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Preface 

Edinburgh LCF is a computer system for doing formal proofs 
interactively. This book is both an introduction and a reference 
manual for the complete system (and its DECsystem-10 implementation). 
The acronym LCF stands for "Logic for Computable Functions" - a logic 
due to Dana Scott in which facts about recursively defined functions 
can be formulated and proved. The original system (developed at 
Stanford University) was a proof checker for this logic, based on the 
idea not of proving theorems automatically, but of using a number of 
commands to generate proofs interactively step by step. The emphasis 
then was on exploring the class of problems that could conveniently be 
represented in the logic, and on discovering the kinds of patterns of 
inference that arose when solving these problems. It was found that, 
by and large, the original logic was expressive enough, although a few 
useful extensions were suggested. However, the fixed repertoire of 
proof-generating commands often required long and very tedious 
interactions to generate quite simple proofs; furthermore these long 
interactions often consisted of frequent repetitions of essentially 
the same sequence of inferences. 

From the experience gained, a new system - Edinburgh LCF - has been 
built. Instead of a fixed set of proof-generating commands, there is 
a general purpose programming language ML (for "metalanguage"). Among 
the primitives of this language are ones for performing atomic proof 
steps; since these are embedded in a programming language, sequences 
of them can be composed into procedures. Thus, where in Stanford LCF 
common patterns of inferences would have to be repeated, these now 
become programmed operations, defined once and then called many times 
(or even built into yet more complex operations). 

ML is a functional language in the tradition of ISWIM and GEDANKEN. 
Its main features are: first, it is fully higher-order, i.e~ 
procedures are first-class values and may be passed as arguments, 
returned as results or embedded in data-structures; second, it has a 
simple, but flexible, mechanis~ for raising and handling exceptions 
(or, in our terminology, for "generating and trapping failures"); and 
third, but perhaps most important, ML has an extensible and completely 
secure polymorphic type discipline. Imperative features, in 
particular an ability to introduce assignable storage locations, are 
also included; in practice~ however, we have found these are rarely 
used, and it is not clear whether they were really necessary. 

The inclusion of higher-order procedures stems from a desire to 
experiment with operations for composing proof strategies. Such 
strategies are represented by certain types of procedures; if ML were 
not higher-order, we would not be able to define many natural 
operations over strategies. Since strategies may fail to be 
applicable to certain goals, we also needed a mechanism for cleanly 
escaping from ones inappropriately invoked, and this led to the 
inclusion of exception handling constructs. These constructs have 
turned out to be both essential and very convenient. 



!V 

The reason for adopting a secure type system is best seen by 
comparing the treatment of proofs in the present system and its 
predecessor. In Stanford LCF, a proof consisted of a sequence of 
steps (theorems), indexed by positive integers, each following from 
previous steps by inference. For exampler if 50 steps have been 
generated, and the 39th step is 

]- for all x. F 

(for some logical formula F) then the command 

SPEC '~a+l ~ 39 

will generate, by specialization, the 51st step as 

]- F[a+l/x] 

(i.e. F with the term "a+l" substituted for x). In Edinburgh LCF, 
instead of indexing proofs by numbers, theorems are computed values 
with metalanguage type thm, and may be given metalanguage names. 
(Other metalanguage types are term and form(ula) - e.g. "a+l" is a 
term, and "for all X. X+0=X" is-'a-form). Thus if th names the theorem 

]- for all x. F 

the specialization rule may be invoked by the ML phrase 

let th ~ = SPEC '~a+l" th 

which constructs a new step and names it th'. This change, whilst not 
profound, is very influential - the identifier SPEC now stands for an 
ML procedure (representing a basic inference rule) whose metalanguage 
type is (term->(thm->thm))r and it is a simple matter to define 
derived inference rules by ordinary programming. 

There is nothing new in representing inference rules as procedures 
(for example PLANNER does it); what is perhaps new is that the 
metalanguage type discipline is used to rigorously distinguish the 
types thm, term and form, so that - whatever complex procedures are 
defined - all values of type thm must be theorems, as only inferences 
can compute such values (for example, since the type system is secure, 
the value "i=0" of type form can never aquire type thm). This 
security releases us from the~need to preserve whole proofs (though it 
does not preclude this) - an important practical gain since large 
proofs tended to clog up the working space of Stanford LCF. 

The emphasis of the present project has been on discovering how to 
exploit the flexibil~ty of the metalanguage to organise and structure 
the performance of proofs. The separation of the logic from its 
metalanguage is a crucial feature of this; different methodologies for 
performing proofs in the logic correspond to different programming 
styles in the metalanguage. Since our current research concerns 
experiments with proof methodologies - for example, forward proof 
versus goal-directed proof - it is essential that the system does not 
commit us to any fixed style. 



Much of our work on proof ~etnodologies is independent of the logic 
in which the proofs are done, and so the acronym LCF is perhaps 
inappropriate for the complete system. However since the present 
logic is quite similar to the original one - though it incorporates 
extensions suggested by the experiments at Stanford - we have felt 
justified in continuing to call the system "LCF". One important 
extension, both conceptual and practical, is that the logic itself is 
now no longer a fixed calculus but a family of deductive calculi 
(called PPLAMBDA), with facilities for introducing and axiomatizing 
new types and new constants. Collections of types, constants and 
proved theorems are called theories, and these can be organised into a 
hierarchical data-base. A typical theory contains the axiomatization 
of a particular problem areav and is in general built on other 
theories. 

Several case studies have been done (see Bibliography), including a 
fairly substantial proof of a compiler. This proof was based upon a 
published informal proof, which was found incorrect when its 
formalization was attempted within our system. Reports of current and 
future experiments will also be published. We hope that the complete 
system description given here, in conjunction with reports of 
particular studies, will guide the design of future proof generating 
systems. 

How to read this document. 

If you are reading for general interest, and not intending to use 
the system, then Chapter 1 and Sections 2.1 and 3.1 give a quick 
overview, and Appendix 1 shows the creation of a simple theory. 
Section 3.1 has enough pointers to other parts of the text to enable 
you to discover our intended style of proof, in which three important 
ingredients are theories (3.4), simplification (Appendix 8) and 
goal-directed proof (i.I and 2.5). 

if you are only interested in ML as a programming language, then it 
is worth noting that Section 2 is completely independent of PPLAMBDA, 
and is supported by Appendices 3, 6 and i0. 

If you wish to use Edinburgh LCF, first get the overview as 
suggested above; next, read Appendix ii to see how to run the system, 
then perform the examples in 3.1 with any variations that you can 
think of; then study at least Appendix 5 (inference rules), 3.4 
(theories), 2.5 with Appendix 9 (goals and tactics) and Appendix 1 (an 
example of theories) before going on to your own proofs; at this point 
the whole document should serve as a reference manual. 
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