
A CASE STUDY OF ABSTRACT I~DLEP£NTATIONS

AND THEIR CORRECTNESS

H. Ehrig

H.-J. Kreowski

P. Padawitz

ABSTRACT
A new implementation concept for algebraic specification languages supports
hierarchical programming mainly because it provides a semantical basis for
correctness proofs. "Abstract programs" describe syntactically how data and
operations of a lower level data type should represent those of an upper level
type. Dependent on these programs a general semantical construction transforms
the lower level type into an implementation of the upper level type. The imple-
mentation is correct if the result of this construction coincides with the
semantics of the upper level type. Therefore this concept involves a clear
distinction between the syntactical and the semantical part of an abstract imple-
mentation. Although the syntax of such an implementation always supplies a
"freely generated" semantics, the concept also admits the use of other (algebraic)
models which often ease correctness proofs.
A data type for performing some text analysis is specified and implemented by
arrays which are accessed via an efficient hashing technique. Moreover, we give
a correctness proof of this implementation that partly refers to correctness
criteria introduced in an earlier paper where the whole concept is discussed in

more detail.

Address of authors:

TU Berlin, FB Informatik (20), 1000 Berlin iO,

Otto-Suhr-Allee 18/20, Germany (West)

109

I, INTRODUCTION
For the last five years or so there has been a great effort to develop specifi-

cation languages with various structuring concepts, e.g. ALPHARD (cf. /WLS 76/),

SPECIAL (cf. /RR 77/, /LRS 79/) and OBJ (cf. /GT 78/). Three important goals

are achieved by expressing programming tasks in terms of specification languages

before writing down the code. First of all one avoids the consideration of spe-

cial programming environments. Nevertheless specification languages have a pre-

cise syntax and thus provide the basis for an unambiguous semantics of specifi-

cations. Secondly, they incorporate tools for building up large programs from

small pieces both in a horizontal and a vertical manner: Module and data type

facilities evolve from the principles of information hiding and data encapsula-

tion (cf. /Par 72/) while the method of stepwise refinement gets a formal basis

against which its correct use can be checked. Thirdly, if primitive as well as

structuring constructs of specification languages have a formal semantics, then

one is able to prove whether properties of the problem to be specified and of its

refinement are met by the specification.

Specification languages are based either on logical theories or on "abstract

models". Algebraic specifications as introduced by Guttag (cf. /Gut 76/, /GHM 78/)

and the ADJ group (cf. /GTW 78/, /Gog 77/) belong to the theory approach since

they consist of pure syntax, namely operation symbols and equational axioms.

Their semantics results from a general construction built up on that syntax. In

the model approach operations are specified by their effect on a pre-defined

mathematical object called abstract model or state space. Model approach

languages are, for example, the assertion languages ALPHARD and SPECIAL. While

ALPHARD provides a fixed set of models, the state space of a SPECIAL program is

given by user-defined access operations ("V-functions").

The structuring facilities of specification languages are manifold. The basic

construct that comprises a self-contained specification is called "form" in

ALPHARD, "module" in SPECIAL and "theory" resp. "object" in the algebraic speci-

fication languages CLEAR (cf. /BG 77/) and OBJ. Specifications are composed to

build new specifications by the features "extension" (cf. /GTW 78/, /Nou 79/),

"type parameterization" resp. "procedure" (cf. /TWW 78/, /BG 77/), "abstract

implementation" etc. Abstract implementations may be regarded as the formaliza-

tion of stepwise refinement that was invented by Dijkstra and Wirth for the

structured design of programs (cf. /Dij 72/, /Wir 71/).

A facility for writing abstract implementations is part of theory as well as model

approach languages (cf. /GHM 78/ and /WLS 76/, /RL 77/, resp.). While /G~4 78/

does not deal with the semantics of its syntactical constructions, other algebraic

approaches to implementations (/GN 78/, /LS 77/) tackle the semantics but do not

110

consider implementations as a structuring construct of specification languages

that has its own syntax. The concept presented in this paper starts from very

similar requirements as the approaches mentioned above. But we make the resulting

constructions more explicit and avoid conceptual restrictions which are not due

to the requirements. Hence a syntactical (or axiomatic), a semantical and a

correctness level of implementations are treated separately. The semantics is

completely determined by the syntax and a general semantical construction. If

this construction results in the data type to be implemented, then the implemen-

tation is correct. For the purpose of a correctness proof one may use "abstract

model" algebras which are isomorphic to the derived semantics. But these models

are not part of the specification language. In /EKMP 80/ we define the composi-

tion of implementations and thus pay further attention to the language aspect of

our concept.

The syntax of abstract implementations is defined in chapter 2 while chapter 3

deals with semantics and correctness. The whole concept is discussed in full

detail in /EKP 79 a,b/. In this paper we stress its practical significance by

presenting the correctness proof of an efficient implementation of a histogram

data type that counts the occurrences of different strings in a string file. A

six-level implementation of a corresponding data type given in /LRS 79/, Vol. III,

for illustrating the facilities of SPECIAL has inspired us to regard this example

from an algebraic point of view. Chapter 2 contains the syntax of this implemen-

tation, and its correctness proof is given in chapter 4.

2, THE SYNTACTICAL LEVEL OF IVPLEMENTATIONS

2.1 PRELIMINARIES

Let S be a set of sorts and [be a family of sets [of operation symbols for
w,s

all weS ~ and seS. ~e[is written G:w > s.
w,s

We assume that the reader is familiar with the basic notions of many-sorted uni-

versal algebra, particularly with 'E-term", "~-algebra" and "Z-homomorphism"

(see e.g. /GTW 78/).

Let Tz(X) be the [-algebra of Z-terms with variables in X and A be an arbitrary

[-algebra. Then any function a:X. ~ A - called assignment - admits a unique Z-

homomorphic extension from Tz(X) to A that is also denoted by a. e~val A is the

unique Z-homomorphism from ~=Tz(~) to A° Given a family E of binary relations

T~ (X)z s for all seS, the pairs of E are called equations, and the E triple
s

SPEC=<S,Z,E> is a specification. A satisfies E and is a SPEC-algebra if aL=aR

for all (L,R)eE and all a:X > A.

The semantics of SPEC is given by the quotient algebra TSPEc=T[/~E where ------E is

the least Z-congruence that contains {(aL,aR) Ia:X----~T Z, (L,R)eE}. TSPEC is

I11

initial in AIgsPEC , the category of SPEC-alqebras (cf. /GTW 78/).

Abstract implementations in the sense of /EKP 79 a,b/ are defined as follows.

We confine the definition to canonical implementations (/EKP 79/, 5.3), but we

additionally admit "hidden" operations.

2.2 DEFINITION

Let SPECO=SPEC+<SO,ZO,EO> and SPECI=SPEC+~SI,ZI,EI> be two specifications with a

common subspecification SPEC=<S,Z,E > (+ denotes the componentwise disjoint union)

A weak implementation IMPL=(ZSORT,EOP,ZHID,EHID) consists of operations ZSORT and

ZHID, called sorts implementing operations resp. hidden operations, and of equa-

tions EOP and EHID, called operations implementing equations resp. hidden equa-

tions, such that

i. the range sorts of all ~GZSORT belong to SO,

2. SORTIMPL=SPECI+<SO,ZSORT,~> and OPIMPL=(SORTIMPL+<~,XHID,EHID>)+<~,ZO,EOP>are

specifications, called sort implementation resp. operation implementation level.

2.3 REMARKS

Sorts implementing operations are domain constructors which combine SPECl-data

to build up SPECO-data. ZSORT may be partly identified with the syntactical de-

vices "mappings" in SPECIAL and ~'representation" in ALPHARD and /GHM 78/.

Operations implementing equations can be considered as programs that implement

the SPECO-operations, especially if'EOP represents recursive definitions of ZO-

operations on (Z+ZI+ZSORT)-terms. These definitions make use of hidden operations

ZHID which are specified in EHID. EHID+EOP corresponds to "programs" in /GHM 78/,

"abstract programs" in SPECIAL and to the "implementation" part of ALPHARD speci-

fications. Note that ALPHARD as well as the "derivor" approach to implementa-

tions (ef. /GTW 78/, /GN 78/) do not allow recursive definitions of SPECO-opera-

tions.

2.4 EXAMPLE

Each of the following specifications ~ 2 ~ , ~-~m and ~ implicitly shares

a specification ~ of truth values TRUE and FALSE and boolean operations such

that TRUE,FALSE and contains for all sorts s a conditional

IF-THEN-ELSE:bool s s ~ s with equations

IF TRUE THEN x ELSE y = x

and IF FALSE THEN x ELSE y = y°

Let specifications ~ and ~[!~ of natural numbers resp. strings be given with

successor SUCC, equality predicates EQ? and the empty string &.

We want to implement a data type of histograms which provides an operation that

for each string returns the number of its occurrences in a file. A simple speci-

112

fication of such a data type is the specification of string files enriched by an

operation that counts equal entries. But the linear structure of a file implies

that histograms specified as string files may be distinct even if the operation

for counting string occurrences returns the same values. Thus all implementations

of histograms would be forced to maintain unnecessary distinctions of data. This

fact is also a formal consequence of correctness criterium II for implementations

(see chapter 3). Especially, the implementation given in /LRS 79/ (see above)

which we shall describe algebraically would not be an implementation of such an

enriched file specification. Hence we add a commutativity axiom for strings to

this specification and thus identify all files which are permutations of the same

set of string occurrences. Therefore the specification of histograms corresponds

to that of multisets (or bags) of strings together with a counting operation HOW-

MANY:

sorts: hist

opns: @: --+ hist

INSERT: hist string ----> hist

HOWMANY: hist string ~ nat

eqns: INSERT(INSERT(h,w),v) = INSERT(INSERT(h,v),w)

HOWMANY(~,w) = O

HOWMANY(INSERT(h,w),v) = IF EQ?(w,v)

THEN SUCC(HOWMANY(h,v))

ELSE HOWMANY(h,v)

A histogram is implemented by an array al of strings and an array a2 of natural

numbers as follows: a2 contains the number of occurrences of a string w at the

same position where w is located in al. The arrays are unbounded and initialized

with 6 resp. O.

sorts: arrayl

opns: NEW: ----~ arrayl

ASSIGN: arrayl nat string ---> arrayl

-[-3: array[nat ~ string

eqns: ASSIGN(NEW,n,6) = NEW

ASSIGN(ASSIGN(a,n,x),m,y) = IF EQ?(n,m)

THEN ASSIGN(a,m,y)

ELSE ASSIGN(ASSIGN(a,m,y),n,x)

NEW In] : E

ASSIGN(a,n,x) [m] = IF EQ?(n,m) THEN x ELSE aim]

I13

~ (~) is the same as ~ (~) except that ~[!~, arrayl, string and &

are replaced by nat, array2, nat and O, respectively. Instead of ~ (~) and

~{~Z(~$~) one may specify ~Z(~$~) where ~$em comprises only those proper ~

ties of the parameter that are necessary for specifying arrays. For a formal

treatment of type parameterization see /TWW 78/.

Access to the arrays is performed as follows: A hash function supplies for each

string w a directory location that contains the array index where the search for

w or an empty slot for w should start. The hash function values are assumed to

range from O to m-I so that the directory is specified as an m-tuple of natural

numbers :

sorts: natm, tup

opns: - MOD m: nat ~ nat
........ m

[-, ~ : nat m ---> tu___pp

ENTRY: tup natm ----> nat

CHANGE: tup nat nat ---+ tup
m

eqns: Succm(i) MOD m = i MOD m

ENTRY([xl,..,xm3, k MOD m) = x(k+i) for all O4 k<m

CHANGE([xl xm], k MOD m, x) = [xl xk,x,x(k+2) xm]

for all 04 k<m

Hence, the implementation of ~ [! 9 combines three specifications:

SPECI = tU~.m (nat) + ~5~ (~Z) + ~I{~Z (~)

implements SPECO = histogram by

sorts implementing operations:

TRIPLE: tup arrayl array2 ----> hist

hidden operations:

HASH: string---~ nat

SEARCHSLOT: arrayl nat ---> nat

SEARCHHIT: array l string qa% ---> nat

LOC: tup arraYl string ---~ nat

INCREASE: array2 nat ~ arraY2

hidden equations:

E(HASH) (equations for HASH)

SEARCHSLOT(a,n) = IF EQ? (a[n],£)

THEN n

ELSE SEARCHSLOT(a,SUCC(n))

SEARCHHIT(a,w,n) = IF EQ? (a In3 ,w) OR EQ? (a In 3,6)

THEN n

ELSE SEARCHHIT(a,SUCC(n))

114

LOC(t,a,w) = SEARCHHIT(a,ENTRY(t,HASH(w)),w)

INCREASE(a,n) = ASSIGN(a,n,SUCC(a[n]))

operations implementing equations:

= TRIPLE ([O O],NEW,NEW)

INSERT(TRIPLE(t,al,a2),w) =

= IF EQ?(ENTRY(t,HASH(w)),O)

THEN TRIPLE(CHANGE(t~HASH(w),SEARCHSLOT(aI,SUCC(O))),

ASSIGN(aI,SEARCESLOT(aI,SUCC(O)),w),

ASSIGN(a2,SEARCHSLOT(aI,SUCC(O)),SUCC(O)))

ELSE IF EQ?(al[LOC(t,al,w)],£)

THEN TRIPLE(t,ASSIGN(aI,LOC(t,aI,w),w),

ASSIGN(a2,LOC(t,al,w),SUCC(O)))

ELSE TRIPLE(t,aI,INCREASE(a2,LOC(t,al,w)))

HOWMANY(TRIPLE(t,al,a2),w) = IF EQ?(ENTRY(t,HASH(w)),O)

TEEN O

ELSE a2 [LOC (t,ai ,w)]

HASH may be considered as a parameter such that SORTIMPL +<~,HASH,E(HASH)> is an

enrichment of SORTIMPL (see chapter 3). The com/non subspecification of SPECI and

SPECO is given by SPEC = ~{~ + ~.

3, SEMANTICS AND CORRECTNESS OF IMPLEMENTATIONS

3.1 DEFINITION

Given a weak implementation IP~L=(ZSORT,EOP,XHID,EHID) of SPECO by SPECI, the

semantical construction SEMIY~L is the composition (to be applied from right to

left)

SEMIMPL = IDENTIFICATIONoRESTRICTIONoSYNTHESIS

such that

SYNTHESIS(TsPEC I) = TOPIMPL,

RESTRICTION(ToPIMPL) = REPIMPL := eval(Tz+zO)

where eval is the unique ~O-homomorphism from TZ+XO to TOPIMPL,

IDENTIFICATION(REPIMPL) = REPIMPL/~E+EO.

SEMIMPL(TsPECI) is called the semantics of IMPL.

IMPL is correct and thus an implementation if

I. OPIMPL is an enrichment of SORTIMPL,

i.e. TSORTIMPL and TOPIMPL are (Z+Zl+[SORT)-isomorphic, and

II. IMPL is RI-correct, i.e. SEMIMPL(TsPEC I) is (Z+ZO)-isomorphic to TSPEC O.

3.2 REMARKS

SYNTHESIS extends the implementing data type TSPEC I by the data and operations

115

that are to be implemented. Correctness in the sense of /EKP 79 a,b/ also re-

quires type protection, i.e. that TSPEC 1 and TSORTIMPL are (Z+ZI)-isomorphic. But

here we have restricted weak implementations to canonical ones(cf. /EKP 79b/, 5.3)

so that type protection is always guaranteed (/EKP 79 b/, Lemma 5.1).

RESTRICTION extracts all data from the OPIMPL-semantics that are generable exclu-

sively by ~+~O)-operations. IDENTIFICATION identifies all data of REP which
IMPL

are semantically equivalent with respect to SPECO.

OPIMPL being an enrichment of SORTIMPL means that the operation implementation

level preserves the semantics of the sort implementation level.

The "RI" of RI-correctness reflects the order of application of RESTRICTION and

IDENTIFICATION. Goguen and Nourani (cf. (GTW 78/, (GN 78/) apply their corre-

sponding constructions vice versa and take the result to be isomorphic to

REPIMPL/-------E+EO. But IR-correctness has been proved to be stronger than RI-

correctness by /EKP 79b/, Example 5.7.

If the common subspecification SPEC of SPECO and SPECI (cf. 2.2) is "protected"

by SPECO and SPECl, i.e. TSPEC is E-isomorphic to TSPEC O and TSPECI, then TSPEC

and SEMIMPL(TsPEC I) are [-isomorphic, too (/EKP 79a/, 3.11).

Before proving the correctness of our histogram implementation in chapter 4 we

state some conditions equivalent to 3.11. resp. 3.[II. which will be shown to

hold for our example.

First we give a characterization of enrichments.

Let SPEC=<S,Z,E> and SPEC'=<S,Z',E'> be two specifications such that Z ~Z' and

E.~ E'. Then we have a unique [-homomorphism h from TSPEC to TSPEC , . Moreover,

h is defined by the following commutative diagram where inc is the inclusion of

terms and nat, nat' are natural homomorphisms:

inc
T~ ~ TZ,

nat (I) at'

TSPEC h > TSPEC '

SPEC' is called an enrichment of SPEC if h is bijective.

3.3 LEMMA (correctness c[iterium I)

SPEC' is an enrichment of SPEC iff one of the following conditions holds true:

i. For all t'eTz, there is teT Z such that t~E,t' , and for all tl,t2eT Z

tl------E,t2 implies tibet2.

2. TSPEC can be extended to a SPEC'-algebra and h to a Z'-homomorphism.

116

Proof: Diagram (I) implies that i. is equivalent to bijectivity of h.

Let A be a SPEC'-extension of TSPEC such that h is ['-compatible. Then there is

a unique >-'-homomorphism g:TsPEC,---~ A. Since TSPEC and TSPEC , are initial in

AlgsPEC and AIgsPEC , , respectively, (2) and (3) below are commuting diagrams that

consist of Z- and Z'-homomorphisms, respectively. (id and id' are identities.)

h
TSPEC-- > TSPEC,

i d i d '

A h > TSPEC '

Hence h is bijective.

On the other hand, if h is bijective~ then we immediately obtain a SPEC'-extension

of TSPEC such that h becomes ['-homomorphic.

Thus 2. is equivalent to bijectivity of h.

3.4 REMARKS

Condition 3.3.1 which was already given in /EKP 78/ may be considered as an

"operational" enrichment characterization because it refers exclusively to trans-

formations of terms via the congruence relations ~E and ~E'" Although the con-

gruence between two terms is undecidable in general, sufficient conditions for

3.3.1 which can be verified automatically are about to be investigated. The re-

search on term rewriting systems (see e.g. /KB 70/, /Ros 73/, /Huet 77/, /Der 79/)

has influenced the formulation of "syntactical" conditions that imply 3.3.1 (cf.

/GH 78/, /Mus 78/, /EKP 78/, /EKP 80/, /Pad 80/). Instead of verifying such

syntactical conditions in order to prove correctness criterium I for our histogram

implementation we directly show the "semantical" enrichment characterization

3.3.2. More precisely, TSPEC will be replaced by another SPEC-algebra A that is

~-isomorphic to TSPEC and h by the unique Z-homomorphism h A from A to TSPEC ~ that

is defined by
inc

TZ~ ~T Z ,

A- h ~ TSPEC
A

Hence h A is (Z'-Z)-compatible iff for all ne ~, sl,...,sn,seS, 6:sl...sn---~s in

Z'-X and all ti~Tx, si, I~ J~ n, we have hA(6-A(tl A tnA)) =[6(tl tn)]E , (5)

where tA=evalA(t).

t17

A SPEC-algebra A that is isomorphic to TSPEC may be called an abstract model of

SPEC. It was shown elsewhere that A~-~T iff eval is bijective on some set of
SPEC A

Z-terms which contains a representative of each equivalence class in TSPEC.

Finally, let us point out that the second part of 3.3.1 as well as the first part

of 3.3.2 are both equivalent to the injectivity of h. Therefore the first part

of 3.3.1 together with the first part of 3.3.2 is also an enrichment characteri-

zation. D

Given a weak implementation IMPL of SPECO by SPECI (cf. 2.2), there is an unique

ZO-homomorphism 1 from TSPEC O to REPIMPL/~E+EO that is defined by the following

diagram where eval' is the restriction of eval to its image REPIMPL and nat, nat'

are natural homomorphisms (cf. 3.1):

eval'
TZ+ZO > REPIMPL

I
nat ! (6) nat'

i

TSPECO-- 1 > REPIMPL/~ E+EO

Since eval' and nat are surjective, 1 is surjective, too.

The following characterization of RI-eorrectness is also given in /EKP 79 a,b/

(Theorem 4.3 resp. 5.5).

3.5 LEMMA (correctness criterium II)

IMPL is RI~correct iff one of the following conditions holds true:

i. For all tl,t2~Tz+~O tl--~_~t2 implies tl_~E+EOt2 where ~--E+EI+EHiD+EOP.

2. There is a (Z+ZO)-homomorphism rep:REPIMPL > TSPEC O.

Proof: I. and 2. are equivalent because (Z+ZO)-compatibility of rep implies

repoeval~=nat and, vice versa, if rep is a function that satisfies repoeval'=nat,

then rep is (Z+ZO)-homomorphic.

If 1 is injective, then rep exists by the well-known diagonal fill-in lemma (cf.

/AM 75/). On the other hand, since TSPEC O satisfies E+EO, rep induces a (Z+ZO)-

homomorphism rep':REPINPL/=---E+EO ~ TSPEC O. By i n i t i a t i t y of TSPEC 0 in AlgsPEC 0
we have rep'ol=id. Hence 1 is injective.

3.6 REMARKS

Our remark in 3.4 concerning the operational enrichment characterization 3.3.1

also applies to 3.5.1.

The homomorphism rep in 3.5.2 is mostly called abstraction function.

I18

rep guarantees a structure-preserving representation of TSPEC O. Moreover, rep is

always surjective because repoeval'=nat (cf. diagram (6)) so that the representa-

tion is complete. The abstraction function is central to all implementation con-

cepts. It is called representation function in ALPHARD and mapping function in

SPECIAL and is sometimes given by an "equality interpretation" (cf. /GHM 78/) that

would be a (~+/O)-congruence on REPIMPL in our approach.

Note that rep is only defined on those OPIMPL-data which are generated by

(Z+~O)-operations.

4, THE HISTOGRAM IMPLEMENTATION IS CORRECT

In this chapter we present the correctness proof for our histogram implementation

IMPL given in Example 2.4. We provide abstract models A and B for SPEC! resp.

SPECO and show that OPIMPL is an enrichment of SORTIMPL and that IMPL is RI-correct

using Lemma 3.3 and 3.5, respectively.

Let SPECI = ~m(~) + ~ (~) + ~ (~) -

The abstract modei that makes precise what we imagined when writing SPECI is given

by the following SPECl-algebra A. The carrier sets of A are

A = Z for some alphabet Z,
string

= N, Ana t =~0 m-l}, A = m,
tup

Anat {f: N~Z If(n) = ~ for a~ but finitely many ne ~},
Aarrayl

Aarray 2 = {f: ~---+ ~If(n) = O for all but finitely many ne ~ }.

All operations of ~-~m have obvious meanings in A, and the ~{~-operations are de-

fined as follows:

For all n~ N, feAarray I resp. feAarray 2 and xqZ resp. x6 N we have

NEWA(n) = & resp. NEWA(n) = O,

ASSIGNA(f,n,x) = Ai. i~f i=n then x else f(n),

f[n]A = f(n).

The proof of A~-----TsPEC 1 is left to the reader (cf. Remark 3.3.3).

A represents the sort implementation of hi@t2~ra ~ by

Ahist = Atup x Aarray.l × Aarray2 and

TRIPLEA(t,f,g) = (t,f,g).

In order to show that OPIMPL is an enrichment of SORTIMPL we want to apply Lemma

3.3 to SPEC=SORTIMBL and SPEC'=OPIMPL and therefore define the operations of

XHID+ZO on A as follows.

We assumed that SORTIMPL+<~,HASH,E(HASH)> is an enrichment of SORTIMPL where

E(HASH) is the subset of EHID that specifies HASH. Hence, by Lemma 3.3, HASH can

be defined on A such that A satisfies E(HASH) and h A is compatible with HASH.

119

For all feAarray I, w~Z and all ne

SEARCHSL0~(f,n) : min{ie ~li~,f(i) : ~} ~d

SEARCHHITA(f,w,n) = min{i~ ~li~n,f(i) : w or f(i) :E}.

Since each of the operations LOC, INCREASE, ~, INSERT and HOWMANY is implemented

as a derived operation (cf. /EKP 78/, 2.5), it is simply defined on A by interpre

ting the right side of its respective (EHID+EOP)-equation in A. For example, for

all g~Aarray and all n@ N

INCREASEA(g,n) =~i. if i=n then g(i)+l else g(i).

Clearly, this extension of A to a (ZHID+ZO)-algebra satisfies EHID+EOP. Hence A

is an OPIMPL-algebra.

It remains to show that h A (cf. 3.4) is compatible with ZHID+EO. Of course, this

holds true for the derived operations of ZHID+ZO, while compatibility with

6=SEARCHSLOT (and, analogously, with SEARCHHIT) is proved as follows:

For all tl@T-+Zl,arrayli and all t2@T[,nat let

n(tl,t2) : ~A(tlA,t2A)-t2 A.

We show 3.4(5) by induction on n(tl,t2). If n(tl,t2) = O, then ~A(tlA,t2A)=t2A

and tlA(t2A)=£ by definition of G A. Since eval A is (E+Zl)-homomorphic,

t! [t2]A=g A. Thus tl [t2]~B+El £ s o that EQ? (tl [t2],£)~_E+EITRUE. Hence

6(tl,t2)_=E+EI+EHIDt2, and we get

hi(GA(tlA,t2i))=hA(t2i)=[t2]E ,= G(tl,t2) E' by 3.4(4) where E'=E+EI+EHID+EOP.

If n(tl,t2)>O, then ~A(tlA,t2A)=~A(tIA,SUCC(t2)A) and tlA(t2A)~A6 . Therefore

tl [t2]~E+EI £ so that EQ?(tI[t2],£)~-E+EIFALSE. Hence 6 (tl, t2) ------ E+EI+EHI D

G(tI,SUCC(t2)).

SUCC(t2)A=t2A+I implies n(tl,SUCC(t2))<n(tl,t2). Thus we obtain

hA (% (tiA' t2A)) =hA (% (tlA' SUCC (t2)A)) =[~(tI,SUCC (t2))~E '=[~(tl't2)~ E' by induc-

tion hypothesis.

As we have already seen, the semantics of SPECO=~{~may be represented by

the multisets of strings. The following abstract model B for ~!~to~[a_m describes

such multisets by their characteristic functions:

= Z ~ Bstring (see above), Bna t = N,

Bhist = {b:Z ~---~ ~Ib(w)=O for all but finitely many ~z~}.

The operations of b ~ are defined accordingly.

Let A' be the subalgebra of A that consists of all (Z+ZO)-generable elements of A.

Then A '~ REPI~ L (cf. 3.1) . In order to get a well-defined abstraction function

rep:A'---+ B one must show that for all (t,f,g)eA]. _ f is injective up to £, i.e.
nis~

f(i)=f(j) implies i=j or f(i) =6. But this property follows from the fact that

(t,f,g) is generated by (Z+ZO)-operations. Therefore rep is given by

rep(x) = x for all x~Z u

120

rep(t,f,g) = ~w. if f(i) = w then g(i) else O for all (t,f,g) e A'
-- hist"

The proof that rep is (Z+[O)-homomorphic is rather tedious but straightforward

and thus omitted here.

Hence, by Lemma 3.5, our histogram implementation is RI-correct, and the correct-

ness proof of Example 2.4 is finished.

The abstract models A and B for SPECl resp. SPECO may be replaced by canonical

term algebras as introduced in /GTW 78/ and further investigated in /Nou 79/.

The utility of canonical term algebras in correctness proofs for implementations

has been demonstrated in /Pad 79/ at an implementation of stacks by array-pointer

pairs. The proofs that A satisfies EHID+EOP and that rep is ~+ZO)-homomorphic

were done by structural inductions and term replacements.

REFERENCES

/AM 75/

/BG 77/

Arbib, M.A., Manes, E.G.: Arrows, Structures, and Functors,

Academic Press, New York, 1975

Burstall, R.M., Goguen, J.A. : Putting Theories together to Make
Specifications, Proc. Int. Conf. Artificial Intelligence, Boston,

1977

/Der 79/

/Dij 72/

/E~ 80/

/EKP 78/

/EKP 79a/

/EKP 79b/

/ E ~ aO/

/GH 78/

/Gm~ 78/

Dershowitz, N.: Orderings for Term-Rewriting Systems, Proc. 20th

IEEE Symp~ on FOCS, 1979, 123-131

Dijkstra, E.W.: Notes on Structured Programming, in: Structured
Programming, C.A.R. Hoare, Ed., Academic Press, New York, 1972

Ehrig, H., Kreowski, H.-J., Mahr, B., Padawitz, P.: Compound
Algebraic Implementations: An Approach to Stepwise Refinement
of Software Systems, 1980,Bericht Nr.80-4,TU Berlin,FB 20,1980

Ehrig, H., Kreowski, H.-J., Padawitz, P.: Stepwise Specifica-
tion and Implementation of Abstract Data Typess Proc. 5th ICALP,
Udine 1978, Springer Lect. Not. in Comp. Sci. 62, 205-226

--: Algebraische Implementierung abstrakter Datentypen, For-
schungsbericht Nr. 79-3, TU Berlin, FB 20, 1979

--: Algebraic Implementation of Abstract Data Types: Concept,
Syntax, Semantics and Correctness, 1979, accepted for ICALP 80

--: Completeness in Algebraic Specifications, to appear in

Bull. EATCS, No. 11 ~ 1980

Guttag, J.V., Horning, J.J.: The Algebraic Specification of
Abstract Data Types, Acta Informatica iO, 1978, 27-52

Guttag, J.V., Horowitz, E., Musser, D.R.: Abstract Data Types
and Software Validation~ Comm. ACM, Vol. 21, No. 12, 1978,

1048-1063

121

/GN 78/

/GT 78/

/GTW 78/

/Gut 76/

/Huet 77/

/KB 70/

/LRS 79/

/LS 77/

/Mus 78/

/Nou 79/

/Pad 79/

/Pad 80/

/Par 72/

/RL 77/

/Ros 73/

/RR 77/

Goguen, J.A., Nourani, F.: Some Algebraic Techniques for
Proving Correctness of Data Type Implementation, Extended Abstra<
Comp. Sci. Dept., UCLA, Los Angeles, 1978

Goguen, J.A., Tardo~ J.J.: An Introduction to OBJ: A Language
for Writing and Testing Formal Algebraic Specifications, Techn.
Report, Univ. of California at LA, 1978

Goguen, J.A., Thatcher, J.W., Wagner, E.G.: An Initial Algebra
Approach to the Specification, Correctness and Implementation of
Abstract Data Types, in: Current Trends in Programming Methodo-
logy, IV: Data Structuring (R.Yeh Ed.), Prentice Hall, New
Jersey, 1978, 80-144

Guttag, J.V.: Abstract Data Types and the Development of Data
Structures, Supplement to Proc. Conf. on Data Abstraction, De-
finition, and Structure, SIGPIAN Notices 8, March 1976

Huet, G.: Confluent Reductions: Abstract Properties and Appli-
cations to Term Rewriting Systems, Proc. 18th Symp. on FOCS,
1977, 30-45

Knuth, D., Bendix, P.: Simple Word Problems .in Universal Alge-
bras, in: Computational Problems in Abstract Algebra, J.Leech,
Ed., Pergamon Press, Oxford 1970, 263-297

Levitt, K.N., Robinson, L., Silverberg, B.A.: The HDM Handbook,
SRI International, Menlo Park, 1979

Lehmann, D.H., Smyth, M.B.: Data Types, Univ. of Warwick, Dept.
of Comp. Sci., Report No. 19, 1977, and Proc. 18th IEEE Symp.
on Found. of Computing, Providence, R.I., Nov. 1977, 7-12

Musser, D.R.: A Data Type Verification System Based on Rewrite
Rules, Univ. of Southern California, ISI Report, 1978

Nourani, F.: Constructive Extension and Implementation of Ab-
stract Data Types and Algorithms, Ph.D.Thesis, University of
California at LA, 1979

Padawitz, P.: Proving the Correctness of Implementations by
Exclusive Use of Term Algebras, Forschungsbericht Nr. 79-8, ~J
Berlin, FB 20, 1979

--- New Results on Completeness and Consistency of Abstract
Data Types, 1980, submitted to 5th Conf. on Automated Deduction

Parnas, D.L.: A Technique for Module Specification with
Examples, Comm. ACM, Vol. 15, No. 5, 1972, 330-336

Robinson, L., Levitt, K.N.: Proof Techniques for Hierarchically
Structured Programs, Comm. ACM, Vol. 20, No. 4, 271-283

Rosen, B.K.: Tree-MaMipulating Systems and Church-Rosser
Theorems, Journal ACM, Vol. 20, No. i, 1973, 160-187

Roubine, O, Robinson, L.: SPECIAL Reference Manual, 3rd Edition,
SRI Report No. CSG-45, Menlo Park, 1977

122

/TWW 78/

/Wit 71/

/WLS 76/

Thatcher, J.W., Wagner, E.G., Wright, J.B.: Data Type Specifi-
cation: Parameterization and the Power of Specification Tech-
niques, Proc. iO. SIGACT Symp. on Theory of Computing, San Dieg<
1978, 119-132

Wirth, N.: Program Development by Stepwise Refinement, Comm.
ACM, Vol. 14, No. 4, 1971, 221-227

Wulf, A., London, R.L., Shaw, M.: Abstraction and Verification
in ALPHARD: Introduction to Language and Methodology, Techn.
Report, Carnegie-Mellon Univ., 1976

