
Lecture Notes in
Computer Science
Edited by G. Goos and J. Hartmanis

78

Michael J. Gordon
Arthur .J. Milner
Christopher P. Wadsworth

Edinburgh LCF
A Mechanised Logic of Computation

Editorial Board

W. Brauer P. Brinch Hansen D. Gries C. Moler G. SeegmLiller
J. Stoer N. Wirth

Authors

Michael J. Gordon
Arthur J. Mi lner
Christopher P. Wadsworth
Dept. of Computer Science
University of Edinburgh
James Clerk Maxwell Bui lding
The King's Bui ldings
Mayfield Road
Edinburgh EH9 3JZ
Great Britain

AMS Subject Classif ications (1970): 68C01, 68 Et5
CR Subject Classif ications (1974): 5.21, 5.27

ISBN 3-540-09?24-4 Springer-Verlag Berlin Heidelberg New York
ISBN 0-38?-09724-4 Springer-Verlag NewYork Heidelberg Berlin

Library of Congress Cataloging in Publication Data.
Gordon, Michael J C 1948-
Edinburgh LCF : a mechanised logic of computation.
(Lecture notes in computer science; 78)
Bibliography: p.
Includes index.
1. Edinburgh LCF (Computer system) 2. Computable functions--Data processing.
I. Milner, Robin, joint author. II. Wadsworth, Christopher P., joint author. III. Title.
IV. Series.
QAg.59.G.67 510'.8s[001.6'4] 79-24745
ISBN 0-387-0g724-4
This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically those of translation, reprinting, re-use of
illustrations, broadcasting, reproduction by photocopying machine or similar means,
and storage in data banks. Under § 54 of the German Copyright Law where copies
are made for other than private use, a fee is payable to the publisher, the amount of
the fee to be determined by agreement with the publisher.
© by Springer-Verlag Berlin Heidelberg 1979
Printed in Germany

Preface

Edinburgh LCF is a computer system for doing formal proofs
interactively. This book is both an introduction and a reference
manual for the complete system (and its DECsystem-10 implementation).
The acronym LCF stands for "Logic for Computable Functions" - a logic
due to Dana Scott in which facts about recursively defined functions
can be formulated and proved. The original system (developed at
Stanford University) was a proof checker for this logic, based on the
idea not of proving theorems automatically, but of using a number of
commands to generate proofs interactively step by step. The emphasis
then was on exploring the class of problems that could conveniently be
represented in the logic, and on discovering the kinds of patterns of
inference that arose when solving these problems. It was found that,
by and large, the original logic was expressive enough, although a few
useful extensions were suggested. However, the fixed repertoire of
proof-generating commands often required long and very tedious
interactions to generate quite simple proofs; furthermore these long
interactions often consisted of frequent repetitions of essentially
the same sequence of inferences.

From the experience gained, a new system - Edinburgh LCF - has been
built. Instead of a fixed set of proof-generating commands, there is
a general purpose programming language ML (for "metalanguage"). Among
the primitives of this language are ones for performing atomic proof
steps; since these are embedded in a programming language, sequences
of them can be composed into procedures. Thus, where in Stanford LCF
common patterns of inferences would have to be repeated, these now
become programmed operations, defined once and then called many times
(or even built into yet more complex operations).

ML is a functional language in the tradition of ISWIM and GEDANKEN.
Its main features are: first, it is fully higher-order, i.e~
procedures are first-class values and may be passed as arguments,
returned as results or embedded in data-structures; second, it has a
simple, but flexible, mechanis~ for raising and handling exceptions
(or, in our terminology, for "generating and trapping failures"); and
third, but perhaps most important, ML has an extensible and completely
secure polymorphic type discipline. Imperative features, in
particular an ability to introduce assignable storage locations, are
also included; in practice~ however, we have found these are rarely
used, and it is not clear whether they were really necessary.

The inclusion of higher-order procedures stems from a desire to
experiment with operations for composing proof strategies. Such
strategies are represented by certain types of procedures; if ML were
not higher-order, we would not be able to define many natural
operations over strategies. Since strategies may fail to be
applicable to certain goals, we also needed a mechanism for cleanly
escaping from ones inappropriately invoked, and this led to the
inclusion of exception handling constructs. These constructs have
turned out to be both essential and very convenient.

!V

The reason for adopting a secure type system is best seen by
comparing the treatment of proofs in the present system and its
predecessor. In Stanford LCF, a proof consisted of a sequence of
steps (theorems), indexed by positive integers, each following from
previous steps by inference. For exampler if 50 steps have been
generated, and the 39th step is

]- for all x. F

(for some logical formula F) then the command

SPEC '~a+l ~ 39

will generate, by specialization, the 51st step as

]- F[a+l/x]

(i.e. F with the term "a+l" substituted for x). In Edinburgh LCF,
instead of indexing proofs by numbers, theorems are computed values
with metalanguage type thm, and may be given metalanguage names.
(Other metalanguage types are term and form(ula) - e.g. "a+l" is a
term, and "for all X. X+0=X" is-'a-form). Thus if th names the theorem

]- for all x. F

the specialization rule may be invoked by the ML phrase

let th ~ = SPEC '~a+l" th

which constructs a new step and names it th'. This change, whilst not
profound, is very influential - the identifier SPEC now stands for an
ML procedure (representing a basic inference rule) whose metalanguage
type is (term->(thm->thm))r and it is a simple matter to define
derived inference rules by ordinary programming.

There is nothing new in representing inference rules as procedures
(for example PLANNER does it); what is perhaps new is that the
metalanguage type discipline is used to rigorously distinguish the
types thm, term and form, so that - whatever complex procedures are
defined - all values of type thm must be theorems, as only inferences
can compute such values (for example, since the type system is secure,
the value "i=0" of type form can never aquire type thm). This
security releases us from the~need to preserve whole proofs (though it
does not preclude this) - an important practical gain since large
proofs tended to clog up the working space of Stanford LCF.

The emphasis of the present project has been on discovering how to
exploit the flexibil~ty of the metalanguage to organise and structure
the performance of proofs. The separation of the logic from its
metalanguage is a crucial feature of this; different methodologies for
performing proofs in the logic correspond to different programming
styles in the metalanguage. Since our current research concerns
experiments with proof methodologies - for example, forward proof
versus goal-directed proof - it is essential that the system does not
commit us to any fixed style.

Much of our work on proof ~etnodologies is independent of the logic
in which the proofs are done, and so the acronym LCF is perhaps
inappropriate for the complete system. However since the present
logic is quite similar to the original one - though it incorporates
extensions suggested by the experiments at Stanford - we have felt
justified in continuing to call the system "LCF". One important
extension, both conceptual and practical, is that the logic itself is
now no longer a fixed calculus but a family of deductive calculi
(called PPLAMBDA), with facilities for introducing and axiomatizing
new types and new constants. Collections of types, constants and
proved theorems are called theories, and these can be organised into a
hierarchical data-base. A typical theory contains the axiomatization
of a particular problem areav and is in general built on other
theories.

Several case studies have been done (see Bibliography), including a
fairly substantial proof of a compiler. This proof was based upon a
published informal proof, which was found incorrect when its
formalization was attempted within our system. Reports of current and
future experiments will also be published. We hope that the complete
system description given here, in conjunction with reports of
particular studies, will guide the design of future proof generating
systems.

How to read this document.

If you are reading for general interest, and not intending to use
the system, then Chapter 1 and Sections 2.1 and 3.1 give a quick
overview, and Appendix 1 shows the creation of a simple theory.
Section 3.1 has enough pointers to other parts of the text to enable
you to discover our intended style of proof, in which three important
ingredients are theories (3.4), simplification (Appendix 8) and
goal-directed proof (i.I and 2.5).

if you are only interested in ML as a programming language, then it
is worth noting that Section 2 is completely independent of PPLAMBDA,
and is supported by Appendices 3, 6 and i0.

If you wish to use Edinburgh LCF, first get the overview as
suggested above; next, read Appendix ii to see how to run the system,
then perform the examples in 3.1 with any variations that you can
think of; then study at least Appendix 5 (inference rules), 3.4
(theories), 2.5 with Appendix 9 (goals and tactics) and Appendix 1 (an
example of theories) before going on to your own proofs; at this point
the whole document should serve as a reference manual.

~ckngwled~qements

Many people have helped us in this work. First and foremost,
Lockwood Morris and Malcola Newey worked intensively on the project in
its early stages and are responsible for much of what we are now
describing; if it had been feasible, they should have been co-authors.

We are indebted to Dana Scott for providing a large part of the
theoretical basis for our work: to John McCarthy for encouraging the
forerunner of this project at Stanford; to Richard Weyhrauch who with
Newey contributed greatly to that project; to Tony Hoare for his
probing criticism of a draft of this document; to both him and Jerry
Schwarz for help with the notion of abstract types in ML; to Avra Cohn
for help in the final design stages through her experiments; to Jacek
Leszczylowski for his helpful criticisms of the final draft; and to
Rod Burstall, Gordon Plotkin and many colleagues in Edinburgh for
illuminating discussions. Finally, we are indebted to the Science
Research Council for supporting, and to our department for tolerating,
a project which has taken longer to mature than we hoped.

Table of Contents

Preface

How to read this document

Acknowledgements

Table of contents

Chapter ! Introduction

i.i A simple proof exercise
1.2 ML
1.3 PPLAMBDA

4
. ii

12

Chapter 2 ML .

2.1 Introduction and examples o
Expressions, Declarations, Sections, Assignment,
Functions, Recursion, Iteration, Lists, Tokens,
Polymorphism, Lambda-expressions, Failure,
Defined types, Abstract types, Type operators

2.2 Syntax of ML .

2.2.1 Syntax equations for ML . .
2.2.2 Notes on the syntax equations for ML .
2.2.3 Identifiers and other lexical matters

2.3 Semantics of ML

2.3.1 Declarations .
2.3.2 Expressions . .
2.3.3 Section commands

2.4 ML types .

2.4.1 Types and objects .
2.4.2 Typing of ML phrases
2.4.3 Discussion of type constraints
2.4.4 Defined types
2.4.5 Abstract types

2.5 Goal-directed programming

2.5.1 Tactics and validity . . .
2.5.2 Strong validity and tacticals
2.5.3 Goals and events in LCF

13

13

28

. 29

32
32

35

37
. 40

43

. 45

45
47
51
53
53

57

. 57
58
60

VIII

Chapter ! PPLAMBDA .

3.1 Examples of inference

3.1.1 Least fixed point theorem
3.1.2 Commuting conditions . . .
3.1.3 A theorem about truth values

3.2 PPLAMBDA terms, forms and types .

3.2.1 Types . . .
3.2.2 Terms and forms . o .

3.2.3 Constants, variables and well-typing .
3.2.4 Abstract syntax and antiquotation .
3.2.5 Matters of style
3.2.6 PPLAMBDA theorems

3.3 Formulae which admit induction

3.4 Extending PPLAMBDA; LCF theories

3.4.1 Theory structure . .
3.4.2 Working in a theory
3.4.3 Drafting a theory
3.4.4 Concrete representation of theories

62

62

62
85
67

69

70
71
72
74
75
76

77

79

80
81
82
85

A2pendipes

i. LIST: an example development of a theory

2. Predeclared ML types .

3. Primitive ML identifier bindings

4. Primitive ML functions for PPLAMBDA .

5. PPLAMBDA inference rules

6. General purpose and list processing functions

7. PPLAMBDA syntax functions

8. Simplification .

9. Standard tactics and tacticals

i0. Tracing ML functions .

ii. The DECsystem-10 implementation

Bibliography

Index (of predeclared ML Identifiers)

87

• I01

102

106

109

121

126

133

139

143

. 150

. 153

. 158

