AN ALGEBRAIC STRUCTURE OF PETRI NETS

Ryszard Janicki™

Abstract.

The paper concerns algebraic properties of Petri nets.
A wide clags of nets, called gimple nets, is introduced and a
lattice of these nets is defined, It turns out that nets represen-
ting sequential systems and processes are atoms of this lattice,
and this fact provides the natural way of building nets representing.,
concurrent systems ag the superposition of nets representing sequen-
tial system components.

Tne notion of concurrency relation for large class of nets
including cyclic nets is precisely defined.

An influence of static, i.e. unmarked, structure of nets on
the class of "proper" markings is discussed. The notion of natural
markings, i.e., markings defined by the static (unmarxed) structure
of nets is introduced.

Properties of safeness, compactness, fireability and K-density
of marked nets are discussed. A classification of nets is proposed
and an attempt of The algebraic definition of net with propervies
required from "well defined" dynsmic concurrent system is given.
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1. Introduction.

Petri nets theory constitutes an axiomatic approach towards
the phenomena of concurrent systems and processes (see Petri(197(),
Petr1(1978), Mazurkiewicz(1977) and others). Properties of Pelri
nets were tryed to prove by means of different methods with diffe-
rent results.

One of the basic research methods of science is the partition
into indivisible components (atoms )., Then we can describe proper-
ties of the whole structure by means of the properties of compo-
nents. Our approach is the following: we construct a gpecial class
of Petri nets (ecalled simple nets), rules of deconposition into
subnets, and we describe a class of indivisible nets -~ called atoms.
We also define the operation which makes possible a construction
of the more complicated structures from atoms.

Tt turns out that nets representing sequential systems and
processes, called elementary in the paper, are atoms, and that nets
created by elementary nets (culled proper in the paper) have much
properties required from nwell defined" concurrent systems (safe-
ness, fireabilitvy and so on).

In the paper a lattice of unmarked nets is defined and diffe-
rent notions of concurrency relation (see Patr1(1977), Petri(1978),
Janicgi(1979) ) for large class of nets including cyclic nets are
introduced.

An influence of static, unmarked structure of nets on the class
of "proper" markings, and properties of natural markings, i,e., mar-
kings defined by the static nes ssructure, are discussed.

The motivation of the approach we have presented is the obser-
vation that all Petri nets representing real, well defined con-
current systems or processes can be treated ag the superposition
of sequential components,

Consider two very simple examples ( compare Mazurkiewicz(1977)),
namely, & reader-wriver concurrent scheme and a parallel-addition
scheme, Note that the reader-writer scheme is the superposition of
three sequential components: the reader, the synchronizer and the
writer} and the parallei-addition scheme consists of two sequential
schemes: the control of addition and the addition.
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The paper is an attempt to drove some fundamental properties
of net superposition, net decomposition, and nets created by these

operations.

In the paper we shall use the standard mathematical notation
(1Xl denote the cardinality of X, ¥ denote the empty set, and so
on)
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2. Simple nets.

In this section we recall trom Janicki (1978) +the basic notion
of tnis paper, namely the notion of simple net. This definition
and the notation used in this section are base for the further con-

giderations.

For every set X, lev leftiXxX+>X, right:XxX~>X be the follo-
wing functions:

V(x,y)e XxX) left((x,y))=x, right((x,¥))=Y.

By a gimple net (abbr. g-net) we mean any pair
N = (T,P),
where: T is a set (of transitions),
P& ZTX2T is a relation (also interpreted as a setv of places),
aeT)3p,q¢P) acleft(p)n rightlq),
P=¢ &> T=f.

In the paper we restric. our attention to finite s-neuws, Instead

of ({‘al,".’aﬂ},{‘bl’ soe ’bm}) é P we shall write
[al,...,an:bl,...,bm} € P . Every s-net N=(T,P) can be graphically
represented using wvne graph

an:bl,...,bm]

to denote the fact thawv [al,...,an=bl,...,bm] € P.

Example 2.1,
Let N=(T,P), where T= {a,b,c,d,e,f,a},
p = {[g:a], [a,2:0,8], [n:g],[ese] ,[brc] ,[b:a] , [aze] Jeatl} .

The pair N=(T,P) ig a s-net and it can be represented by the follo-~

wing graph.

#:a] O—{q]
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In the literature nets are usually defined differently, star-
ting with two disjoint sets transitions and places, and introducing
a flow-relation between them (compare Petri(1977), Petri(1ly78)).
This approach is luckier in the sense that it makes more easy to
handle operation among nets.

3, A lattice of sgimple nets,

In this section we shall describe the algebraic structure of
gimple nets.
Iet ©SNETS denocte the family of all s-nets,
let = be the relation in SNETS defined as follows:
NJ_:(T].’PI) & sz(T2:P2> &ED Plé PZ'

Note that L ig a partial ordexr yelation and Nl§}ﬁ2 implies

Tls’fz. Ilev sup{Nl,Nz}, inf{Nl,NZ} denote respectively the leasy

upper bound and the greatest lower bound with respect o the rela-
tion g .

Theorem 3.1
For every le(Tl,Pl), N2=(TZ,P2)€ SWRTS 2

sup{Nl,Ng} = (TUT,,PVP,),
1nf{Nl,N2} = (left(P),P), where P is the greatest set

fulfilling the condition P& ijPz & left(P)=right(P). R

Define the following operations:
N, = sup{N, N} , NN, = inf{Ny N, ,

\UN = sup{N|Nes} , NN = inf{N| Nes} .
NeS Jes

Theorem 3.2.
The algebra (SNETS,U,n) is a lattice with the greatest lower

bhound (ggg)- |

It turns out that the lattice (8SNETS,u,n) is not distributive,
¥ow we introduce the atomic structure of simple nets,

A simple net N=(T,P) is said to be an aton iff:

1. ¥ £ (4,9,

2, (NeN) = @ =¥8 or N=(g,9 ).
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Por every s-net, let atoms(N) denote the set of all atoms con-
tained in N,i.e.
atoms(N) ={N' | NCN & N’ is an atom} .

A simple net W is said to be atomic iff: N = W N,
e atoms{N)

Sxamvle F.le
Let N, ¥ be nets defined below. Note that atoms(N)={N'} and N'# N,
g0 the net N is not atomic,

[b:d.] b’a-]
N= [a] [b] N'= [a] [b]
OO
][] fast] a

Example 3.2.
let N,N,,N, be nets defined below, In this case atoms(N):{Nl,Nz} s

and N = NluN2, thus N is the atomic net.

ftre]

Let N=(T,P) be a gsimple nes. To simplify the considerations,
we shall use the following well known notation:

1. (VpeP) p° = right(p), "p = left(p),

2, (vael) a* = {peP \ a&left(p)}, ‘a = {pé?l aeright(p)} .
0f course, (VvpeP) p = ("p,p"). Note that the above op%rations are
correctly defined for every pair (T7,P), where pPgLa2x2-,

Lemma 3.3%,

A pair (1,P), where P& ZTxZT is a simple net iff:
(VaeT) a* £g8 & atg .M

let Fg T*PuVPrT be the following relationt
(wx,ye TuP) (x,y)€F &= x€left(y) or yeright(x).
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Note that for every s-net (T,P), the triple (7,P,F) is a standard
representation of Petri net (see Petri(1977), Petri(l978)).

4 simple net N i1s eaid to be connected iff
Wx,ye TvP) (x,y) € (Fua™hy*,

Other words, a net is connecied if its graph is connected.

Theorem 3.4.
Ivery atom is connected. M

4, Blementary ness,.

Now we define simple nets which represent sequential systems
and pnrocesses. We shall prove that these nets are special kind of
atoms,.

A simple net N=(T,P) is said to be elementary iff

L. (Vaer) |[*al = |a’l =1,
2. N ig cannected.

Bxamples of elementary nets are given below.

[d ,{- H G.}

fu]
O+a-O61+0O
[@:a] fab] [(b:¢]

Theorem 4,1.
Every elementary pet is an atom. W

0f course, not every atom is an elementary net. For example, the
below simple net is the atom, but it is not elementary,

[a:c]

[a}~O
[0:a8) o OL:¢l

For every s-net N, let
elem(N) = {N’ | M'eN & N’ is elementary | .

0f course, elem(N)g atoms(N) , and generally this inclusion is pro-
per one, Note thet every elementary net is equivalent witn a totally
labelled state machine.
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5+ Proper nets,

In this section we introduce a class of nets generuted by su-—
perposition of sequenvial, i,e, elementary, nets. We shall prove
in the sequel that this clags of s-nets defines marked nets which
have much properties required from "well defined" concurrent dyna-
mic gystems,

A s-net N is said to be proper iff: N = \J {¥'| Weelen(®} .
0f course, every proper net is atomic, but not every atomic net is
Proper.

Corollary 5,1,
A a-net N=(T,P) is proper ¢ there is a set {Nl"“’Nm} of

elementary nets and N = Nlu ves ¥ Nm « B

There are such proper nets that elem(X)Zatoms(N)., Let PNETS denote
the family of all proper nets, It can be easily proved that the fa-
mily PNETS is closed under the operation "yt but it is not closed
under the operation "n", The net from Example 5.2 is proper, the
net congsidered in Section 6 is not proper.

6., Marked nets.
In this section we shall extend the approach we have presented

to marked nets. Unmarked nets represent the static structure of 4y=-
namic systems, while marked nets represent the dynamic structure

of those systemg. We aim to show in which way the static structure
describes the dynamic structure of concurrent systens and vice versu,

let N=(T,P) be a simple net.

Let Rlg ZPXQP be the following relation:

(M) ,M,) €RL &= (@ael) My-"a = Mp-a® & *agl; & a'S M, .
The relation Rl is called the forward reachability in one step.
Define R = (RLuRL™Y%
The relavion R is called the forward and backward reachability of
N (or simply reachability ralation of ¥)e If N is not understood
we shall write RlN’ Ry » Note that R is an equivalence relation.

For every Mezp, let [M]B (or simply [M]) denote the eguivalence

class of R containing M (compare Petri(1978) ).
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By a marked simple net (abbr., ms-net) we mean any triple:
My = (T,P,Mar),
where: N=(T,P) is a g-net,

Mar & ZP is a set of markings of IN,
Mar = \v} [M]R .
MeMar ¥
A ms~-net MNV=(T,P,Mar) is called compact iff:
(YMeMar) Mar = [NQR .
X

We shall prove in the sequel that compact marked nets have very
regular properties. Petri (1978) has restricted his atvention to
compacs nets, and has asgumed that every Condition-Event~System is
compact in the sense defined above,

A trangition a T is called fireable &
(:‘!Ml,.M2 ¢ Mar) *ac¢ Ml, a*g My

A ma-net is called locally fireable if every transition is fire-

able, and every locally fireable and compact ms-net is called fire-
able.

Examgle 6. 1.
Congider the following ms-net MN=(T,P,Mar).

Mar = { {[#:a],[g22,0]],
{[a:d],[a,b:d]},
{[v,azc]}, {[cenl}}.

Observe that this net is compact, but the transition "b" is not
fireable, so this netw ia not locally fireable, O

A ms-net MN=(T,P,Mar) is said to be safe iff
e e 2Py (waer)
(*anC=g & @ MeMar) °avCel) & (a*nl=g & (@lNeMar) a’vCgH) .
The net from Example 6,1 is safe,
Tet MN=(T,P,Mar) be a ms-net and let (T,P) be an elementary net.
Rach ms-net of the above form will be called marked elemeniary new,

It turns out that in the case of marked eslementary nets, safeness
describes very regular structure of markings.
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lemma 6.1,
A marked elementary net MN=(T,P,Mar) is safe ¢&5 NMar = {{p} \ peP}.
n

Lemma 6,2,
Every safe marked elementwary net is compact and fireable, M

7. Concurrency~like relationsge.

In this section we recall and modify some notions and results
from Janicki (1979) and Petri (1977).
ILet X be a set, and let 1d¢XxX be the identity relation.

A relation O¢XxX is called the sir-relation (from gymmetric
and irxreflexive) iffi
1. (va,bex) (a,b)C &= (b,a)€C,
o, (va,beX) (a,b)C => a # b.
Let C be a sir-relation.
Define the families of subsets of X: kens(C), kens(C) in the
following way (compare Petri(1977)),
A€ kens(C) &= 1. (va,bér) (a,b)eCvid,
2. (vefa)(3aeh) (a,0)¢C,
A€ Tons(C) &3 1. (va,ber) (a,b)éC,
2, (vegA)(Faed) (a,c)€C.

Gorollary Tel.
For every air-relation C¢ X#X, kens(¢), kens(C) are covers of X.K

We shall now consider some connections between covers and sir-
relations. Let cov be a cover of X, and let sir{cov) ¢ X»X Dbe
the relation defined ag follows:

(a,b) € sir(cov) &> {AlAecov & acsyn {AlAccov & beA) =g .
The relation sir(cov) is called the gir-relation defined by the

cover COV.

A sir-relation C is called EK-dense (compare Petri(1977), Janic-
ki(1979)) iff: (vA€kens(C))(vBekens(C)) ANB # .
4 cover cov of X is called minimal iff
(vAecov) cov - {A) is not a cover of X.

Theorem T.2.

Let CCX*X be a sir-relation,
1f %ens(C) is a minimal cover then ¢ is K-dense., W
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8, Concurrency (coexistency) defined by the whole structure of net,

In this section we shall show in which way the static (unmarked)
gstructure of netg describes the concurrent and dynesmic structure of
nets, We shall restrict our attention to proper nets,

Let N=(T,P) be a proper simple net,
Assume that elem(N)={Nl,...,Nm}, where W.=(T,,P,) for i=l,...,n.

Define cov(P) = {Pl,...,?m} . 0f course, cov(P) is a cover of P,
Let coexy¢ PxP be the following relation: coeXy = gir(cov(P)).
Other words: (a,b)ecoex, &= {», 1 aePi}r\{Pi[ bePi} =g .

The relation coeXy will be called the coexistency defined by the
whole structure of the net N. This relation describes the concurrent
structure defined by N, When N is the net of occurrences (see Petri
(1977) and Petri(l978)) then coexy is the concurrency relation
from Petri (1977) restricted to places and minus identity,

Theorem 8,1.
Por every proper net N=(T,P), the triple (T,P,Kens(coexm)) is a
marked simple net. M

The above theorem enable us to introduce the following notions,
For every proper net N=(7,P), the marked net (T,P,kens(coexN)) will
be denoted by the symbol N, and the marking kens(coexy) will be
celled natural. The marked net I = (T,P,kens(coexy)) will be called
naturally marked net. Generally, a marked net M¥=(T,P,Mar), where
N=(T,P), is called naturally marked if N is a proper s-net and
Mar:xens(coexN).

The basic properties of naturally marked nets are the following.

Theorem 8,2.
For every proper nets N=(T,P), the ms-nev ﬁ=(T,P,Kens(coexN)
ig safe and locally fireable, B

Lemma 8,3,

For every proper net N=(T,P),
coexy ig K-dense = kens(coexN)=cov(P). »
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The property EEEE(coexN):cov(P} means that the decompositvion
of net into sequensisl components given by the "topological! ssruce
ture and the decomposivtion given by the natural concurrsncy struc-
ture are identical., The K-density of coex, is 1nterpreted as the
fact that every sequential component of the net N (i,e. the system
which is represented by N} has one common element with any "cage"
of that net (i.e. syssvem), For more details on the subject of K-
density the reader is advised to refer to Petri (1977), Petri (1978),
Best (1977), Janicki (1979).

Corollary 8.4,
For every proper net N=(T,P), if cov(P) is a minimal cover of P
then coexy is K-denge and kens(coexN)=cov(P). | j

Theorem 8.5.

For every proper het N=(T7,P), if ﬁ=(T,P,kens(coexN)) is compact

then coexy ig K-denge. B

Trom tl1s above theorems it follows that naturally mariked com-
pact mets have very regular structure. This allows us to propose
the following definition: every compact and naturally marked nev
will be called regular.

Corollary 8.6.
For every elementary marked nev N={T,P): coexNzﬁ, kens(coexN)=P,
keﬁs(coexN)={{p}lpeP} , and N=(7,P,kens(coexy)) is regular. M

Now we consider twWo examples which represent different aspects
of connections between the relation coeXy and the net N. We shall
define the relation coeXy by means of graphs.

Example 8.1,
{0: a] [b.-a.} [({::o.} {b:a] {b:a]
0RO, ©. (3

eﬂgﬂ EIEE!E

) @
[a:¢] Bvﬂ [@dﬂ @uﬂ Euﬂ [a:6] [6:5)
e —’
Ny=(T3,%)

\-—N—-ﬁ—/
N=(T,P) Ne=(T, %) Np=(Tp,%

OMENO
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In this case @ elem(N)=atoms(N)={N1,N2,N3} . The graph representing
the relation coexy is of the following form ( the line — —-——deno-

tes coexy, the line
2

denotes the relation coexN-id Ve

Properties of the net N are the following:
kens (coexy)= {(1,4,5},{1,3},{2,4}},
'Eé'ﬁ—s(coexN)= {{1,2} ’ {3:4} :{2:3,5}} s

coex; is K-dense, EEEE(coexN)=cov(P) ’
EEEE(coexN) is a minimal cover of P.

The ms-net ﬁ:(T,P:kens(coexN)) is compact, safe and fireavlej other
words the mg-net N is regular, [

Example 8,2.
[@:a,b] [®-ab]

[#:q,b]

Here elem(N):{Nl,Nz,Né}#atcms(N), and the graph of coexy is the
following.

;25 3 Remaining propertvies of N are the following:
kens(coexy)= {L,4, 3,5, 4,51, 2, {61},
m(coexxk{(l,%%ﬁ},{2,3,4,6},{1,2,5,6}},
cov(P)= {{1,2,3},{2,3,4,6},1{1,2,5,6}},
Egﬁg(coexﬂ) £ cov(P),
coeXy is not K-dense, because

{4‘:5}n {1;294:6} =g,
and Egﬁg(coexm) is not a minimal cover of P, In this casze the ma-
net ﬁ=(T,P,kens(coexN)) is safe and locally fireable, but not com-
pact, therefore it is not regular. I

9, Concurrency (coexigtency) defined by markings.
In this section we ghall show in which way markings do influence
on the concurrent structure of nets,

Let MN=(T,P,Mar) be a marked simple net, where N=(7,P) is not
necessarily proper.
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Let CoeXy . § PxP be the relation defined in the following wayt

(vp,a¢¥) (p,q) € coexy, . &> DpFe e @Melar) {p,algi

The relaticn COBXyeo . is called the coexistency defined by markings,.

Lemma 9.1,

For every naturally marked net N=(T,P,Mar): coex

yar = ¢°°%y oM

We aim %o formulate when a marked net is regular, To this end

we must introduce some new notions,

A ms-net MN=(T,P,Mar) is called K-dense iff coex, . is K-dense.

A ms-net MN=(T,P,Mar) is called c—compatible 1ff
kens(coexMar) = Nar.

A img-net MN=(T,P,Mar) is said vo be g-consistent iff
CVNi=(Ti,Pi)€ elem(N)) (vMeMar) iMnPils 1 (where N=(T,P)).

The tirst property zays that every sequential component degcri-
bed by the markings class of the ms-net and every "case" described
also by that markings class have one element in common, The second
property means that the class of all "cases" described by the con-
currency relation CooX o is identical with the class of all markings
of that net, that is to say the concurrncy relation CO8Xpro . is com=-
patible with the fawmily Mar, And,the third property says that every
elementary net contained in N and every marking have at most one ele~
ment in common, then the class Mar is consistent with the family of

all elementary subnets of the net N.

Theorem 9.2.
If MN=(T,P,Mar) is compact, safe, fireable, EK~dense and c-compatible

then the g-net ¥=(T,P) is proper. M

Lemma 9,3.

If ¥W§=(T,P,Mar) is compact, safe, fireable, K~dense and c-compatibdle,
then for every A€ kens(coexmar) the pair (left(P),P) is an elemen-
tary simple net. M

Theorem 9.4.
A marked net is regular &= it is compact, safe, fireable, X-~dense,
c~compatible and e-congistent.l
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Example G.1.

Consider the following four ms-nets {(all of them will be denoted by
(T,P,Mar)). The first of them is safe, locally fireable, K-dense,
but it 1s not compact, c-compatible and the s-net (T,P) is not pro-
per, The second net is compact, safe, fireable and K-dense, but it
is not c-compativle, and, of course, the net (T,P) is not proper.
The third net is compact, safe, fireable and c-compatible, but it
igs not K-dense, and (T,P) is not proper. The fourth mg-net is com-~
pact, safe, fireable, K-dense and c-compatible, the net (T7,P) is
proper, but it is not e-consistent, then it is not regular.

var ={{1y,{2,3},{2,4},{3,4} :{5}}

&
the graph of COBXy o,

2
ﬂi\\ —— — —  goex
(,4 : \\ \\3 Maxr
~ f B —— CoeXMar"ld
! \ /
55 4

liar = ({1,2} ,{1,3),{2,3%, {4}}
the graph of coex
4 2

~

A N

9.5 3

lar

0.9’9 war ={{1,2,3, {5,4,%,01,5,5, {3,6}}

e o the graph of coeXy ..

® O, y “";‘@\3
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o¥oVo /N
BIE mar ={{1,3,5},{2,4,5, {2,3,6}} 1 da¥al 4
2 @

(5 Y
é 5 .
10, Final comment.

Treating concurrent systems ag the superposition of sequential
subsystems or primitive concurrent subsystems is, to author’s ming,
the natural way of analysis and synthesis of those systems, This
paper is an attempt to formal approach to this problem, Similar
problems, but from a different point of view are considered in
Laver et al. (1978), Janicki (1978), Enuth (1979).
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