
PROCEEDINGS OF THE SYMPOSIUM ON 
LANGUAGE DESIGN AND PROGRAMMING METHODOLOGY 
SYDNEY, 10-11 SEPTEMBER, 1979 

A CRITIQUE OF MODULA 
Andrew Richardson 

Department of Computer Science 
University of New South Wales 

ABSTRACT 

MODULA and MODULA-2 are the latest major languages 
designed by Professor Niklaus Wirth (Wirth, 1977 and 
Wirth,1978). They are both claimed to be high level 
languages suitable for the programming of dedicated computer 
systems, with emphasis on process control systems and device 
drivers. A critique of MODULA, the earlier of the two 
languages, is presented in this paper. The emphasis is on 
the "useahility" of MODULA, and whether it achieves its stat- 
ed goals. A compiler for MODULA has been written in BCPL by 
two members of the University of York, J.Holden and I.C.Wand 
(Cottam,1978), and this is the compiler used by the author. 

i. A BRIEF DESCRIPTION OF MODULA 

Areas of programming such as process control systems, device 
drivers and computerised equipment have long been the almost exclusive 
domain of Assembly code. MODULA has been designed in an attempt to 
reduce this domination by providing a high level language that can per- 
form efficiently in these areas. 

The language itself has a number of apparent virtues : it is a 
concise language (suitable for implementation on small computers); it 
is a "high level" language; and it is based on the now well known 
language PASCAL, thus being already partly familiar to many new users. 
It has not implemented a number of the features of PASCAL, however, as 
the size of the language has been been kept at a minimum to enable 
implementation on small machines. Whether Wirth has selected the 
correct features to include and omit is a matter of some contention and 
these differences are now examined in more detail. 

1.1 PASCAL FEATURES NOT ~IPLEMENTED IN MODULA 

As has been said, MODULA is based closely on PASCAL. Some of the 
main features of PASCAL that have been omitted from MODULA are : 

* Pointers/Dynamic Storage Allocation, 
* Input/output facilities, 
* File manipulation, 
* Variant records, 
* Real arithmetic, 
* The "GO TO" statement, 
* The "FOR" statement, 
* Set types, and 



218 

* Sub range types. 

By far the most annoying omission in my experience was the lack of 
dynamic storage allocation, and hence the absence of pointers. 
Pointer-based structures have the big advantage of being able to vary 
in size, as storage allocation takes place at run-time rather than 
compile-time. This property was sorely missed, one case in point being 
the writing of a program to scroll a GT40 display. In such a program 
it is necessary to represent the screen as some form of character 
buffer. Storage had to be allocated for the theoretical maximum number 
of characters that could fit on the screen, although in practice this 
maximum is virtually never attained. On the other hand, if some 
pointer facility had been available storage could have been allocated 
as required. It appears that the overhead involved in introducing a 
pointer facility would be more than compensated for by the increased 

efficiency of programs, especially in small computers where core space 
is at a premiumQ 

The omission of set types is another decision that I would ques- 
tion. Although the type "bits" (which represents an array of boolean 
variables) can often be used in place of sets, there are still occa- 
sions when sets are very useful. For example, when a case statement is 
used all possible alternatives must be specified (there is no default 
facility in a case statement in MODULA). The easiest way to ensure 
this is to have a set containing all the possible alternatives and to 
enter the case statement only if the expression to be matched is con- 
tained in the set. The type "bits" would usually not be suitable for 
such a function. 

Variant records and sub range types are convenient but not essen- 

tial, and their omission did not cause any substantial problems. 
Other omissions that could be annoying are the "GO TO" and "FOR" 

statements. The former can be useful when a program has a number of 
error conditions that require quick termination, and the latter is a 
very simple way of executing a loop a set number of times. The "FOR" 

statement is especially useful in situations where a number of arrays 
are being manipulated. Again, both of these instructions, although 
useful, are not essential and substitutes are readily available. 

The three remaining omissions listed, input/output facilities, 
file handling capabilities and real arithmetic are logical, as MODULA 
is a language that would generally be used at a level where such facil- 

ities are being implemented rather than used. File manipulation facil- 
ities, for example, are not really needed when, as Wirth puts it, "the 
typical application of MODULA is regarded as the design of systems that 
implement rather than use such a file facility" (Wirth,1977). File 
manipulation also assumes a good deal of run-time support, which may 

not always be available. 
With the exception of pointer-based data structures and possibly 

set types, the omissions have been well decided, bearing in mind that 
this is a language where ease of implementation and compactness are 

prime objectives. 
The method of terminating blocks has also been changed. Commands 

such as "IF", "WHILE", "CASE", etc must be explicitly terminated. This 
is an improvement over PASCAL as it obviates the need for a compound 
statement and generally makes programs easier to read. For example~ 

the PASCAL code: 



219 

WHILE x<y DO 

BEGIN 
a := b+c; 
inc(x) 

END; 

becomes in MODULA 

EXILE x<y DO 

a := b+c; 
inc(x) 

END; 

This explicit termination rule also clarifies programs containing mul- 
tiply nested "IF" statements, as the "ELSE" part of each "IF" expres- 
sion is clearly associated with its intended partner. 

1.2 NEW FEA~RES OF MODULA 

1.2.1 MODULES 

By far the biggest innovation introduced in MODULA has been 
the module (as the name suggests). Modules are self-contained units 
containing constants, variables, data types, procedures and processes 
local to the module. None of these items can be accessed outside their 
own module unless they are "exported" by being put in the DEFINE list 
of their module. Another module can then "import" these items by put- 
ting them into its own USE list. 

There are three types of module: standard Modules, Interface 
Modules and Device Modules. Standard Modules have the property men- 
tioned above, but no other special properties. Interface Modules have 

mutual exclusion properties which will be discussed in the section on 
signals and processes. Device Modules contain all the machine- 
dependent facilities and will be discussed more fully later. 

Whether modules are sufficiently flexible is an interesting ques- 
tion. The main drawback of the present module design is that duplica- 
tion of code is a possible necessity. Classes such as those in SIMULA 

(CDC,1975) and Concurrent Pascal (Brinch Hansen,1975) escape this prob- 
lem but they are more complex and would increase the size of the com- 
piler. Wirth appears to have made a reasonable compromise between 
facilities and implementation size in this area. The present modules 

are very clear and a definite aid to the setting out of an ordered and 
tidy program. 

1.2.2 SIGNALS, PROCESSES AND INTERFACE MODULES 

The major multi-programming feature in MODULA is the process. 

As far as the programmer is concerned, processes can be taken as exe- 
cuting in parallel with one another. Processes can be activated by 
more than one source, and are in general recurrent. They cannot be 
nested, and must therefore only occur at the outermost level of the 
program. Processes are controlled by three operations : "wait", "send" 



220 

and "awaited ~. Each of these operations has an argument of type "sig- 
nal", and operates only on that argument. For example, 

send(signall ) ; 

"Send" will wake up a process that was waiting for the argument signal, 
"wait" will put a process into the waiting state and "awaited" is a 

boolean variable that is true when its argument signal is being waited 
for somewhere in the program. 

When several processes share common variables, it can be awkward 
to have more than one process using (and especially changing) those 
variables at the same time. Interface Modules have been introduced to 
prevent this occurring, and provide a queueing facility to ensure mutu- 
al exclusion. Several processes in an Interface Module can be waiting 
at once, and the process currently running does not relinquish control 

until it executes a "send" or a "wait" statement, at which stage the 
next process in the queue takes over control. There has been some cri- 
ticism of this set-up (Holden and Wand, 1978), the main point of con- 
tention being that control should not be relinquished on a "send" com- 
mand. There is merit in this argument from a programmer's point of 
view, but scheduling within an interface module would become much more 

complex if this suggestion were adopted, as Holden and Wand point out. 
No reasonable and efficient method of scheduling has been suggested 
that would cope with such a modified arrangement, so it appears logical 
to stick to the present system (which is quite acceptable). 

1.2.3 DEVICE MODULES 

Device Modules contain nearly all the machine-dependent areas 
of the language. This means that implementing MODULA on different com- 
puters will not mean rewriting the whole compiler, but chiefly only the 
parts of the compiler dealing with Device Modules. (The exception is 
the type "bits". "Bits" can be either eight or sixteen bits long, 
depending on the machine being used.) The separation of machine depen- 
dent areas can also be an aid to the writing of well set out programs. 

The processes in a Device Module are different to standard 
processes, and are referred to as Device Processes~ These have an 
ability to receive hardware interrupts through the "doio" command. 
This command makes the process wait for a hardware interrupt from an 
interrupt vector address specified in the Device Process heading. 
Mutual exclusion is performed in a Device Module by specifying the 
machine processor priority level at which the processes contained in 
the Device Module will run. This priority is specified in the heading 
of the module. 

The second main feature of a Device Module is the means provided 
for accessing the hardware interfaces of peripherals. In a PDP-II com- 
puter, these interfaces are represented by device registers at fixed 
addresses. MODULA lets the user access these registers by associating 
variables in a Device Module with these hardware addresses. For exam- 
ple, the statement 

VAR dpc[172000B] : integer; 

will assign the variable "dpc" to the memory location 172000B. 



221 

In the interests of minimising both code and the interaction 
between Device Processes and other areas of the program~Wirth has im- 
posed the following restrictions: 

(i) Device Processes are not reentrant (unlike other processes). 
This restriction has been shown to have only a slight effect on the 

efficiency of code generated on s PDP-II (Holden and Wand, 1978). 

(ii) Device Processes may not signal each other. This restriction 
is designed to minimise the switching time for Device Processes, as it 
means that switching between Device Processes can only occur when a 
hardware interrupt is received. 

(iii) Device Processes may not call non-local procedures. This 
restriction again reduces switching time and simplifies the scheduling 
of processes. 

The first restriction was no real problem in programming in 
MODULA, but the last two certainly were. These restrictions consider- 
ably reduced the clarity of large programs, with frequent "fiddles" 

being necessary to get around them. In one program in particular, a 
handler written to enable tbe PDP-II/45 to communicate with other com- 
puters via a party line, these restrictions were particularly awkward. 
Such a program relies very heavily on hardware interrupts, and thus 
requires large and cumbersome Device Modules, as Device Processes can- 
not call non-local procedures. Signalling was also a problem in this 
context, owing to the fact that as most of the program consisted of 
Device Modules most of the processes were Device Processes and thus 
could not signal each other. One extreme measure was a process (in a 
standard module) that waited for a signal from a Device Process and 
then relayed that signal to another Device Process - not very efficient 
but a step of desperation. These restrictions considerably detract 
from program clarity and thus must, to some extent, reduce the advan- 
tages of programming in MODULA. 

There are two options open if this arrangement is to be changed. 
The first option would be to remove all three restrictions - restric- 
tions (ii) and (ili) because of their serious detrimental effect on the 
language, and restriction (i) because it has been shown that its lift- 
ing would not involve any substantially greater overheads. I realise 
that this will mean a substantial increase in the complexity of the 
compiler but these restrictions do seriously detract from the "useabil- 
ity" of MODULA, and so I consider the modifications worth any but the 
most drastic increase in overheads. 

The second option would be to standardise the modules by removing 
the Device and Interface Modules (as in MODULA-2). I believe that the 
concept of separating machine dependent areas of the language (and thus 
machine controlling processes) is a strong aid to the structuring of 
efficient programs, and therefore I would prefer the former option if 
it were possible. 

2. THE YORK COMPILER 

The University of York Compiler (Version 1.00) was released on 
20th June, 1978, and runs under the UNIX operating system. It is a 



222 

four pass compiler written in BCPL and uses a sequential binary stream 
and in-core storage to communicate between the passes. There is no 
run-time storage allocation. Output is in the form of PDP-II Assembly 
code. 

The compiler has one major (and sometimes fatal) fault. An iden- 
tifier may not be used unless it has previously been declared. In oth- 
er words you can't mention an identifier in one module that has been 
defined in a subsequent module, even when it has duly been exported and 
imported. In even moderately large programs this rule is incredibly 
annoying. It often ruins the whole concept of modularity introduced in 
MODULA, and is sometimes insurmountable. 

The compiler is satisfactory for compiling small, straightforward 
programs. It produces good quality code and does not take up large 

areas of core, Owing to the overlay methods employed in the compiler 
it is not sharable by users. Thus each user causes a new copy of the 
compiler to be loaded, resulting in a deterioration in system response 
time. This state of affairs would not be satisfactory if a number of 
people were using MODULA at the same time, but owing to the nature of 
the language and of the machines on which it will most probably be 
implemented, this problem should not often arise. 

When one moves into larger more complex programs the compiler at 
its present stage of development is not satisfactory, due chiefly to 
the "declaration before use" rule described above. If this problem 
were corrected the compiler would be a satisfactory basic implements- 
tion of MODULA as presently specified. 

3. IMPLEMENTATION RESTRICTIONS 

MODULA has been designed with implementation on microprocessors a 
prime concern. The size of the language has been kept to a level that 
is acceptable for microprocessors, but there are a number of require- 
ments that any computer on which MODULA is to be implemented must 
satisfy. The first two requirements are s direct result of MODULA's 

intended role as a systems programming language. 
Firstly there must be a suitable form of hardware interrupts to 

satisfy the "doio" command. Coupled with this there must also be a 
facility to set processor priorities to ensure that these interrupts 
are processed according to the programmer's requirements. Virtually 
all modern micros have such facilities, and this requirement shouldn't 
really narrow MODULA's implementation possibilities. 

Secondly there must be a way of accessing the hardware interfaces 
of peripherals. This is essential to provide a method of controlling 
any peripheral devices that may be attached to the processor. Again, 
most micros provide methods of access that would be acceptable to a 
MODULA compiler, although some do not provide as simple a system as 
that provided by the PDP-II family of computers. 

The third requirement is more directly connected with facilitating 
implementation than the previous requirements. It is mentioned by Hol- 
den and Wand (1978) and deals with the problem of implementing the 
reentrancy requirements of MODULA. Holden and Wand consider that some 
form of stack facility is essential if implementation is to be possi- 
ble. They mention the INTEL 8080 as one example of a microprocessor 
that suffers in this area. I have had no personal experience of this 
problem, being involved in using rather than implementing MODULA~ and 



223 

therefore cannot comment in any detail on this restriction. Suffice it 
to say that a stack facility would greatly improve the chance of effi- 

ciently implementing the language. 
It appears from the above requirements that MODULA could be imple- 

mented on most computers without a significant loss in effectiveness or 
versatility, although some of the presently popular microprocessors 
would not readily support an efficient implementation (owing to a lack 
of stack facilities). It would obviously be advisable to check that a 
micro satisfies the above requirements if an implementation of MODULA 
is to be attempted. 

4. SUGGESTED EXTENSIONS/CHANGES 

4.1 POINTERS 

As detailed in section 1.1 the lack of pointer-based data struc- 
tures is not s practical omission. Such data structures can markedly 
improve the efficiency of a program. It is therefore recommended that 
run-time storage allocation be introduced so that some form of pointers 
can be implemented. 

4.2 SETS 

I would also recommend that sets be introduced to the language, 
provided that the overheads involved are not too high, as this change 
is for convenience and program clarity rather than efficiency. 

4.3 TYPE CHECKING 

The present type checking is very rigid. This is generally an 

asset but when the hardware interfaces are associated with variables 
this asset becomes a nuisance and detracts from program clarity. For 
example, the programmer might generally need the value of device regis- 
ter to be numeric, so he declares his variable as an integer type. 
However, when just one bit of that integer has to be set, the rigidity 
of the type checking prevents the program from setting that bit to 
true, and requires the programmer to add or subtract numbers to set the 
bit. This can be rather cryptic to someone else trying to follow what 
the program is doing and also increases the likelihood of mistakes 
being made. 

I would therefore recommend the introduction of a type, more basic 
than integer and bit types, in which the type checking is substantially 
relaxed. Perhaps a sensible restriction would be that such a type 
could only be used where device registers are involved. 

4.4 DEVICE PROCESS RESTRICTIONS 

As stated in section 1.2.3 I would recommend the removal of the 
three restrictions on Device Processes. This would greatly improve the 
flexibility of the language. 



224 

5. CONCLUSIONS 

MODULA was designed to bring the advantages of high level program- 
ming into areas previously dominated by Assembly code. It was also 
necessary that storage requirements be kept at a minimum, so that im- 
plemation would be feasible on small computers. A compromise had to be 
reached between these two requirements. This compromise has generally 
been well decided, with the exception of the points set out in section 
4. MODULA is well suited to implementation on small computers - com- 
pilers are relatively straightforward to write, the storage require- 
ments are small, efficient code can be produced and implementation is 
possible on most machines. 

Programs written in MODULA are far clearer and easier to write 
than their equivalents in Assembly code, but I would question the res- 
trictions on device processes for the reasons stated in section 1.2.3. 
These restrictions are the major drawback of the language. Owing to 
the organisation of processes it is yet to be seen whether very large 
multiprocess programs could be written in MODULA. On the other hand 
MODULA appears very well suited to the writing of device handling pro- 
grams, and it is here that MODULA makes its biggest contributions. The 
language is certainly a large step forward in this area. 

6o BIBLIOGRAPHY 

Brinch Hansen,P: "The Programming Language Concurrent Pascal", IEEE 
Trans. Software Engo, vol. SE-I, pp. 199-207 (1975) 

Cottam,l.D.: "Functional Specification of the Modula Compiler", Report 
Number 13, Department of Computer Science, University of York (1978) 

Holden,J. and Wand,l.C.: "Experience with the Programming Language 
Modula", Report Number 5, Department of Computer Science, University of 
York (1977) 

Holden,J. and Wand,I.C.: "An Assessment of Modula", Report Number 16, 
Department of Computer Science, University of York (1978) 

Jensen,K. and Wirth,N. : "PASCAL User Manual and Report", Springer- 
Verlag, New York, N.Y. (1975) 

Control Data Corporation, "S~IULA Version One Reference Manual", Con- 
trol Data Cyber 170 Series (1975) 

Wand,l. Co and Holden,J.: "MCODE", Report Number 14, Department of Com- 
puter Science, University of York (1978) 

Wand,l.C.: "Dynamic Resource Allocation and Supervision with the Pro- 
gramming Language Moduls", Report Number 15, Department of Computer 
Science, University of York (1978) 

Wirth,N~: "Modula: a Language for Modular Multiprogramming", Software - 
Practice and Experience Vol 7, 3-35 (1977) 

Wirth,N. : "The Use of Modula", ibid 37-65 

Wirth~N. : "Design and Implementation of Modula", ibid 67-84 

Wirth,N. : "MODULA-2", Institut fur Informatik, ETH Ch-8092, Zurich 
(1978) 


