CONCURRENT OPERATIONS IN LARGE
ORDERED INDEXES(1)

Y. S. Kwong{2) and D. Wood(2)

In this paper we present a new solution to the problem of
supporting concurrent operations in B-trees, using a technique
called side-branching to provide a higher degree of concurrency
than previous solutions in the same category. We aiso propose a
new data structure, T-trees, as an alternative to B-trees for
representing very large ordered indexes in database applications.
A T-tree offers not only an elegant structure for storing a huge
amount of data, it also permits a consistent view and uniform
treatment of concurrency at both the page tree and the page node
levels.

(1) : Work supported under Natural Sciences and Engineering
Research Council of Canada Grants Nos. A-3042 and A-7700.
{(2) : Unit for Computer Science, McMaster University,

Hamilton, Ontario, Canada, L8S 4K71.



208

1. INTRODUCTION

With the ever-growing influence of databases in our every-
day life, their effective organization and maintenance which
guarantee efficient access are becoming increasinagly important.
Balanced search trees such as 2-3-trees and AVL-trees are usuaily
used for a small amount of data to ensure Jogarithmic performance
in searching, insertion and deletion. However, when an enormous
amount of information is involved, data are often organized into
pages and stored in direct access media such as disks. If these
pages are linked together as a multiway tree and are transferred
into main memory when necessary, we refer to such a structure as a
page tree. One such versatile data structure called the B-tree was
proposed in [Bayer and McCreight] for representing large ordered
indexes of dynamic random access files. In view of the rapid decline
of hardware costs it is very unnatural and much too inefficient to
restrict large databases to sequential operation. The problems of
how best to introduce concurrency and to what extent and at what
cost should the degree of concurrency be maximized are challenging
and interesting topics for investigation. Their satisfactory
solution will have considerable practical implications in con-
current programming, database design and applications.

In this paper we investigate the problem of permitting an
arbitrary number of processes to operate concurrently on a database
stored as a B-tree structure. A new solution is proposed together
with some techniques which might alsc be applicable for handling
concurrency in other data structures. We also show that this
solution can be extended to a tree-of-trees structure called the
T-tree without any increase in overhead but allowing a uniform view
and consistent treatment of concurrency at both the page tree and
the page node Tevels.

2. PRELIMINARIES
In this section we first define the B-tree structure and

then present some preliminaries about the problem of supporting
concurrent operations in B-trees.

2.1. B-TREES
Definition 1: A B-tree of order m {23) is a page tree which
satisfies the following properties: (1) Every node has at most




209

m sons. (2) Every node, except for the root and the leaves, has
at least [m/27 sons. (3) The root has at least two sons. (4) A
nonleaf node with j+1 sons contains j keys and can be represented

as follows: .

Sl I

where the Pi's are pointers to its sons and the Ki‘s are keys such
that all keys in the subtree pointed to by Pi—l(Pi) are less than
{greater than) Ki for 1 < 1 < j. (5) A1l leaves appear at the
same level and they are the same as nonleaf nodes except that all
pointers are nulil.

In the Titerature {e.g. [Bayer and McCreightl, [Knuth])
B-trees are often assumed to have sequential allocation of keys
and pointers in page nodes. In this paper we shall also adopt this
convention. However, it should be noted that B-trees as used here
correspond to B-S-trees in [Kwong and Wood, 1978].

2.2 THE CONCURRENCY PROBLEM
We want to allow an arbitrary number of processes to operate
concurrently on a database stored as a B-tree. These processes are

assumed to be asynchronous, each of which is progressing at a
finite, but undetermined speed and is performing one of the
following operations:
SEARCH (K,T): to determine whether the key K is in
some node of the tree T.
INSERT (K,T): to add the key K to the tree T if K
is not already present in the tree.
DELETE (K,T): to remove the key K from the tree T
if K is present in the tree.
The problem we are facing is how to support concurrent operations
so that the degree of concurrency can be increased as far as is
reasonable subject to the following constraints:



210

(1) The integrity of the data and the structure of the B-tree must
be preserved.
(2} There should be no major modifications of the data structure.
{3} Implementation details must be invisible.
For obvious reasons condition (1) must be satisfied. It should be
noted that condition {2) only stipulates that no major modifications
of the B-tree structure are permitted, however, it does not rule out
minor and natural extensions which simplify the solutions to
difficult concurrency problems. Condition (3) is imposed to
enforce the distinction between an algorithm and its implementa-
tions.

Basically a SEARCH process reads the nodes along a path
from the root towards some particular leaf node. It makes no
changes whatsoever to the data or the structure of the tree. For
this reason we feel justified in calling it a pure-reader. How-
ever, an INSERT or a DELETE process may modify the data as well
as the structure of the tree. We therefore call it an updater.
Usually an updater has to go through the following two phases:

(1) searching: read in a top-down manner from the root in
search of the appropriate place for adding or removing
a keys

(2) restructuring: add or remove a key and then rebalance the
tree if necessary.

An updater in its searching phase is referred to as an
updating-reader, to distinguish it from a pure reader which is also
reading. However, once it gets into its restructuring phase, we
call it a writer. For convenience, we also call a process a reader
if it is e ither a pure-reader or an updating-reader and the path
from the root to a leaf as determined by a process on ifts passage
to the frontier the access path of the process.

2.3 CONCURRENCY CONTROL
In order to regulate concurrent accesses we need a

concurrency control which associates with each node several types
of lTocks to be used by processes operating on the node and a
compatibility and convertibility graph {CCG) specifying a relatiaon
which must hold among the various types of locks. The CCG is a
directed graph whose vertices are labelled with the different types
of locks and whose edges are used to represent the compatibility




21

and convertibility relation (CCR) among the locks. For any two
vertices o and 8 (which need not be distinct) a solid edge directed
from o to 3 means that a process with a B-lock on a node would

permit another process to put an o-lock on that node. A broken
edge from o to B indicates that a process holding an a-lock on a
node may convert it into a B-lock. An undirected edge between o
and g represents two directed edges from o to 8 and from B to «.

In our solution we shall use the three types of locks {(read-locks,
write-locks and exclusive-Tocks) proposed in[Bayer and Schkolnick]
with 1ts CCG as shown below. In the segquel we shall refer to these
locks as r-locks, w-Tocks and e-locks respectively.

A process can manipulate the locks on a node N via three
types of indivisible operations, viz. lock, unlock and convert:

(1) wa-lock (N): If the granting of an a-lock on node N does not
violate the CCR then the process is allowed to continue;
otherwise, it is put to sleep.

(2} a-unlock {N): the process simply wakes up some Sieeping or
suspended process in accordance with the CCR and some fair
scheduling discipline.

{3) convert (N, o, B): It denotes a request to change an a-lock
on a node N into a g-lock. If the conversion can be done
without violating the CCR then it is performed. Otherwise
the operation is undefined.

3. CONCURRENCY IN B-TREES

In this section we shall propose a new solution for sup-
porting concurrent operations in B-trees. Basically our solution
is an improved version of the solutions in [Bayer and Schkolnick]
and [E111s], using a new restructuring technique which we call
side-branching. As we shall see it supports a fairly high degree

of concurrency among processes. Moreover, it requires no modifica-
tion to the B-tree structure and all implementation details remain



212

invisible, thereby satisfying all c¢riteria of a desirable solution
specified in Section 2.2. For brevity we shall consider con-
current searching and insertion only, however, it is quite
straightforward to extend our solution to permit deletion.

As in [Samadi], [Parr], [Bayer and Schkolnick] and [E1lis],
our solution makes use of a simple observation: for an updater U
operating in a sequential environment there exists a node which is
the root of a subtree beyond which all changes in data and structure
due to U cannot propagate. We call it a safe node for U. We also
call the safe node which is deepest in the tree as determined by U
in its passage to the frontier the deepest safe node (or dsn)
for U and the path from it to a Teaf determined by U the scope
of U.
Definition 2: A node in a B-tree is insertion-safe or i-safe if it

is unsaturated, i.e. it has less than m-1 keys.

In the following we first give an informal description of
our solution. A SEARCH process is a pure-reader which searches
down the tree for the argument key K by first r-locking the root
and then on its passage to the frontier it r-unlocks a node only
after it has r-locked its son. On the other hand an INSERT process
first locks its scope by w-locking the root and then on its passage
to the frontier, the appropriate nodes are w-locked and examined.
When a safe node is found, all its ancestors are then w-unlocked.
1f the argument key K is found the process is terminated after
releasing all its locks on nodes. Otherwise on reaching a Teaf node
its scope must be w-locked and it can then begin restructuring. We
shall refer to these methods empioyed by the pure- and updating-
readers as lock-coupling techniques.

In all proposed solutions in the literature, a key and a
pointer are added to a node at each restructuring step, starting
at the leaf node of the scope. If the node is not i-safe it becomes
oversaturated and is split into two "halves". This leads to a key
and a pointer being pushed upward to be added to the father node.
After adding to its dsn the writer will then have completed its
restructuring. This common approach requires two additional fields
per node for the extra key and pointer since a node can become
oversaturated. Moreover, in adding a key and a pointer to a
saturated node, keys and pointers must be shifted to make space for
the new entries. Such shifting is often redundant because "half® of




213

the node has to be copied into a new node and deleted soon after-
wards.

Instead of actually adding a key and a pointer to a node
at each restructuring step, a writer in our solution uses the key
to determine whether it should be added to the left or right "half"
It then copies the appropriate "half" into a newly created node to
which the key and pointer are added and pushes a key and a pointer
upward while leaving the node in its scope intact. The writer
continues restructuring upward in this way until the leading node
of its scope is reached. It then adds a key and a pointer to this
node which must be i-safe. Observe that before adding to the safe
node the writer is simply reading keys and pointers in the nodes of
its scope and building a side-branch which in inaccessible to other
processes. Obviously pure-readers on its scope are not affected.
We shall refer to this restructuring technique as side-branching.

It should be noted that when a key and a pointer are added to the
dsn by a writer, we only require that the node is being w-locked

by the writer, which means that there can be many concurrent pure-
readers on that node. This is made possible by using a generalized
version of the RW-addition technique which will be discussed

Tater.

After adding the side-branch to the leading node of the
scope, the remaining task for the writer is to remove the appro-
priate "half" of every node in its scope other than the leading
one. The writer can drive off pure-readers operating on a node N

or waiting in its associated queue by executing the following
operations: convert (father of N, w, e}; e-unlock {father of N);
convert (N, w, e). It can then remove the appropriate "half" of
that node and repeat this for every node in the scope. The major
steps of an INSERT process can be summarized as follows:

(1) w-lock its scope. (i1) Build a side-branch and add it to its
dsn. {(iii) Remove the appropriate "half" of each node in its
scope.

Note that four major techniques, viz. lock-coupling,
driving off readers, side-branching and RW-addition, are used in
our solution. The first two techniques were used in various pro-
posed solutions in the Titerature but have not been explicitly
identified. The most important technique that we introduce is side-
branching, which is based on the simple notion of making extra



214

copies of keys and pointers while leaving nodes in the scope of a
writer intact until the very last moment. The RW-addition
technique that allows an arbitrary number of pure-readers to
operate on a node to which a writer is adding a key and a pointer
concurrently was first introduced in [E17is] to increase "intra-
nodal" concurrency among processes. In their operations on a node
readers and writers are required to proceed in opposite directions
under a rather severe restriction -- the reading (writing) of a key
and a pointer must be indivisible. In our version of RW-addition
we show that this restriction can be removed by requiring pure-
readers to perform repeated reading whenever necessary. Note that
the RW-addition technique specified below can be viewed as an
application of the results in [Lamport] to the particular situation

of B-trees.

procedure READ {K, node};

comment determine whether K is in the node and if not then return
pointer to the appropriate son which should be searched;

begin
comment search from left to right and remember the key at each
step;
= 13 key := Ki;

—
0 .

o (K > key and Ki not rightmost)

1= i+l & key := Ki;

.‘l
if K = key then report K is found else

|

begin
comment read the pointer and check its version number;

if K < key then

begin
pointers := P1_1;
if key # K, then i := i+1 & go to L
end
else
begin
pointer := Pi;
if K; not rightmost then i := i+1 & go to L
end;

report K not found; return pointer
end
end



215

procedure ADD (K, P, node};
comment add the key K and the pointer P to the node;
begin
comment search from right to Teft;
let i be the index of rightmost key;
do (K < Ki and i =z index of leftmost key)
comment shift by copying pointer first and then key;

Pi+1 i = Pi; Ki+1 1= Ki; ioi= i1
ods
comment add K and P
Pi+] 1= Pi; Ki+1 = Ky add P

end
We can now formally present the algorithms for searching
and insertion. For simplicity we assume that the root of a B-tree
is always i-safe.
procedure SEARCH (K,T);
comment determine if the key < is in some node of the tree T;
begin
comment search from top down using lock-coupling technique;
r-lock {root of T);
current := root of T;
READ current to determine whether K is in it and if not then
find the appropriate son;
do (current not a leaf and K not found)
r-Tock (son); r-unlock {current):
current := son; READ current
od;
report 1f K has been found;
r-unlock {current)

[0
=



216

procedure INSERT (K,T});
comment add the key K to the tree T if K is not already present;
begin
comment search for K and proceed to lock scope by lock-coupling;
w-lock (root of T); current := root of T;
DETERMINE the appropriate son and whether K is in current;
do (current not a leaf and K not found)

w-lock {son); current := son;
if current is i-safe then w-unlock ancestors of current;
DETERMINE

od;

comment check if K is already present;
if K has been found then
w-unlock curent and its ancestors & report K already present

else
begin
comment restructure by side-branching;
do (current not i-safe)
CREATE side branch & current := father of current;
ADD side branch to current;
comment remove redundant copies of keys and pointers;
convert {current, w, e); e-unlock {(current);
do (current not a Teaf)
current := son of current on access path;
convert {current, w, e);
REMOVE appropriate "half" of current;
e~unlock (current)
od
end
end

In our algorithms for searching and insertion, five pro-
cedures are used, viz. READ, ADD, DETERMINE, CREATE and REMOVE.
READ and ADD are used to permit RW-addition and have already been
specified. The other three procedures are used either by an updater
in a sequential environment or by a reader in the presence of con-
current pure-readers but no other updaters. Hence they can be
specified in a straightforward manner regardless of concurrency.



217

4, EXTENSION TO T-TREES
It was pointed out in [Kwong and Wood, 1978] that a major

deficiency of the B-tree structure is that "intranodal" operations,
i.e. those operations within a page node such as searching and key
addition (removal} that do not cause overflow {underflow), require
O0{m) time. This could be a serious problem when there are several
hundred keys in a page node -- a situation which is not unusual.
However, all these operations can be done in 0{log m) time if the
page nodes are organized as trees. We are therefore led to the
tree-of-trees structure called the T-tree. Besides guaranteeing
logarithmic performance for intranodal operations, this tree-of-
trees structure is very attractive in supporting concurrent
operations: when multiple users are allowed to search and update
in parallel, the searching and updating algorithms used at the page
tree level can also be employed, with some simplifications, at the
page node level. In this section we shall examine a subclass of
T-trees which offers a uniform view of the data structure and
investigate how to extend our solution in Section 3 to this subclass
in order to achieve a consistent view and a uniform treatment of
concurrency at both the page tree and the page node levels.
Definition 3: Let f:N - N be a function on the set of positive
integers such that 2 < f(m) < [m/27 holds for all m » 3. An
f{m)-tree is a page tree which satisfies properties (1), {(3), (4},
(5) of a B-tree in Definition 1 and also the following: (2') Every
node, except for the root and the leaves, has at Teast f(m) sons.
Basically, f{m)-trees are a generalization of B-trees in
which the minimal number of sons a nonleaf node (except the root)
must have is between 2 and [m/27, depending on the function f. Note
that no assumptions are made about the internal organization of
page nodes.
Definition 4: A tree-of-trees (or simply a T-tree) of order m is

an f{m)-tree in which all page nodes are represented by balanced
trees of a particular type. Thus we obtain, for example, TAVL"

and T2_3—trees when AVL~trees and 2-3-trees respectively, are used.

In our solution for B-trees, r-locks and w-locks are

employed by pure-readers and updaters respectively in their opera-
tions on the page tree. Because of side-branching, w-locks are
converted by an updater into e-locks only at the final steps of
restructuring. Note that at any time there can be at most one page



218

node being e-locked by an updater and most nodes in the page tree
are usually not e-locked. Intranodal concurrency is therefore
usually permitted for any nodes among an arbitrary number of pure-
readers and at most one updater. Although no two updaters can
operate on a node concurrently and this might appear to be an un-
desirable restriction, however, it is this special feature that
allows the searching and updating algorithms at the page tree Tlevel
to be applied within page nodes to support intranodal concurrency
without any increase in overhead, provided that page nodes are
organized as B-trees. Observe that our solution in Section 3
requires a process to lock a page node before it can operate on it.
Therefore, an updater will always have the whole B-tree inside
the page node w-locked before it starts adding (removing) a key
and a pointer to (from) the node. Obviously it is not necessary
for an updater to even attempt to carry out any further w-locking.
Because of side-branching an updater can allow pure-readers to be
present in the page node until its side-branch has been completed.
At this point the updater must drive away all pure-readers before
removing redundant copies of keys and pointers. This can be done
easily by using the concurrency control already available -- con-
verting the w-lock on the page node into an e-lock. Since it is
unnecessary for pure-readers to provide a means for a concurrent
updater to get rid of them from nodes within page nodes, no locking
inside page nodes, let alone lock-coupling, is necessary for pure-
readers. From this informal description it should be clear that
algorithms for searching and updating developed for a page tree can
also be used, after simplicication, within page nodes. We must
emphasize that this uniform treatment of concurrency at the page
tree and the page node levels is achieved without introducing
another level of concurrency control for intranodal operations. As
we shall show the algorithms for searching and updating at the page
tree level need only slight modifications.
Definition 5: A TB-tree of order (m,n) is a T-tree of order m in
which the page nodes are organized as B-trees of order n.

Note that the number of null pointers in the leaves of a
B-tree is always one more than the number of keys in the tree.
When a page node is organized as a B-tree we replace these null
pointers with pointers to the sons of the page node, giving a very
natural representation of keys and pointers.



219

In the following we shall present the algorithms for
searching and insertion in a Tg—tree. Consider applying the
algorithms SEARCH and INSERT developed in Section 3 to the page
tree of a TB—tree. It should be evident that we need to modify
only those procedures in the algorithms which assume sequential
allocation within page nodes. Hence the new algorithm for searching
in a TB-tree is identical to SEARCH except that READ must be re-
placed by t-READ, where the prefix t indicates that t-READ is a
“tree" version of READ. Basically t-READ can be derived from SEARCH
by discarding all locking and unlocking operations.
procedure t-READ (K,T);
comment determine whether K is in some node of T and if not

return a pointer to the son which should be searched;
begin
current := root of T,
READ current to determine whether K is in it and if not then
find the appropriate son;
do {current not a Teaf and K not found)

o
o

current := son & READ current;
if K has been found then report K is found
eise report K not found & return son
end

We can derive the algorithm for insertion in a TB—tree from
INSERT as follows: (1) Substitute the procedures DETERMINE,
CREATE and REMOVE with t-DETERMINE, t-CREATE and t-REMOVE.

{2} Replace {ADD side-branch to current; convert (current, w, e);
e-unlock {current)} with {t-ADD side-branch to current}.

Recall that procedure DETERMINE is the same as READ except
that it is used by a writer on a node that it has w-locked. There-
fore t-DETERMINE is the same as t-READ except that READ is replaced
by DETERMINE for efficiency.

As in CREATE and REMOVE, the procedures t-CREATE and
t-REMOVE are employed by a writer operating either in a sequential
environment or as a reader in the presence of concurrent pure-
readers but no other writers. Hence they can be specified in a
straightforward manner provided that the new page node created by
t-CREATE and the page node left behind after its appropriate "half"
has been removed by t-REMOVE are at least minimal. As noted in
[Kwong and Wood, 19781 t-CREATE and t-REMOVE for T2_3—trees can be



220

very simple provided that f(m) = 2r]093(m+1)1_], The former con-
sists of copying the left {(or right) subtree from a page node into
a new page to which a key and a pointer are then added, whereas the
latter consists of simply removing the subtree which has been copied
and forming a new root if necessary.

Basically procedure t-ADD can be derived from INSERT by
discarding all locking and unlocking operations. In addition,
checking for the presence of the argument key is not necessary be-
cause this procedure will be used only when the key is absent.
After a side-branch has been built within a page node, all pure-
readers must be driven away before redundant keys and pointers can
be removed. As indicated earlier, this can be carried out by ¢ton-
verting the w-lock on the page node into an e-lock. To reduce
e-locking this convert operation is combined with that at the page
tree level, thereby justifying step (2) in our derivation of an
insertion algorithm from INSERT.
procedure t-ADD (K,P,T);
comment add key K and pointer P to the tree T inside a page node;
begin

comment search for the appropriate place to add K and Pj
current := root of T; DETERMINE the appropriate son;
do (current not a leaf)
current := son & DETERMINE
comment restructure by side-branching
do (current no i-safe)
CREATE side-branch & current := father of current;
ADD side-branch to current; convert (T, w, )3
do {current not a leaf)
current := son of current & REMOVE appropriate "half" of
current;
e-unlock (T)
end

Two important features of side-branching as a restructuring
technique inside page nodes organized as B-trees should be noted:
(1) For restructuring at the page tree level, side-branching

might cause extra page fetches because an updater needs an
extra pass over its scope. However, this disadvantage
vanishes when side-branching is applied within page nodes
since no page fetches are involved.



221

(2) 1If restructuring within a page node is carried out by
adopting any other proposed sclution in the literature then
either the page node must be e-locked during the entire
restructuring phase or the page node must be e-locked and
e-unlocked many times.

5. CONCLUDING REMARKS
In this paper we have given a new solution to the problem

of supporting concurrent operations in B-trees, using a technique
called side-branching. We have also proposed a new data structure,
namely T-trees, as an alternative to B-trees for representing large
ordered indexes and illustrated how our sclution for B-trees can
with slight modification be applied to T-trees so that a consistent
view and treatment of concurrency is obtained.

How does our solution for B-trees compare with proposed
solutions in the Titerature? As shown in [Kwong and Wood, 1979]
all but one solution in the literature can be classified into one
of twoe categories (types 1 and 2) depending on whether the number
of nodes that must be locked at each restructuring step is un-
bounded or bounded, respectively. The solution presented here is
of type 1 and it provides a higher degree of concurrency than all
previous type 1 solutions. In [Kwong and Wood, 1979] a type 2
solution is also given. However, it is not at all clear whether a
type 2 solution is always better than a type 1 solution, unless it
is reasonably simple and no more than 2 or 3 nodes need to be locked
at each restructuring step. In the case of T-trees, even if a
type 2 solution is adopted at the page tree level, it still appears
preferable to adopt a type 1 solution to support intranodal con-
currency so that an extra level of concurrency control is not
necessary.



REFERENCES
Bayer, R. and McCreight, E.: Organization and maintenance of
large ordered indexes. Acta Informatica 1 (1972), pp. 173-189.
Bayer, R. and Schkolnick, M.: Concurrency of operations on
B-trees. Acta Informatica 9 (1977}, pp. 1-21.
E11is, €. S.: Concurrent search and insertion in 2-3 trees.

Technical Report 78-05-01, Dept. of Computer Science,
University of Washington (May, 1978).

Guibas, L. J. and Sedgewick, R.: A dichromatic framework for
balanced trees. Proc. 19th Annual Symposium of Foundation
of Computer Science (Oct., 1978), pp. 8-21.

Knuth, D. E.: The Art of Computer Programming, Vol. 3: Sorting
and Searching. Addison-Wesley, Reading, Mass. (1973).

Kwong, Y. S. and Wood, D.: T-trees: a variant of B-trees.
Technical Report 78-CS-18, Unit for Computer Science,
McMaster University (Nov., 1978).

Kwong, Y. S. and Wood, D.: Concurrency in B-trees, S-trees and
T-trees. Technical Report 79-CS-17, Unit for Computer
Science, McMaster University (August, 1979).

Lamport, L.: Concurrent reading and writing. Comm. ACM 22, 11
(1977), pp. 806-811.
Lehman, P, and Yao, S. B.: Efficient locking for concurrent

operations on B-trees. In preparation.

Miller, R. E. and Snyder, L.: Multiple access to B-trees.

Proc. Conference on Information Sciences and Systems (March,
1978).

Parr, J. R.: An access method for concurrently sharing a B-tree
based indexed sequential file. Technical Report 36, Dept. of
Computer Science, University of Western Ontario (April, 1977).

Samadi, B.: B-trees in a system with multiple users. Information
Processing Letters 5, 4 {1976), pp. 107-112.




