to prove:

+ 12: (s mod d = r mod d) A (dd mod d = 0)
and

t 22: (s'mod d = r mod d) A (dd'mod d = 0)

> (s mod d = r mod d) A (dd mod d

(a) holds by (A6) and (A5).
(b) holds by (A10) and (All) and by the properties
of mod.
Lemma:

t 11: r'mod d = r mod d
Proof

According to rule (I2) it is sufficient to prove

F 2: s mod d = d

-~
3
o
o

and

F 21: s mod d = r'mod d o r'mod d = r mod d

(a) holds by the previous lemma.

(b) holds by (A8).

Lemma (invariant in cutpoint 1):

+ 1 : r mod d = a mod d

(a)

(b)

(a)

A.

2

4 9

3 .

4

1

Proof
Applying (I1):
 bl: r mod d = a mod d

+ 11: r' mod d = a mod d

o> r mod d =

(a) holds by (Al).
(b) holds by the previous lemma.
Theorem (partial correctness):

F be: out = a mod d

Proof
Applying (I2):

+ 1: r mod d

1]
o

mod d

 le: r mod d

—— —

H
=1}

(a) holds by the previous lemma.

a mod d

mod d o out = a mod d

(b) holds by (A3),(A2) and a property of mod.

The subgoal induction method

L T R I

Lemma (subgoal of loop 2):

F 21: r mod dd' = s'mod dd'

Proof

Applying rule (S1):

"
w
3
o
o
o
o

+ 21: r mod dd

- 22: r"mod dd

]
17
=
[=]
o
o

= s' mod dd'

(a)

(a)
(b)

(b)

kD

63 @

(a) holds by (A8).

For proving (b) it is sufficient to prove

(because of (A10) and (All)) that:

F 22: r"mod (dd'+dd')

(s'-dd') mod (dd'+dd*)

> r"mod dd'

s'mod dd' (by)
(bl) holds by (A9) and by a property of mod
(consider successively the cases

0 < r"mod (dd'+dd') < dd'
and dd' < r'"mod (dd'+dd') < dd'+dd")

Lemma:

+ 11: r'mod d = r mod d

Proof

Applying rule (S2):

r 12: dd = d A s =7 (a)

F 21: dd' = d A s' =r' or'mod d=1r mod d (b)

(a) holds by (A5) and (A6)

(b) holds by the previous lemma.

Lemma (subgoal of loop 1):
+ le: out = r'mod d

Proof

Applying rule (S1):

+ le: out = r mod d (a)

F 11: out" = r mod d > out” = r' mod d (b)

A

o

.4

- 24 -

(a) holds by (A3) and (A2)

(b) holds by the previous Temma

Theorem (partial correctness):

 be: out = a mod d

Proof
Applying rule (S2):
F bl: r = a (a)
+ le: r'= a o out = a mod d (b)
(a) holds by (Al)

(b) holds by the previous lemma

Appendix II:

sets method.

The program and its semantics

ITlustration of the well-founded

The program is a "toy program"; we are only

interested in proving its termination (for any

integer value - positive, negative or zero -

of the input variable Zn)

=X

-7-in z 1=2+1

- le:
F12:
12
r 21:
21
L 22
- 22:

z<4
X=z-in
x<0
z=z2"'+1
x'>0

X=x'=-z-1in

(Al)
(A2)
(A3)
(A4)
(A5)
(A6)
(A7)
(A8)

B.2 The termination proof

B.2.1 Lemma (invariant in cutpoint 2):
F 2 : z>0Ax>0 21in>0

Proof
According to the inference rule (I1) it is

sufficient to prove

F 12 : z>0A%>0 > 1in>0

F 22 ¢ (z2>0Ax'>021in>0) 2 (2>0A%x>0 2 1n>0)

(a) holds by (A4)
(b) holds by (A7)

B.2.2 Lemma (conditional termination of loop 2):
F 2 2 z>0>T

Proof

Applying the inference rule for termination with

if x>0 then x+1 else 1

for t and
z>0 A (x>0 21in>0)
for q we have to prove

F 2: 23>0 A (x>0 2in>0)

o (if x>0 then x+1 else 1)> 0

(a)
(b)

(a)

B.

2

3

- 27 -

F 22: z>0 A (x'>021in>0)

> (if x'>0 then x'+1 else 1)>(if x>0 then x+1 else 1) (b)

and

r 2: z>0>5 (z>0 A (x>021in>0)) (c)

(a) holds by a property of if-then-else.

Because of (A7) and (A8) (b) is proved if we can

prove

F 22: z>0 A in>0

> x'+1> (if x'-z-in>0 then x'-z-in+l else 1) (b')

(b') holds by a property of if-then-else (consider
successively the cases x'-z-in>0 and x'-z-in < 0)
and of (A7)

(c) follows from the previous lemma.

Lemma (invariant in cutpoint 1):
+ 1 : 0<z<5

Proof

Applying (Il):

F bl: 0<z<5 (a)

F 11: 0<z'<5>o0<z<5b (b)

(a) holds by (Al)
(b) holds if

- 11: z=z'+l (bl)
and

+ 11: z'<4 (b2)

B.

2

.4

(bl) results by (A6) from an application of

the inference rule (I2) with true for r.

(b2) results by (A3) from an application of
the inference rule (S2) with z<4 for r and z'<4

for q.

Theorem (termination):

1 T

FProcf
Applying the inference rule for termination with
true for r,

z>0
for q and s, and
5-2
for t we have to prove

F 1: 2z>0>5-2>0

T

11: z'>0>56-z2"' > 5-2

+ 2: 20T

T

l: true o z>0

(a) and (d) follow from the previous Temma and (b)
from (bl) in the proof of the previous lemma, (c)

is proved in B.2.2

(b)
(c)
(d)

References

(1]

[2]

[3]

[4]

[5]

[6]

(7]

(8]

193

E.A. Ashcroft, W.W. Wadge, "LUCID, a formal system for
writing and proving programs", SIAM Journal Comp. 5, 3

(1976)

E.W. Dijkstra, "A discipline of programming", Prentice

Hall, 1976

I. Glasner, "Formale Beweise liber while-Programme: Ein
Kalkil und sein Modell", Diplomarbeit, Universitdt des

Saarlandes, Saarbriicken, 1978

C.A.R. Hoare, "An axiomatic basis of computer programming",

Comm. ACM 12, 10 (1969)

S. Lehmann, J. Loeckx, "An algorithm normalizing elementary
while-programs", Bericht A 76/14, Fachbereich 10, Univer-

sitdt des Saarlandes, Saarbriicken (1976).

Z. Manna, "Mathematical theory of computation", McGraw-Hill,

1974

Z. Manna, A. Pnueli, "Axiomatic approach to total correct-

ness of programs", Acta Informatica 3, 3 (1974)

R. Milner, "Implementation and application of Scott's

logic for computable functions", SIGPLAN Notices 7,1 (1972)

J.H. Morris, B. Wegbreit, "Subgoal induction", Comm. ACM

20, 4 (1977).

	A_1978_09 0000_1heitscover
	A_1978_09 0001
	A_1978_09 0002
	A_1978_09 0003
	A_1978_09 0004
	A_1978_09 0005
	A_1978_09 0006
	A_1978_09 0007
	A_1978_09 0008
	A_1978_09 0009
	A_1978_09 0010
	A_1978_09 0011
	A_1978_09 0012
	A_1978_09 0013
	A_1978_09 0014
	A_1978_09 0015
	A_1978_09 0016
	A_1978_09 0017
	A_1978_09 0018
	A_1978_09 0019
	A_1978_09 0020
	A_1978_09 0021
	A_1978_09 0022 copy
	A_1978_09 0023
	A_1978_09 0024
	A_1978_09 0025
	A_1978_09 0026
	A_1978_09 0027
	A_1978_09 0028
	A_1978_09 0029
	A_1978_09 0030
	A_1978_09 0031

