
THE THEORYAND PRACTICE OF TRANSFORMING

CALL-B¥-NEEDINT0 CALL-BY-VALUE

ALAN MYCROFT

ABSTRACT

Call-by-need (which is an equivalent but more efficient implementation of

call-by-name for applicative languages) is quite expensive with current hardware

and also does not permit full use of the tricks (such as memo f"~_nctions and

recursion removal) associated with the cheaper call-by-value. However the latte~

mechanism may fail to terminate for perfectly well-defined equations and also

invalidates some program transformation schemata.

Here a method is developed which determines lower and upper bounds on the

defineduess of terms and functions, this being specialised to provide sufficient

conditions to change the order and position of evaluation keeping within the

restriction of strong equivalence. This technique is also specialised into an

algorithm analogous to type-checking for practical use which can also be used to

drive a program transformation package aimed at transforming call-by-need into

call-by-value at ' compile ' time.

We also note that many classical problems can be put in the framework of

proving the strong equivalence where weak equivalence is easy to show (for

example the Darlington/Burstall fold/unfold program transformation).

Dept. of Computer Science, University of Edinburgh

270

MOTIVATION

~or a purely applicative language (no assignment or GOTO) call-by-need

[Wadsworth 71] is a highly desirable parameter passing mechanism, since

[Vuillemin 73] it is a safe evaluation mechanism in that it will give the

mathematical result whenever the latter is defined and is more efficient than

call-by-name.

Basically call-by-need is the same as call-by-name (passing of an

expression bound in the calling environment) but with the proviso that the first

reference to the parameter causes not only its evaluation but also the replace-

ment of the parameter with the result of the evaluation thus making subsequent

accesses much cheaper. It also has the advantage that it corresponds closely to

the method a mathematician would use to evaluate an expression. Note that it

retains the advantages of call-by-name in that parameters that are not referenced

in a particular activation of the function will not be evaluated: this point is

very important since evaluating an argument which should not be evaluated may

result in the evaluator looping. To summarise, we have that

call-by-value evaluates a parameter exactly once,
call-by-name evaluates a parameter zero or more times,
call-by-need evaluates a parameter at most once.

The main disadvantage of call-by-value is that it may produce u~defined

values for (mathematically) well-defined expressions, for example consider

evaluating

f(1,0) WHERE f(x,y) = IF x=O THEN 0 ELSE f(x-l,f(x,y))

using call-b~value.

Note that this point is especially relevant to the typical user of a

symbolic algebraic manipulation (SAN) system, who is mathematically sophisticated

but computationally naive, because he will write similar (but less contrived)

recursive definitions and find the system merely moans that time is up~

For the user of a SAN system it is desirable to use call-by-need as the

parameter passing mechanism in order that

I. The recursive definitions are as fully defined as possible.

2. The print program may drive the evaluation process so that printing an
infinite expression will run out of time when printing it and not during
the evaluation prior to printing.

The counter arguments favouring ea11-by-value are:

I. Call-by-need is clumsy to implement on current architectures (in that
each parameter to a function needs to carry a closure around with it).
This leads to differences in efficiency which are put by various sources
at factors of between 2 and 10; the situation becoming rather worse
in a full lazy eva!uator.

2. In a call-by-value the system can use memo-functions to avoid recomput-
ation. These will be (semantically) invisible to the user, and

27t

encourage the development of clean "mathematical" rather than "sequential"
programs. For example consider:

f (n) = IF n<2 THEN 1 ELSE f (n - 1) + f (n - 2)
(Fibonacci numbers)

or
C(n,r) = I IF l~-O OR r=-n

= C (n - l , r - 1) + O (n - l , r) 0 T H m ~ S E
(Pascal's triangle)

Here evaluation (with r = n/2 in the second example) requires in the order
of 2 n function calls using the standard implementation. This cost can be
made linear in n in exchange for storage by saving the (arguments,result)
pairs for previously computed values of f or C. (This technique is called
'memo'ing the function). Unfortunately when using call-by-need, we c~u-
not look at the argument values since to do so causes evaluation effect-
ively at the time of call and hence is equivalent to a call-by-value
regime. Thus call-by-value has advantages which extend far beyond cur-
rent hardware limitations - since exponential costs can rarely be tolerated.

3. Call-by-need does not permit the standard methods of recursion removal to
be used, for example:

f (x , y) = IF x=O ~HEN y ELSE f (x - l , y + l)

requires one new clomlre to be created for y in each recursive call;
these all being evaluated 'domino fashion' when y is finally used. For
further discussion see [L~ug 77].

It is worth noting the great similarity between the optimisations furnished

by call-by-need over call-by-name and by using memo-functions. In both cases

the effect is to avoid recalculation of known values, and both are optimisations

which can convert an exponential cost into a linear one (unlike traditional

compiler optimisations to remove common sub-expressions which can only save at

most a linear factor in the cost).

Another reason for using the call-by-need parameter passing mechanism is

that call-by-value invalidates some program transformation schemata. For

example consider the fold/unfold transformation [DarlingtoD+Burstall 77] which

replaces a call of a function by its body or vice versa.

The program segment

IF el THEN e2 ELSE e3 ... (I)

is equivalent to the segment

f (e l , e 2 , e 3) WHERE f (x , y , z) = IF x THEN y ELSE z . . . (2)

only if the call-by-need (or name) parameter passing regime is used since the

early evaluation of e3 otherwise necessitated by call-by-value in (2) may cause

infinite looping. For example compare

fact(n) = IF n=O THEN 1 ELSE n~fact(n.1)

with

f a c t (n) = f (n=O, I , n * f a c t (n - ~)) WHERE f (b , x , y) = IF b THEN x ELSE y

the latter being undefined for all n when using call-by-value.

The above arguments suggest that call-by-value is more efficient but call-

by-need preferable on aesthetic/definedness considerations. So techniques are

272

herein developed which allow the system to present a call-by-need interface to the

user but which performs a pre-pass on his program annotating those arguments which

can validly be passed using call-by-value. Thus the spirit is similar to, and

unifies and implements some of the ideas in Schwarz [77].

Note that the technique only provides the information "It is safe to pass

certain parameters by value" and is not claimed to detect all such cases. The

problem of detecting all such cases is actually not effectively computable, for

example consider:

F (~ , y) = IF P (x) ~ y m, SE o

where P(x) is true for all values of x. The argument y will, then, always be

evaluated and so euuld be safely passed by value. This fact is impossible to

detect uniformly since, in any sufficiently rich domain, there are tautologies

which cannot be detected by any (pre-specified) algorithm (e.g. "The halting

problem" for Turing machines). Currently no attempt is made to detect similar

tautologies and hence the system "plays safe" and suggests that y is passed by

need. In practice ~ee section on pragmatics) this limitation does not stop most

cases of call-by-value being detected.

There is an analogy between the system described here and the "most general

t e" yp inferrer used in a language such as XL ~ordon et al 79] which even extends

to cover the sort of example above; for example consider the declaration

LET x = IF true THEN I ELSE NIL

then the ML type inferrer will produce an error for the type of x whereas in fact

it is well (but inelegantly) defined.

In order to be able to change the order of evaluation (e.g. changing call-by-

need into call-by-name) without changing the semantics we require referential

transparency in the language under study, Applicative lar4guages normally possess

this property, with the proviso that error situations (e.g. I/O) do not result in

'jumpout' action and merely return a special error value to the calling function.

The central stage in the development of the call-by-value detection system is

the definition of maps ~ and b which are semi-decision procedures for termination

on recursion equations. The idea is ,.hat ~ will map ALL terminating closed

forms onto I, and SOME non-terminating terms onto O, and b maps ALL non-termin-

ating terms onto O, By invastigating the effect of~ and b with their semi-

homomorphie properties on recursion equations we can see the gross structure of

the recursion and occurrences of references to arguments without the clutter of

detail present in the original equations.

FOP~£&LISM

The formal system in which the theory is developed is that of a scheme, S,

of recursion equations together with one standard and two non-standard inter-

pretations.

273

s = {F i (x I . . . z~ i) = ~i~ <~<_~}
where the U. are (finite) terms defined by the grammar with start symbol T and

1

axioms

- T ::= X. (individual parameters
D

- T ::= Aj(T I .,. Trj) (system functions

T Fj(T I ... Tkj) 1~j<_n (user functions

We insist that U contains no X for r>k.. Here all base constructs
1 r 1

(including the conditional which is normally regarded as syntax) are considered

to be members of the (Ai); note that the A i are base constants when r i = 0.

An interpretation I, of S, consists of a pair <D,(aj)> where D is a domain

and the a are continuous functions from Dr->D where r = r is the arity of A o
1 i 1

An interpretation I induces for S an interpretation of the function symbols

F defined in the usual manner as the least fixpoint.
l

NOw let 2 = {O,I} be the ~o element Boolean lattice ordered by O<I and use

the standard Boolean connectives (we use 0 and I to avoid confusion with elements

of D).

NOTATION

We use the following notation to simplify expressions:

I. [P,Q] is a partition of a set U if U is the disjoint union of P and Q.

2. L e t F be a fum.c t ion w i t h a r i t y k t hen f o r a p a r t i t i o n [P ,Q] o f { I . . . k }
we define P(a/P, b/Q) to mean

F(x I ... Xk) where x i = a if i in P
= b otherwise

3. We will also use R(xQ) to mean R(xi) for all i in Q, where R is a
predicate.

We next define two__more interpretations in terms of I = <D,(aj)> by

= <2, (a~O>
and

i b = <2, (a~)>
in the following manner: [the definitions are to be seen as monotonic functional

extensions of the function

HALT: D -> 2 defined by
~ T (x) = 0 if x =1

= I o t h e r w i s e]

For_~ all partitions [P,Q] of {!,2 .,. ri} we define

~ o l Q , l iP) = o

and
= I otherwise

a~(OIQ, 1IP) = o

= 1 o t h e r w i s e ,

if for all Ix. in D: 1<j<r.l such that

xQ = !, xp ¢ ± ~e ~ve a~q~ I L.. Xri) = i

if there exists Ix. in D: 1<j<r~ ~ such.
that XQ = I , x ~ ~ ~nd a.(x~--.U.±~ .) =|

Clearly the (a~ and (a~). arc monotonic since we ~ss~e the <a~) are

274

computable; and, as pointed out by a referee, this implies the conditions

x ~Aare superfluous, but we include them to aid the intuition. For any
P

function g: D r -> D we will write

g~ gb: 2 r _> 2

to denote the functions constructed from g by the above technique.

EXAMPLE

Here we use the standard meaning for IF as the 3 argument sequential

conditional; and PLUS as the usual (strict) operation on integers:

IF~p, x, y) = p a (x V y l
IF (p, x, y) = p A x A y

=

PLUSh(x, y) = xAy

We can also cope with parallelism, for example

= (pVx) A(pVy)A (xVy) PIF~p, x, y)

where

HF(p,x,y) = x
= y
= X

=±

if p = TRUE
if p = FALSE
if x = y
otherwise.

It is useful to observe that these equations can be read in English to help

understanding: the first one (for IF~and IF h) reads

IF(p,x,y) needs to evaluate both p AI£D at least one of x OR y.
IF(p,x,y) terminates if p AND x AND y do-

We can further justify this approach of identifying all non-undefined values

by noting that any two partially correct evaluation mechanisms (those that give

the same result when both terminate) are weakly equivalent (i.e. LUB(EI,E2)

exists where the E are the results from the two evaluation mechanisms) and hence
l

it is only necessary to discover places where undefinedness can creep in. In

passing we note that this point is still relevant in higher order languages since

in a well-typed lauguage with flat base domains the universe of discourse is D n

for some n where

D^ is flat and
O ~ ~ = D. + (re->m)
i+~ z m m

Note (see section on non-discrete domains) that allowing D to be non-discrete

might mean that we fail to obtain a very close bound here without more machinery.

~and I b are (non-comparable) interpretations abstracting I in the sense of

Cousot+Cousot [77]. However here we use the two non-standard interpretations to

"sandwich" the standard interpretation and thus it is important to note that one

of the interpretations is "upside-down" relative to the above work.

We naturally define f~and fb corresponding to the F. as the least fixpoints
i

of their defining equations in S under the interpretations l~and I b.

Let E, E ~, E b be respectively the denotation functions for terms under I,

275

I • , I b . Then for all terms e (possibly with free variables) we can associate

functions

E~e~ #-> D~ E~e~ EbEe~ 2 x -> 2

where K is a set containing all the free variables of e.

We have (by an induction left to the reader) that

E~e]]~ (E[e~) b ~ (E[[e~ ! ~

for all terms e, the centre inequality reducing to an equality if e has no free

variables. The outermost inequalities reduce to equalities if e is of the form

Ai(Xl ... X~). Examples like (*) below can be used %o show %he inequalities

may be strict.

This result enables us to deduce that the definition of ~ and b on the A
l

extends to the F to give useful information on termination in I. The result is,
i

for all partitions [P,Q] of {1,2 ... ~i }

[;~o/Q, i/P) ~ o i~plies
± for all (x.) such that xQ = ~ we have

Fi(~1 ..- ~ki) =i
and

;~(o/Q, I/P) : J implies
for all (x.) such that ~p j I ~e have

Fi(~1 --- ~ki) ~!]
Note that we lose the half of the if and only if of the definition - this is due

to the operation of composition rather than recursion, for example take

e : ~ true THEN ! ELSE 91~ (*)

which gives

E:~e]= l
in spite of the fact that E[e] =I-

Now these are exactly the ~go conditions required for the detection of

situations where call-by-need may be optimised to call-by-value. The first

gives us conditions on a function such that (some of) its formal parameters may

uniformly over calls be evaluated before evaluation of the function body and the

second gives us conditions on actual parameters which may be evaluated prior to

calling uniformly over the head function symbol. We now consider these remarks

in more detailw~h examples:

A condition for the actual parameter e. associated to formal parameter x. in
l 1

a call F(e I ... ek) to be safely (i.e. without disturbing the meaning of the call

- see V~illemin [73]) eval~ated before calling ; is precisely that F(x I .oo Xk)

is undefined whenever x i is. Taking Q = {i} in the above equation for F~gives

us a useful sufficiency condition for this to hold.

Similarly, to illustrate the use of F b, suppose we have the following

equation:

F(x,y) : ~(x, y+1) + y

Consideration of F~in the above manner (using the fact that

276

+ ~ x , y) = x A y

in the usual interpretation of +) enables us to deduce that y may be passed by

value~ F. Now tPis fact means that y ~! in the body of F and correspondingly

we have that

there. Now we use the fact that (giving + its standard meaning)

+b(x,y) = x A y
and hence that

Eb[(y+1)] = I since Eb[I] = I

This shows that the second parameter to G in the call g(x~ y~1) always terminates

and hence in implementation terms we may choose to evaluate y+1 prior to the call

and give G an evaluated call-b2~need thunk rather than the standard ~uevaluated

thunk to be evaluated on its first reference, without disturbing the semantics of

the call. A further optimisation still is that, if all calls to G have the above

property then we know that x 2 ~Ain <body> where

~(xl,x 2) = body
and accordingly that x 2 may be classed as a value parameter to G. So, having

established this we then have

~x 2]=~b[~ 2] = I
See also the section on transforming programs to use call-by-value below.

To derive solutions for the f@and f~ which are fixpoints of the systems
l l

<S,~ and <s,Ib> we develop the following theory: (the aim is not to derive

solutions by evaluation but rather by examination of their textual definition by

forming

lim Ti(BOTTOM)
where T is the functional to be defined below).

Define L by:

L = (2 ~1 -> 2) X (k2 _> 2) X - - . X (2kn -> 2)

The space L has a natural lattice structure defined componentwise by

(pl pn) ! (ql qn) i f and only i f
(p ig --qi is i d e n t i c a l l y zero; (1!i<_n))

Now define T, a transformation on L by
! T: (~1 Hn) -> (HI ~)

where

H~(x 1 Xki) = Ui[Hj/Fj; l~j<n; a~/A]
Defining

BOTTOM = (lambda x I ... Xkl . 0,

lambda x I ... Xk2 . O,

lambda x I ... Xkn 0)

and TOP = BOTTOMD/O]

277

gives the top and bottom of the lattice L, respectively.

The sequence

BOTTOM, T(BOTTOM), T(T(BOTTOM))

gives Kleene's ascending chain (M(C) on the finite lattice L. Hence all these

terms are the same from some point onwards with limit value T*(BOTTOM) say.

Define T*(TOP) similarly. Now by construction T*(BOTTOM) and T*(TOP) are fix-

points of <S, ~ with all other fixpoints between these two. The fixpoints of

<S, !b> are similarly defined.

Note now a couple of interesting points;

I. T*(TOP) and T*(BOTTON) are in general distinct

~. ~ot all points such that T*(~O~TOM) < x < T*(~oP) are fi~po~nts of <S, I~

For proof consider

F(x,y,z) = IF x=O THEN y*z ELSE F(x-] ,z ,y)

This gives

f ~ x , y , z) = xA(yA z V ~ x , ~ , y))
and hence

T*(~o~oM) (x ,y , z) = xAyA~
e~(moP) (~ ,y ,~) = x

also

~(x ,y ,~) = ~ A y

is between T*(TOP) and T*(BOTTOIv[) but is not a fix-point.

The difference between the modes of parameter passing implied by T*(BOTTOM)

and T*(TOP) is merely the difference in how the calculation proceeds in the

evaluation of F(-], I , 0); the first case implying passing (x,y,z) by value and

the second just (x). In the cal l -by-value (for x ,y ,z) manner ; is 1 initially

(upon evaluation of the value parameter!) , but in call-by-need (for y,z) ! is

never referenced, however the evaluator loops sincere termination condition x=O

is never true. This corresponds to the inductive argument that if F is to

terminate then the second argument in the initial call must be evaluated and its

evaluation terminate. Thus we see that the fact that T has more than one fix-

point allows the system to be undefined in more than one way, but of course ally

two undefined values are indisting~/ishab!e (except by looking at the internal

computation history), and of coumse the minimal fixpoint of T gives a valid mode

of evaluation of parameters. In fact it follows [Vuillemin 73] that any point

~bove the minimal fixpoint defines a mode of evaluation which gives the correct

result but there may be differences in the way undefined results are achieved.

(I.e. which particular infinite computation the system pursues.)

The existence of points (like H in the above example) which are above the

minimal fixpoint (and so define safe evaluation strategies) but which are not

themselves fixpoints is now explained:

The fixpoints of T correspond to the "consistent" modes of evaluation in the

278

following sense:

A mode of evaluation is consistent if it is safe and no argument which is

passed by need to a function will inevitably (after a bounded number of further

passing by need) be evaluated.

To return to the case of H we can see that it is not a consistent point of

T, and so cannot define a sensible mode of evaluation of parameters for F.

It is interesting to note that, in the above example, there the proof that,

if F is to terminate, then it must reference its second and third arguments must

be based on induction on the computation path. ~, however, has the induction

'built in' and so the proof merely consists of case analysis to see how 0 (=~.~

can propagate.

PP~@I~iTICS

For use of the theory above in an algorithm the iteration produced is

refined to be both more convenient and more rapidly convergent.

Define

Z(H) = Zn(Zn_1(... (Z1(H))...))
where

Zi(H I ... Hn) : (H I ... Hi_l, H', Hi+ I ... H n)

where

~ , (= ~ . . . ~ki) = ~ i [H /F j ; 1~j!n; a#/A]
Note that Z (like T) is monotonic since it is the result of tupling and composing

monotonic functinns. We prove that Z* (BOTTOM) = T*(BOTTOM) to show that Z and

T give the same result. Z is also more convenient for implementing the iteration

as it can be written as n single assignments in a loop rather than the one n-way

multiple assignment required by T.

F~rther improvement in the speed may be effected by the following technique:

firstly associate the call-structure graph with the function definitions (the

call-structure graph is the directed graph obtained by considering function names

as vertices and having an edge from f to g if and only if f contains a call to g

in its body). Now partition this graph into its strongly connected components;

giving a directed acyclic quotient graph; the strongly connected subgraphs can be

analysed by the use of the Z (or T) iteration and the quotient graph is trivial to

analyse - we flatten its partial order into a total order and analyse the strongly

connected subgraphs according to this order.

A program has been written by the author (in LISP) to implement the above

algorithm. A sample run is given below for a simple example and the system has

been used on a text-formatter written by Martin Feather in ~L without knowledge

of this system. NPL normally has a call-by-value semantics and as a guide to

the utility of the system, most paramameters in the pagin~or were detected as

being safely passable by value upon assuming the program should conform to call-b~

279

need semantics.

TRANSFOP~IING PROGRAMS TO USE CALL-BY~¢~ID-E

The oustanding cases where the system did not detect call-by-value were due

to the following form of recursion in which we test one parameter to give a

'default' value or embark upon a recursive call:

LET mult(x,y) = IF x--O ~m ~ o ELSE mult(x-l,y)4;

the trouble about this case being that it is impossible (without further knowledg@

to discover whether the user intended mult(O,i) to give 0 or i - the call-by-need

semantics indicate 0 and so y cannot he passed by value without extra knowledge.

Of course for any particular ea!l b may be used to detect if the actual parameter

terminates and hence optimise the call.

Here I suggest a method by which a program transformation system [Darlington+

Burstall 77] might be driven in order to transform out such non-strict functions

by replacing them with strict functions and the basic non-strict conditional

function which is well-known to compile and interpret efficiently.

Note that the "ELSE" branch of the above conditional expression satisfies

~it(x-l,y) + y~ = xAy

and hence is strict. So we can replace all calls mult(el,e2) with

IF e1=O THEN 0 ELSE multi(el,e2)

WHERE multi(x, y) = muir(x-l, y) + y

and compile all calls to multl using call-by-value. But now A ~riori. all calls

to mult have the property that the second actual parameter must terminate (if it

does not then neither can multl by considering b). Hence mult can also be

treated as a strict function and compiled appropriately. We can actually do

rather better than this by unfolding the call to mult in multl and refolding to

use the definition of multl to get

mult1(x,y) = (IF x-1 = 0 THEN 0 ELSE mult~(x-l,y))+ y

to obtain a strict version of mult to replace the original non-strict version at

the expense of doing the test before calling mult. This cost is significantly

cheaper than the cost of merely setting up the closure for the second argument

for mult.

I call the above technique rotational refolding of the function mult.

This has an intuitive meaning seen by noting that the infinite tree representation

for mult has alternate '+' and 'IF' nodes in its infinite backbone. Then the

definition of multl is just obtained by taking a different ('+' instead of 'IF')

starting point for the folding into finite form. The proof of strong correctness

for this type of fold/unfold is much easier than the general case.

280

FACTI

*(DEF
*

FACT2

*(os~

*(DNP
H

*(DE~
UNDEF

*(D~

MY-IF

.R VALARG

*(D~ mOT1 (X)
(I F (Sq x o) ~ (~IMES x (mcT~ (s~s~ x)))))

(IF (EQ X O) Y (FACT2 (SUB1 X) (TIMES X ~)))

(x) 3)

~-DEF (x) (IF (m x o) (~ x) (~D~ (so~R~ 8)))

~Y-IF (s x Y) (IF s x Y))

*(START) {; see if it all works}
MY-IF : ArMs (I) may be passed by value
UNDEF : *** totally undefined
H : *** independent of args

: ArMs (I) (2) (3) may be passed by value
FACT2 : ArMs (~) (2) may be passed b~ value
FACTI : ArMs (I) may be passed by vaiue

(2 IT~TIO~S)

Lazy CONS (see for example Friedman+Wise [76]) gives us some problems since,

using the above notation we get

~d°(x) = o

This unfortunately gives us a very bad bound and we now need to have some

knowledge of list structures as our homomorphic image, instead of just {0,1}, in

order to deduce those substructures whose evaluation can be safely moved due to

the fact that we no longer have

x<y <==> x=y OR x= I.

The author is examining using the notion of regular trees to approximate the

limits of the (possibly infinite) Kleene sequences in the obvious image domain

D where D = 2 + D XD

to tackle this problem.

REFERENCES

Berry, G., Bottom-u D computation of re.cursive programs, Research Report 133,
IRIA-Laboria, 78150 Le Chesnay, France (1975).

Cousot,P, and Cousot,R., Abstract interpretation: a unified lattice model for
Arctic analysls of pro~r~s "o~ construction .or a~.proximatio~ 0£ ~ix~oints,
Proe. of Conference on Principles of Programming Languages, Los Angeles (1977).

Darlington, J. and Burstall, R,M., A transformation system for developing
reDursive ,Rrog<ams, JACM, Vol. 24,'N0. I "(19'77). ' " '

281

Friedman, D.P. and Wise, D.S., CONS should not evaluate its %r~mepts, Proc. of
3rd International Colloquium on Automata, Languages and Programming, Edinburgh
(1976).

Gordon, M.J.C., Hilner, A.J.R.@. and Wadsworth, C., Edinburgh LCF, Lecture Notes
in Computer Science, Springer-Verlag (1979).

Gordon, H.J.C., Hilner, A.J.R.G., Morris, L., Newey, M. and Wadsworth, C., A meta-
language for interact!KeDroof i nLCF, Proc. of 5th ACN ST~ACT-SI@PLAN
Conference on Principles of Programming Languages, Tucson, Arizona (1978)o

Lang,B., Threshold eva lu%tion an< the semantics of oall-by-value~ assignment and
genericprocedures, Proo. of Conference on Principles of Programming L~nguages,
Los Angeles (1977).

Schwarz, J., Using annotations to make recursion equations behave, DAI Research
Report No. 43, Dept. of Artificial Intelligence, University of Edinburgh (1977).
Also to appear in IEEE Transactiens on Software Engineering.

Vui!lemin, J., Proof techniques for recursive Drog!ams, Ph.D. thesis (chapter 2),
published as a paper in 1974 as Co__.~rect and optimal implementations of recursio%
in a simple pro@yrammin~ lar~guage~ Journal of Computer and Systems Sciences, 9,
332-354 (1974).

Wadsworth, @., Semantics and pragmatics of the lambda calculus, Ph.D. ~hesis,
Programming Research @roup, Oxford University (1971).

FLrRTHERWORK

The author is currently pursuing several possible extensions to this work

including applying the theory to non-discrete domains (lazy CONS), higher order

systems, parallelism, and exploring the general idea of abstract interpretations.

It seems that this work can also be applied to programs with parallel base

functions in an attempt to determine 'how much' parallelism is necessary for

their computation (again I am grateful to an (anonymous) referee) in that the

sequential and parallel interpretations are weakly equivalent. See for example

[Berry 75], but this is rather beyond the scope of this paper.

ACKNOWLEDGEMENTS

I am grateful for the support of the SRC during this work, and for the help-

ful advice of Rod Burstall, Robin Milner and David HacQueen at Edinburgh, and

also for discussions with Gerard Huet, Jean-Jacques Levy and Bernard L~u~g at IRIA

facilitated by the close links between these institutions. I am indebted to

Arthur Norman (Cambridge University) for the original idea of trying to detect

call-by-value in one of hie "wouldn't it be nice if we had a system that ..."

suggestions. Thanks to Eleanor Kerse for speedy typing at short notice.

