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Abstract. 

The paper concerns algebraic properties of Petr± nets. 

A wide class of ne~s, called simple nets, is inwroduced and a 

lattice of these nets is defined. IV turns out tha~ nets represen- 

ting sequential systems and processes are a~oms of this lat~ice~ 

and this fact provides the natural way of building nets representing° 

concurren~ systems as the superposit~on of nets representlng sequen- 

Zial system components. 

TNe notion of concurrency relatlon for large class of nets 

including cyclic nets is precisely defined. 

An influence of statmo, i.e. unmarked, structure of neZs on 

the class of "proper" markings is discussed. The notion of naZural 

markings, i.e. markings defined by the static (unmar~ed) s~ruc~ure 

of ne~s is introduced. 

Properties of safeness, compaoZness, fireability and K-densiSy 

of marked nets are discussed. A classification of nets is proposed 

and an attempZ of wne algebraic definition of net with properties 

requlred from "well defined" dynamlc concurren~ system is given. 

+ Institute of Mathematics, Warsaw Tecnnical University, 

P1. Jedno~ci Robotniczej l~ O0-661 Warszawa, Poland. 
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i. Introduction. 

Pearl nets theory constitutes an axiomatic approach towards 

the ohenomena of concurrent systems and processes (see Petri(197Y), 

Petr1(1978), Mazurkiewicz(1977) and others). Properties of Petri 

nets were tryed to prove by means of dlfferenZ methods with diffe- 

rent results. 

One of the basic research methods of science is the partition 

into indivisible components (atoms). Then we can describe proper- 

ties of the whole structure by means of the prooerties of compo- 

nents. Our approach is the following: we construct a special class 

of Pearl nets (called simple nets), rules of decomposition into 

subnets, and we describe a class of indivisible nets- called atoms. 

We also define the operation which makes possible a construction 

of the more complicated swrucZures from atoms. 

It turns out that nets representing sequential systems and 

processes, called elementary in the paper, are atoms, and that nets 

created by elementary nets (called proper in the paper) have much 

properties required from ~'well defined" concurrent sysSems (safe- 

ness, fireabiliwy and so on). 
In the paper a lattice of unmarked nets is defined and diffe- 

rent notions of concurrency relation (see Petr1(1977), Petri(1978), 

Janicmi(1979) ) for large class of ne~s including cyclic nets are 

introduced. 
An influence of statlc, unmarked s~rucZure of nets on the class 

of "proper" markings, and properties of natural markings, i.e. mar- 

k~ngs defined by the static net s~rucZure, are discussed. 

The motivation of the approach we have presented is ~he obser- 

vation that all Petri nets representing real, well defined con- 

current systems or processes can be treated as the superposition 

of sequential components. 
Consider two very simple examples (compare }{azurKiewioz(1977)), 

namely, a reader-writer concurrent scheme and a parallel-addition 

scheme. NoSe tha~ the reader-writer scheme is the superpositlon of 

three sequential components: the reader, the synchronizer and the 

writer; and the parallel-addition scheme consists of two sequential 

schemes: the control of addition and the addiZ±on. 
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The paper is an aZtemp~ to prove some fundamental properties 

of net superposi~ion, net decomposition, and nets created by these 

operawions. 

In the paper we shall use the standard mathematical notation 

(IXl denote the cardinality of X, Z denote the empty set, and so 

on) 
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2. Simple nets. 

In this section we recall ~rom Janicki (1978) the basic notion 

of this paper, namely the notion of simple ne~. This definition 

and the notation used in znis section are base for the further con- 

siderations. 

~or every set X, le~ left:X×X~X, right:X×X~X be the follo- 

wing functzons : 

(V(x,y)e X~X) left((x,y))=x, right((x,y))=y. 

By a ~ (abbr. s-ne~) we mean any pair 

N = (T,P), 

where: T is a set (of transitions), 

P~ 2T~2 T is a relation (also interpreZed as a se~ of ~laces), 

aeT)~ p,q~P) aeleft(p)~ right(q), 

In the paper we restric~ our a~tention to finite s-he ~s. Instead 

of ([al,...,an},{bl,.-.,bm~)e P we shall write 

[al,...,an:bl,...,bm] 6 P . Every s-net N=(T,P) can be graphically 

represented using ~ne graph 

o~o 

o.,an:bl,.o.,bm ] 

to denote Zhe fac~ that [al,...,an:bl,...,bm] E P. 

~ l e  2.1. 

Let N=(T,P), where T= {a,b,o,d,e~f,h~ , 

P = {[Z:a],[a,f:b,h],[h:Z],[c:e],[b:c],[b:d]'[d:e]'[e:fl} . 

The pair N=(T,P) is a s-net and it can be represented by the follo- 

[b:c] [c4 a 



181 

In the literature nets are usually defined differently, star- 

ting with two disjoint seZs transitions and places, and introducing 

a flow-relation beZween them (compare Petri(1977), Pezri(1978)). 

This approach is luckier in the sense thaz it makes more easy to 

handle operaZion among nets. 

}. A lattice of simple nets. 

In this section we shall describe the algebraic structure of 

simple nets. 

Let SN~TS denote the family of all s-nets. 

Let ~ be the relation in SNETS defined as follows: 

NI=(TI,PI) ~ N2=(T2'P2) ~@ PI ~ P2" 

No~e ~ha~ ~ is a partial order relation and NlC N 2 implies 

Le~ sup{N1,N2~ , inf{N1,N2} denoze respectively the leas~ TI~T 2. 

upper bound and the greaSest lower bound wita respect to the rela- 

tion ~ . 

Theorem 3.!. 

For every NI=(T1,P1) , N2=(T2,P2)6 ~TS : 

sup{Nl,~2~ : (T#~2,Pi~P2), 

inf{Ni,N2) = (left(P),P), where P is the greates~ set 

fulfilling the condition p.q plOP2 & left(P)=right(P). 11 

Define the following operations: 

NfN2 : sup{Ni,N2~ , NS2 : ~f{~l,~2 } ' 

N~S N~S 

Theorem 3.2. 
The algebra (~TS,u,n) is a lattice wi~h ~he grea~es~ lower 

bound (~,~). J 

It turns out that the lattice (SI~IETS,~,n) is no~ distributive. 

Now we introduce the a$omic structure of simple ne~s. 

A simple net N=(T,P) is said to be an atom iff: 
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For ~very s-net, let atoms(N) denote ~he seZ of all atoms con- 

tained in N,i.e. 

atoms(N) = I N '  I N 'EN & N' i s  an atom~ . 

A simple ne~ N is said ~o be atomic iff: N = ~J N' . 
Nta atoms(N) 

~xample 3.I. 

Let N, N' be ne~s defined below. Note that 

so the ne~ N is not atomic. 

N __ 

Example 3-~" 

Let N,NI,N 2 

N' = 

atoms(~)=[~'J and N'~ N, 

£3 

be ne~s defined below. In ~his case atoms(N)={Ni,N2~, 

and N = NiuN2, thus N is the atomic ne~. 

N~ = N z = 

B:e~ 

[e~] 

Let N=(T,P) be a simple net. To simplify the considerations, 

we shall uso the following well known notation: 

1. (VpeP) p" = right(p), "P = left(p), 

2. (VaeT) a" = [p~P I aeleft(p)], "a = [p~P~ a6righ~(p)} . 

Of course, (~P~P) p = ('p,p'). Note that the above operations are 

correctly defined for every pair (T,P), where p~2T~2 T. 

Lemma 3.3. 
A pair (T,P), where P.¢2 T~2T is a simple net iff: 

Let F~ T~P uP~T be the following relation: 

(~x,yE TuP) (x,y) ~ F 4=# x&left(y) or y~right(x). 
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Yote that for every s-ne~ (T,P), the triple (T,P,F) is a standard 

representation of Petri net (see Petri(1977), Petri(1978)). 

A simple net N is said $o be connected iff 

(Vx,y e TuP) (x,y) E (P u p-l),. 

Other words, a net is connected if its graph is connected. 

Theorem ~.4, 

Every atom is connected. 

_4. Blementary ne~s. 

Now we define simple nets which represent sequential systems 

and processes. We shall prove that these nets are special Kind of 

atoms. 

A simple net N=(T,P) is said to be elementary iff 

1. (Va~) I'~I = la'l = l, 
2. N is cannec~ed. 

Examples of elementary nets are given below. 

[d,÷:o.] 

[e:Ll L'~,~] b.,b] Eb,~] 

[b:~] 
[~ .~,e] 

Theorem 4.1. 

~very elementary net is an atom. g 

Of course, not every atom is an elementary net. For example, the 

below simple net is the atom, but it is not elementary. 
__ ~:c] 

For every s-net N, let 

elem(N) = {N t I NI~N & N' is elementary) . 

Of course, elem(N)~atoms(N) , and generally this inclusion is pro- 

per one. Note thet every elementary net is equivalenw with a totally 

labelled state machine. 
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5. Proper nets.. 

In this section we introduce a class of ne~s generated by su- 

perposition of sequential, i.e. elementary, nets. We shall prove 

in the sequel tha~ this class of s-nets deflnes marked nets which 

have much properties required from "well defined" concurrent dyna- 

mic systems. 

A s-ne~ N is said to be proper iff: N = ~ IN' I N'~elem(N)] ° 
Of course, every proper net is atomic, but not every atomic net is 

proper. 

Corollary 5.1. 

A s-net N=(T,P) is proper <=~ there is a set {N1,...,Na} of 

elementary neZs and N = NlU ...u N m . i 

There are such proper nets Sham elem(N)#a~oms(N). Let PNETS denote 

the family of all proper nets. It can be easily proved that the fa- 

mily PNETS is closed under the operation "U", but iS is no~ closed 

under she operation "n". The ne~ from Example 3.2 is proper, the 

nee considered in Section 6 is not proper. 

6. Markednets. 
In this section we shall extend the approach we have presented 

~o marked nets. UnmarEed nets represent the static structure of dy- 

namic systems, while marked nets represent the dynamic structure 

of those systems. We aim so show in which way the static struczure 

describes the dynamic structure of concurrenz sys$ems and vice versm. 

Let N=(T,P) be a simple ne~. 

Let Rl.c2Px2 P be the following relation: 

(NI,M2) ( R1 @~ (~a~T) Ml-'a = ~2 -a" & "ag~41 & a'$ Z 2 . 

The relation R1 is called the forward teachability in one step. 

Define R = (RluRl-1) ~. 
The relation R is called the forward and backward reachabilitz o~ 

N (or simply reachabilit;f ralation of N). If N is not understood 

we shall write RIN, R N . Note that R is an equivalence relation. 

For every ~2 P, let [M]R (or simply [~]) denote the equivalence 

class of R containing M (compare Petri(1978) ). 
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By a marred simple net (abbr. ms-net) we mean any triple: 

~N = (T,P,Mar), 

where: N=(T,P) is a s-net, 

Mar{ 2 P is a set of .markings of IvL~, 

U [M]R 
MeMar N 

A ms-net MN=(T,P,~r) is called ~ iff: 

(vM{~r) mr = [NRN. 

We shall prove in the sequel that compact marked nets have very 

regular properties. Petri (1978) has restricted his atwention to 

compac~ news, and has assumed ~ha~ every Condition-Event-System is 

compact in the sense defined above. 

A transition a T is called fireable ~ 

e~l,~r) "a-~M l, a'.cM 2. 

A ms-net is called locally fireable if every ~zansiwion is fire- 

able, and every locally fireable and compact ms-new is called fir__~e- 

abl___2.e • 

.Example 6.!. 

Consider the following ms-ne$ Ivt~=(T,P,Mar). 

g~:~] t~:% b.1 [" ." ~./ 
- - -  " - Mar = { { [ . . , g ' : a ] ,  [ ~ ' : a , b ] } ,  

{ [ a : d l ,  [a,b:d]} , 
{[c'bl} }. 

.k~.Eb,~,c ] 
Observe what this ne$ is compacw, but the Transition "b" is not 

fireable, so this ne$ ia no~ locally fireable. [] 

A ms-ne~ MN=(T,P,Mar) is said to be safe iff 

(VC { 2 P ) ( V a { T )  

The net from ~xample 6.1 is safe. 

Let MN=(T,P,Mar) be a ms-ne~ and lew (T,P) be an elemenwary net. 

Each ms-net of the ~bove form will be called marEed elementaz~ ne~. 

It turns out that in the case of marked elementary nets, safeness 

describes very regular structure of markings. 
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Lemma 6.!. 

A marked elementary net II~N=(T,P,~r) is safe <=-9 Mar = [{p] I P~P]" 

Lemma 6.2.. 
Every safe marked elementary net is compac~ and fireab!e. • 

7. Concurren cy-like relations. 

In this section we recall and modify some notions and results 

from Janic~i (1979) and Pet!~i (1977). 

Let X be a set, and let id~ X~X be the identity relation. 

A relation C~X~X is called the sir-relation (from symmetric 

and i_xzreflexive) iff .~ 

1. (~a,b~X) (a,b)~C ~=~ (b,a)~ C, 

2. (va,b~ X) (a,b)~C =~ a # b. 

Let C be a sir-relation. 

Define the families of subsets of X: kens(C), ~-~(C) in the 

following way (compare Petri(1977)), 

AE kens(C) ~@ 1. (Va,b~A) (a,b) ~ C ~ id, 

2. (Vc~A)(Ba~A) (a ,c)~  C, 
ACk-~(C) @@ 1. (Va,b~A) (a,t)4C, 

2. (Vc~A)(~a~A) (a,o)~ c.  

Cor, ql!ar2 7 . 1 .  
For every Sir-relation C~X~X, kens(C), k~-~(C) are covers of X.I 

We shall now consider some connections between covers and sir- 

relations. Let coy be a cover of X, and let sir(coy) 5 X~X be 

the relation defined as follows: 

(a,b)~ sir(coy) @@ {AIA~cov & a~A)~ ~AlA~cov &beA] = ~ . 

The relation sir(coy) is called the sir-relation defined by the 

covet coy. 

A sir-relation C is called K-dense (compare Petri(1977), Janic- 

ki(1979)) iff: (~A~kens(C))(VB~kens(C)) A~B # ~ • 

A cover coy of X is called minimal iff 

(VAEcov) coy - {A} is not a cover of X. 

Theorem 7-2- 
Let C~( X~X be a sir-relation. 

If kens(O) is a minimal cover then O is K-dense. • 
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8. Concurrency (coexistenc q~_defined bY the whole structure of net. 

In this section we shall show in which way the static (unmarked) 

structure of nets describes the concurrent and dynamic structure of 

nets. We shall restrict our attention to proper nets. 

Let N=(T,P) be a proper simple net. 

Assume that elem(N)=[Nl,...,Nm) , where Ni=(Ti,Pi) for i=!,...,n. 

Define coy(P) = {P1,...,Pm} . Of course, coy(P) is a cover of P. 

Let coexN~ pxp be the following relation: coex N = sir(coy(P)). 

Other words: (a,b)~coex N ~@ {Pi I a~Pi) n{Pil beP i) = ¢ • 

The relation coex N will be called the coexistency defined by the 

whole structure of the net N. This relation describes the concurrent 

structure defined by N. When N is the net of occurrences (see Petri 

(1977) and Petri(1978)) then coe~ is the concurrency relation 

from Petri (1977) restricted to places and minus identity. 

Theorem 8.1. 

For every proper net N=(T,P), the triple (T,P,Kens(coexN)) is a 

marked simple net. • 

The above theorem enable us Co introduce the following notions. 

For every proper net N=(T,P), the marked net (T,P,kens(coe~q)) will 

be denoted by the symbol ~, and the marking zens(coe~T ) will be 

called natural. The marked net ~ = (T,P,kens(coexN)) will be called 

na~ur@lly marked net. Generally, a marked net MN=(T,P,Mar), where 

N=(T,P), is called nasu~ally marked if N is a proper s-net and 

Mar=~ens (coeds). 

The basic properties of naturally mar~ed ne~s are whe following. 

Theorem 8,2. 
For every proper net N=(T,P), the ms-ne~ N=(T,P,Kens(ooe~) 

is safe and locally fireable. • 

Lemma 8.~. 

For every proper net N=(T,P), 

ooex N is K-dense =$ kens(coexN)=cov(P ). • 
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Tae property kens(coexN)=cov(P) means that whe decomposiwlon 

of net into sequential components given by the "topological" suruc- 

ture and the decomposition given by the natural concurrency struc- 

ture are identical. The E-density of coex~ is Inwerpre~ed as ~he 

fact tha~ every sequential component of the ne~ N (i.e. the system 

which is represented by N) has one common elemen~ with any "case" 

of tha~ net (i.e. system). For more details on ~he sL1bject of K- 

density the reader is advised to refer to Petri (1977), Petri (1978), 

Best (1977), Janicki (1979). 

Corollary 8.4. 

For every proper net N=(T,P), if cov(P) is a minimal cover of P 

then coex N is K-dense and kens(coexN)=CoV(P). • 

T~eorem 8.~. 
For every proper net N=(T,P), if 

then coex N is K-dense. 1 

~=(T,P,kens(coexN) ) is compact 

From ti~ above theorems i~ follows that nawuzally marked com- 

pact ne~s have very regular structure. This allows us ~o propose 

the following definition: every compac~ and naturally marked new 

will be called r eRular. 

Corollary 8.6. 
For every elementary marked ne~ N=(T,P): coex~=#, ke'n-s(coexN)=P, 

" n kens(coexN)=I~IpeP ~ , and N=(TpP,ke s(ooexN)) is regular. 1 

Now we consider wwo examples which represent different aspects 

of connections between the relation ooex N and the net N. We shall 

define the relation coex N by means of graphs. 

Example 8.1. 
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In this case : elem(N)=atoms<N)=[Ni,N2,N3} . The graph representing 

the relaZion coex N is of the following form ( the line .... deno- 

- -  denotes the relation coexN-id ). tee coex N, the line 
2 

Properties of the net N are the following: 

kens(coexN)= {[1,4,59,[i,3},[2,4)~, 

kens(coexN)= { {1,2), [5,4), [2,3,5)) , 

coex N is K-dense, ken s(coexN)=Cov(P) , 

~en-{(coexN) is a minimal cover of P. 

The ms-net N=(T,P,kens(coexN)) is compact, safe and fireaole; other 

words ~he ms-net N is regular. [3 

Example 8.2. 

N=(T,P) N2 

Here elem(N)={N1,N2,N~atoms(N), and the graph o f  coex N is the 

following. 

(Z, 3 Remaining properties of N are the following: 

kens(ooe~)= {~1,4~, {3,5~, {~,5}, {2}, [6}}, 
kens(coexN)= {{1,2,3,6} , {2,3,4,6]}, {l,2,5,6}), 
coy(P)= {{1,2,5},{2,3,4,6.~,{1,2,5,6}}, 
~ens<coexN) ~ cov(P), 

coex~T is not K-dense, because 

{4,5} n {1 ,2 ,4 ,6}  = ~ 
and ~ens(coexN) is not a minimal cover of P. T~ Zhis case the ms- 
net N=(T,P,kens(coexN)) is safe and locally fireable, but not com- 

pact, therefore it is not regular. [] 

~.CQncurrency(coexistency) defined b~ markings. 

In this section we shall show in which way markings do influence 

on the concurrent structure of nets. 

Let I~N=(T,P,Mar) be a marked simple net, where N=(T,P) is not 

aeces sarily proper. 
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Let coexlvla r ~ P~P be the relation defined in the following way: 

(vp,q~P) (p,q) ~ coexNa r ~-~ p#q & (SM*~ar) {p,q~ ~I. 

The relation coeX~ar is called the coexistsncy defined by markings. 

Lemma 9.1. 

For every naturally marked net N=(T,P,I~r): coeXNa r = coex N .[] 

We aim to formulate when a marked net is regular. To this end 

we must introduce some new notions. 

A ms-net NN=(T,P,Mar) is called K-dense iff 

A ms-net I~T=(T,P,Mar) is called i~-compatible 

kens(coeXMar) = Nar. 

A ms-new NN=(T,P,Mar) is said wo be e-consistent iff 

~Ni=(Ti,Pi) E elem(N))(~M~Mar) IMnPil ~ 1 (where N=(T,P)). 

coexMa r is K-dense. 

iff 

T~e first prope~wy says ~hat every sequentlal componenw descrm- 

bed by the markings class of the ms-net and every "case" described 

also by tha~ markings class have one elemen$ in common. The second 

property means that the class of all "cases" described by the con- 

currency relation coexMa r is identical with the class of all markings 

of that net, that is to say the coneurrncy relation coeX~ar is com- 

patible with the family Mar. And,the third property says that every 

elementary net contained in N and every marking have at most one ele- 

ment in common, then the class Nat is consistent with the family of 

all elementary subnets of the net N. 

The ore m 9 • 12 • 

If NN=(T,P,I~ar) is compact, safe, fireable, K-dense and c-compatible 

then the s-net N=(T,P) is proper. [] 

Lemma 9.3- 
If NN=(T,P,Nar) is compact, safe, fireable, K-dense and c-compatible, 

th~n for every A E kens(coeX~ar) the pair (left(P),P) is an elemen- 

tary simple net. I 

Theorem 9.4. 

A marked net is regular @3 it is compact, safe, fireable, K-dense, 

c-compatible and e-consistent. [] 
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Example 9. i. 

Consider the following four ms-nets (all of them will be denoted by 

(T,P,Mar)). The first of them is safe, locally fireable, K-dense, 

but it is no~ compact, c-compatible and the s-net (T,P) is not pro- 

per. The second net is compact, safe, fireable and K-dense, but it 

is not c-compatible, and, of course, the net (T,P) is not proper. 

The third net is compact, safe, fireable and c-compatible, but it 

is not K-dense, and (T,P) is not proper. The fourth ms-net is com- 

pact, safe, fireable, K-dense and c-compatible, the net (T,P) is 

proper, but it is not e-consistent, then it is not regular. 

the graph of coexl~ar 
2 

~/ \ \\3 c°exMar 
~ ~  coex}:ia r-id 

the graph of coex~,/a r 

4 2 

the graph of coex~.~a r 
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M a r  = 

z~  7.~T3 

[] 

10. Final comment. 

Treating concurrent systems as the superposition of sequential 

subsystems or primitive concurrent subsystems is, to author's mind, 

the natural way of analysis and synthesis of those systems. This 

paper is an attempt to formal approach to this problem. Similar 

problems, but from a different point of view are considered in 

Lauer et al. (1978), Janicki (1978), Knuth (1979). 
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