PARALLELISM IN ADA:
PROGRAM DESIGN AND MEANING

Brian H. Mayoh

Abstract: The art of designing parallel programs is underdeveloped because we
do not understand parallelism clearly. This paper suggests a pro-
gramming methodoiogy and it gives a precise definition of the ADA
form of paralielism. The methodology is based on ideas of Milner and

it can be used when designing parallel programs in languages other

than ADA.

Computer Science Deparitment, Aarhus University, Ny Munkegade,
8000 Aarhus C, Denmark.

257

Part 1: DESIGN

The art of designing parallel programs is underdeveloped because we do not un~
derstand parallelism clearly. This paper suggests a programming methodoliogy and
it gives a precise definition of the ADA form of parallelism. The methodology is
based on the ideas of Milner and it can be used when designing parallel programs
in languages other than ADA. For us a parallel program consistis of one or more
tasks and several arrows from one task to another. We shall use the example of
producers and consumers, communicating through a postbox, to illustrate our de~

sign method,

Second
Producer

First
Producer

arrive arrive

Post Box

Second
Consumer

In all our pictures different arrows may have the same head but they always have
different tails. From our picture for producers and consumers we see that the

postbox decides which consumer to communicate with. [f we reversed the arrows
to the consumers, we would have the usual interplay between producers and con-

sumers: a shared buffer.

The first phase of our design method Is to draw a picture of tasks with names
arrows between them. Arrows with the same head must have the same name. Be-
cause the ADA equivalent of a first phase picture is a list of partially defined
task interfaces whose entries correspond to the heads of arrows, we shall here~

after use the word "entry! instead of mame of arrow!!,

258

For our examplie we have

task First Producer is task Second Producer |s
-= calls entry: arrive -~ calls entry: arrive
end; end;

task Post Box is

entry arrive

—— calls entries:departl, deapri2

end;
task First Consumer is task Second Consumer is
eniry depart? ... entry depart2 ...
end, end;

The second phase of our design method is to describe the programs for each task
to the extent of fixing the places where the task may communicate with another
task. We can use a convention of Milner's (Milner (1978)}) to indicate which task
arrows are ready to communicate and which are not: dotted half arrows corres—

pond to arrows that are not ready to communicate.

a task waiting for an entry

0 a task calling an entry
a task calling another entry
="

If a task has N arrows, then there are at most ZN of these "Milner symbols!", but
each of them may correspond to many places in the task program. We can de~
scribe the interrelation of the places in a task program by giving a set of place
equations. If we decide that our Post Box task should alternate between the two

consumers, the set of place equations would be:

259

= arrive: Py
Py = departl; Py
Py = arrive: P3

Py = depart2; Po

There are colons in the first and third equations because the entry Yarrive!! is i
the interface of Post Box; there are semicolons in the other equations because
the entries departi and depart2 are in the interface of other tasks. The formal
definition of a place equation is

~ a separator is a colon, semicolon or exclamation mark

- a guard is a sequence of letters and digits followed by a separator

-~ a capability is a guard followed by a subscripted letier

-~ the right side of a place equation is the sum of zero, one or more

capabilities

- the left side of an equation is a subscripted letter.
The reader can think of the subscripted letters in place equations as critical
places in the task program. The ADA equivalent of a set of place equations is a

partically defined task body:

task body Post Box is

begin
loop == Py
accept arrive ... Py
departt! ... =~ Py
accept arrive ... -~ Pg3;
depart2 ...
end loop

end Post Box;

For the other tasks in our example, the second phase in our design method might

give
task body First Producer _15 —— also Second Producer
begin
loop -= 953 g = arrive 99

arrive ..

end loo .
=0 =R arrive;

end First Producer;

260

task body First Consumer [s
begin

loop -y ro = departt; r

accept depart? ...

end loo
e departl;

end First Consumer;

o

task body Second Consumer |s

begin - tO
accept depart2 ... t

i

0 depart2: t

—-—t o=

o =g

end Second Consumer
0 departZ:

As one of the place equations for Second Consumer has an empty right side, this

task can die. If we do not want this to cause the death of the other tasks we could

rewrite the place equations of Post Box

arrive:

i

arrive: p"

o
i

departl; p,' + depart2; pg' depari2;

Our place equations are closely related to path expressions (Campbell, Habermant
(1974)) and flow expressions (Shaw {1978)), our two sets of equations for Post

Box have the flow expression solutions:

{arrive: departl; arrive: depart2;}*

{arrive: (departly U depart2; ¥

Path expressions and flow expressions are one way of solving place equations

but there are others.

Let us return to our design method. If we finished the second phase with partially
defined ADA task bodies, then the third phase consists of programming the task
initialisation, and the last phase consists of completing the definition of the task
bodies by inserting siatemenis, introducing variables and procedures eic. For
reasons of space we shall not discuss these two phases except to say that place
equations may be a convenient way of documenting the final program. Suppose we
finish with

261

task body First Consumer is

procedure Print Message |s

begin
loop
ST, -——ry
exit when Bj -=rg
S25
end loop; =Py
S35
end Print Message;
begin
loop ="
accept departl; -y
Print Message;
end loop;

end First Consumer;

This can be documented by either

rg = departl:r, @ departi: Q
ry = Print Message; rg, —
Print Message;

or

ro = departl : "y

ry o= [s1]; v,

ro = [notBl; ry+ (Bl ry
ry = [S2]; ry

ry, = [S3}r,

in these place equations we see a new kind of guard: [, then a sequential ADA
construct, then '];!'". We can assume that the precise meaning of such guards wil

be given by the formal semantics of ADA when it appears.

262

Part 2: MEANING

We want to give a meaning to a network of tasks with named arrows between them,
when we have a set of place equations for each task in the network. We do this
converting the place equations into network equations, then solving the network
equations, lLet us begin by describing how the place equations for two tasks are
converted into network equations. Suppose the task First Producer has one place

equation and one Milner symbol

a, = arrive; dg

Suppose the task Post Box has four place equations and three Milner symbols

Py = arrive : Py
py; = departly; Py
Py, = arrive : Py

= depart2; Po

The full arrow in the first symbol shows the possibility of communication, but
communication may not actually happen because there is an undotted half-arrow,
We must explain the significance of the labels in our symbois; each label in a
task symbol denotes a place in the task program, each way of choosing a label in

a network symbol denotes a configuration of the network, In our example we have:
configurations qolpo and qg‘p‘,Z from the first symbol
configurations qO! Py and q0| Ps3 from the other symbols.

The network equations for qoi p, and qO{ p5 are no problem but the network equa-
tions for qo| Pg and qolp2 must reflect the possibility of communication through

the entry "arrive!, they must have a capability for the rendezvous guard

Harrivel !, The network equations must be

263

(aglpg) = arrivel (qglp,) +arrive : (ag]p,)
(aglpy) = departl; (agip,)
(qolpz) = arrive! (q0|p3) + arrive : (q0|p3)

(aglpg) = depart2; (q4lpg)

These equations reflect the asymmetry of ADA'!'s rendezvous concept - the guard
farrive :' is in these equations, but the guard "arrive ;! is not. Note also that
the guards "departl; ! and "depart2;" remain in the network equation because
they correspond to calls on entries that are not in the interfaces of First Pro-~

ducer and Post Box,

The precise rules for writing down the right side of the network eguation for the

left side (p|q) are:

1) if the right side of the equation for p has the capability yp! andy does not
correspond to the call of an entry in the g task, then (p|q) has the capa-

bility y(p'| a)

2) if the right side of the equation for p has the capability ¥yq' andy does not
correspond to the call of an entry in the p task, then (p|q) has the capa-

pility y{p]a®)

3) if the right side of the equation for p has the capability g:p! and the right
side of the equation for g has the capability @; q' then (p|q) has the capa-
bility et {p'| q")

4) if the right side of the equation for p has the capability a;p' and the right
side of the equation for q has the capability @:q' then (p|q) has the capa-
bitity el (p'| q')

5) the right side of the network equation for {p|qg) is the sum of the capabilities

given by the other rules.

Because these rules are associative and symmetric, the network equations for a
neiwork of many tasks do not depend on the order in which the tasks are combined
- except for the names of configurations {(p]ql}{r) for (p|(a|r)), {p|a) for (a]p}

eic.

For our producer—-consumer exampie we get the following equations from rules 1)
to 5} {(and the fact that there are no other tasks in the network so colon capabili-

ties can be dropped):

264

(bolrolty) = arrivel (pirglty)

(pglrglts) = arrivel (p,irglt)

(polrylty) = arrivel (py[r lty) + Print Message; (pg|rlto)
(polrilt,) = arrivel (pfr [t} + PrintMessage; (pylrylt,)
(p1|r~0|to) = departl] (pz]r‘”to)

pylrplty) = departtl (pylr,lt,)

(pyirylty) = Print Message; (p,|rglt,)

(pylrylt,) = PrintMessage; (p,|rglt,)

(pylrglty) = arrivel (pglrglty)

pylrglt,) = arrivel (pslrylt)

(pz{r~1{to) = arrivel (p3]r‘1]t0) + Print Message; (pz;ro}to)
(pylrylt,) = arrivel (pyfrft,) + Print Message; (p,|rg|t,)
pslrglty) = depart2! (pylrglt,)

pslrplt) =

(p3]r13t0) = depart2! (polr‘”tm) + Print Message; (p3}r01t0)
(p3|rqlt,) = Print Message; (ps|rglt,)

These equations have the flow expression solution

arrive! ({departl! arrive! depart2! arrive!)(® Print Message;)

{ arrive! &) Print Message; }

where (9 is the shuffie operator of formal language theory (Ginsburg (1977)). The
reader, who recognizes that the concurrency constraints in our example can be

captured by the simple path expression

path arrive; departl; arrive; depart 2 end

—— implicit iteration, and semicolons for sequentiality

may well ask why we have given complicated rules for forming network equations
from place equations. The answer is that this enables us to indicate a semantics

for ADA parallelism.

L et us begin with an operational semantics for network equations. We allow for
equations with more than one capability by using a HISTORY file to resolve non-
determinism. We assume that a state is given by the values of variables

HISTORY, Configuration and Store:

265

Configuration: Store:
network values of

equations program

variables

HISTORY: >guar~d sequence >

We say that a state is jammed if HISTORY is empty or the first guard of
HISTORY does not occur on the right side of the network equation given by Con

figuration. If a state is not jammed, the next state is defined by:

1) the first guard ¢y in HISTORY gives a capability in the network equation

glven by Configuration;
2) the new value of Configuration is given by this capability;,
3} the values of Store is changed as directed by v;

4) the first guard in HISTORY is deleted.

Example Consider the state where Configuration gives the neiwork equation

'

(p2§r‘1}to) = arrijve! (pS‘PT“O) + Print Message; (ngr{)}to)

If the first guard in HISTORY is ''arrivel!, then (;331("1 | to) is the next value of
Configuration; if the first guard in HISTORY is "Print Message; ', then

(p,lralty) is the new value of Configuration; otherwise the state is jammed.
217010 ?

In the draft formal definition of ADA denotational semantics are used to give a
precise meaning to the sequential part of the language. In essence this formal
definition gives a function ,S:[’yﬂ for every guardy in the r;etwor*k equations for
an ADA program. Because exceptions and other language constructs that affect
the run~time behaviour of a program must be defined, the function £y maps

continuations into continuations, not stores into stores:

L.ocal Continuation = Store =+ Answer

£[[‘yﬂ : L.ocal Continuation =+ L ocal Continuation
We could define parallelism in ADA by introducing the domains

State = History x Configuration x Store

Global Continuation = State <+ Answer

and defining a functionM from Global Continuations to global continuations for

zach set of network equations.

266

For each guard y we can extend £y] to:

Gy 1 : Global Continuation - Global Continuation
Gly] (@) [n,e,s] = £[y] (© [s] where ©[s'] = @[h,c,s']

For each set of network equations we define
- the predicate Jammed fh, ¢]as:
h is not empty and iis first guard glves a capability in the
neiwork equation given by c;
- the function Next Configuration: Guard x Configuration + Configuration;
- the function n: Global Continuation + Global Continuation as:
n{@) h,c,s] = If Jammed[h,c] then @{h,c,s]
else Gy] (@) [h',Next Configurationly, c}, s]
where h = (y,h!)

Example ctd. Consider the state s where Configuration gives the network
equation

(pz; "y { to) = arrivel (ps}rif to) + Print Message; (pz§ r‘ot to)
and the first guard in HISTORY is Marrivel!, Our definition gives:

h = (arrive!, ht)

Jammed[h, (p,|r |t,)] is FALSE

Next Configuration{arrive!, (pzj r*11 tO)] = (p3] r"T] to)

n@)h, (pz] ryl to)s] = Gl arrive! (@) h1, (p3lrqltg)ss]

=ffarrivel | ©s where ©[s'] = @[h!, (ps|r{[ty), s']

Now we have defined the functionh for a set of network equations, we can explail

how it gives the Umeaning' of a paraliel ADA program. For any global continua-
tion Q50 the sequence

¢0: @1 =m(¢0)9 ¢2 =m(¢1) e
has a least upper bound ¢w that solves the network equations. Suppose we take

the truth values as the domain Answer and we define ¢0(h,c, s) as the predicate:

the network for c has empty right side & h is empty
& s satisfies some predicate FINAL.,

In this case @_(h,c,s) will be the predicate:
if we start with store s in configuration ¢, we will use all of
HISTORY h and finish in a no capability equation with a store
satisfying FINAL.

267

This predicate ¢w is the meaning of the parallel ADA program corresponding to
the network equations. There is a ciose connection between our Qﬁw-—solution of

the network equations and the flow expression solution we gave earlier:

it @_(h,c,s) is satisfied, then h satisfies the flow expression

solution for c.

The converse of this need not hold because some histories given by the flow ex-

pression solution may fail for some values of s.

in the expanded version of this paper {Mayoh {1979}) we indicate

- how some histories are forbidden by such ADA restrictions as
first-in-first—out queues on entries;

- how initiation and termination of tasks can be expressed using
network equations;

- how scope, visibility and parameters can be incorporated;

- a Petri net justification of our assumption that the true parallelism of

ADA can be captured by our non-deterministic network equations,

There seems {o be no good reason why a complete formal semantics of ADA can
not be based on the approach in this paper: separating the question of what com-
putation histories are possible from the quesiion of defining the result of a compu-

tation for a given history.

In the formal semantics of CSP (Francez, Hoare, l_ehmann, De Roever (1979)) we
find the same approach, but there are important differences. In their terminology
we advocate (1) using continuations not power dorpains - replacing

pe—:_m((sl X eu. X Sm)u {1, fail, deadlock)) by SyX «.. X S = Answer, (2)
attaching communication histories to a set of concurrent processes as a whole,
not to each concurrent process in the sei. Another paper with an approach like
ours is (Hoare (1979)); it contains a detailed jnvestigation of histories for com-
municating processes, our place and network equation sets are special cases of

its processes,

References
ADA {1979a) Preliminary ADA reference manual. SIGPLAN Notices 14 no. 8,

part A,

ADA {1979b) Rational for the design of the ADA programming language.
SIGPLAN Notices 14 no. 6, part B.

268

Campbell R.H., Habermann, A.N. {1974): "The specification of process synchro~

nization by path expressions!!, Springer L.ecture Notes 16.

Francez, N., Hoare, C.A.R., Lehmann, D.J., De Roever, W.P, {1979):
Semantics of Nondeterminism, Concurrency, and Communication'.

J. Comp. Sys. Sci. 19, pp. 290-308,

Ginsburg, S. {1977): ' The Mathematical Theory of Context Free Languages'.
McGraw Hill, p. 108,

Hoare, C.A.R. {1979): A model for communicating sequential processes. Program

Research Group preprint, Oxford University,
Mayoh, B.H. (1979): "Parallelism in ADA", DAIMI PB~103, Aarhus University.

Milner, R. {1978}): "An Aligebraic Theory for Synchronization'l. Springer Lecture
Notes 67,

Shaw, A.C. {1978): "Software Descriptions with Flow Expressions!', |[EEE Trans.

Software Engineering Se~4 no. 3.

