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ABSTRACT 
A new implementation concept for algebraic specification languages supports 
hierarchical programming mainly because it provides a semantical basis for 
correctness proofs. "Abstract programs" describe syntactically how data and 
operations of a lower level data type should represent those of an upper level 
type. Dependent on these programs a general semantical construction transforms 
the lower level type into an implementation of the upper level type. The imple- 
mentation is correct if the result of this construction coincides with the 
semantics of the upper level type. Therefore this concept involves a clear 
distinction between the syntactical and the semantical part of an abstract imple- 
mentation. Although the syntax of such an implementation always supplies a 
"freely generated" semantics, the concept also admits the use of other (algebraic) 
models which often ease correctness proofs. 
A data type for performing some text analysis is specified and implemented by 
arrays which are accessed via an efficient hashing technique. Moreover, we give 
a correctness proof of this implementation that partly refers to correctness 
criteria introduced in an earlier paper where the whole concept is discussed in 

more detail. 
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I, INTRODUCTION 
For the last five years or so there has been a great effort to develop specifi- 

cation languages with various structuring concepts, e.g. ALPHARD (cf. /WLS 76/), 

SPECIAL (cf. /RR 77/, /LRS 79/) and OBJ (cf. /GT 78/). Three important goals 

are achieved by expressing programming tasks in terms of specification languages 

before writing down the code. First of all one avoids the consideration of spe- 

cial programming environments. Nevertheless specification languages have a pre- 

cise syntax and thus provide the basis for an unambiguous semantics of specifi- 

cations. Secondly, they incorporate tools for building up large programs from 

small pieces both in a horizontal and a vertical manner: Module and data type 

facilities evolve from the principles of information hiding and data encapsula- 

tion (cf. /Par 72/) while the method of stepwise refinement gets a formal basis 

against which its correct use can be checked. Thirdly, if primitive as well as 

structuring constructs of specification languages have a formal semantics, then 

one is able to prove whether properties of the problem to be specified and of its 

refinement are met by the specification. 

Specification languages are based either on logical theories or on "abstract 

models". Algebraic specifications as introduced by Guttag (cf. /Gut 76/, /GHM 78/) 

and the ADJ group (cf. /GTW 78/, /Gog 77/) belong to the theory approach since 

they consist of pure syntax, namely operation symbols and equational axioms. 

Their semantics results from a general construction built up on that syntax. In 

the model approach operations are specified by their effect on a pre-defined 

mathematical object called abstract model or state space. Model approach 

languages are, for example, the assertion languages ALPHARD and SPECIAL. While 

ALPHARD provides a fixed set of models, the state space of a SPECIAL program is 

given by user-defined access operations ("V-functions"). 

The structuring facilities of specification languages are manifold. The basic 

construct that comprises a self-contained specification is called "form" in 

ALPHARD, "module" in SPECIAL and "theory" resp. "object" in the algebraic speci- 

fication languages CLEAR (cf. /BG 77/) and OBJ. Specifications are composed to 

build new specifications by the features "extension" (cf. /GTW 78/, /Nou 79/), 

"type parameterization" resp. "procedure" (cf. /TWW 78/, /BG 77/), "abstract 

implementation" etc. Abstract implementations may be regarded as the formaliza- 

tion of stepwise refinement that was invented by Dijkstra and Wirth for the 

structured design of programs (cf. /Dij 72/, /Wir 71/). 

A facility for writing abstract implementations is part of theory as well as model 

approach languages (cf. /GHM 78/ and /WLS 76/, /RL 77/, resp.). While /G~4 78/ 

does not deal with the semantics of its syntactical constructions, other algebraic 

approaches to implementations (/GN 78/, /LS 77/) tackle the semantics but do not 
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consider implementations as a structuring construct of specification languages 

that has its own syntax. The concept presented in this paper starts from very 

similar requirements as the approaches mentioned above. But we make the resulting 

constructions more explicit and avoid conceptual restrictions which are not due 

to the requirements. Hence a syntactical (or axiomatic), a semantical and a 

correctness level of implementations are treated separately. The semantics is 

completely determined by the syntax and a general semantical construction. If 

this construction results in the data type to be implemented, then the implemen- 

tation is correct. For the purpose of a correctness proof one may use "abstract 

model" algebras which are isomorphic to the derived semantics. But these models 

are not part of the specification language. In /EKMP 80/ we define the composi- 

tion of implementations and thus pay further attention to the language aspect of 

our concept. 

The syntax of abstract implementations is defined in chapter 2 while chapter 3 

deals with semantics and correctness. The whole concept is discussed in full 

detail in /EKP 79 a,b/. In this paper we stress its practical significance by 

presenting the correctness proof of an efficient implementation of a histogram 

data type that counts the occurrences of different strings in a string file. A 

six-level implementation of a corresponding data type given in /LRS 79/, Vol. III, 

for illustrating the facilities of SPECIAL has inspired us to regard this example 

from an algebraic point of view. Chapter 2 contains the syntax of this implemen- 

tation, and its correctness proof is given in chapter 4. 

2, THE SYNTACTICAL LEVEL OF IVPLEMENTATIONS 

2.1 PRELIMINARIES 

Let S be a set of sorts and [ be a family of sets [ of operation symbols for 
w,s 

all weS ~ and seS. ~e[ is written G:w > s. 
w,s 

We assume that the reader is familiar with the basic notions of many-sorted uni- 

versal algebra, particularly with 'E-term", "~-algebra" and "Z-homomorphism" 

(see e.g. /GTW 78/). 

Let Tz(X) be the [-algebra of Z-terms with variables in X and A be an arbitrary 

[-algebra. Then any function a:X. ~ A - called assignment - admits a unique Z- 

homomorphic extension from Tz(X) to A that is also denoted by a. e~val A is the 

unique Z-homomorphism from ~=Tz(~) to A° Given a family E of binary relations 

T~ (X)z s for all seS, the pairs of E are called equations, and the E triple 
s 

SPEC=<S,Z,E> is a specification. A satisfies E and is a SPEC-algebra if aL=aR 

for all (L,R)eE and all a:X > A. 

The semantics of SPEC is given by the quotient algebra TSPEc=T[/~E where ------E is 

the least Z-congruence that contains {(aL,aR) Ia:X----~T Z, (L,R)eE}. TSPEC is 
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initial in AIgsPEC , the category of SPEC-alqebras (cf. /GTW 78/). 

Abstract implementations in the sense of /EKP 79 a,b/ are defined as follows. 

We confine the definition to canonical implementations (/EKP 79/, 5.3), but we 

additionally admit "hidden" operations. 

2.2 DEFINITION 

Let SPECO=SPEC+<SO,ZO,EO> and SPECI=SPEC+~SI,ZI,EI> be two specifications with a 

common subspecification SPEC=<S,Z,E > (+ denotes the componentwise disjoint union) 

A weak implementation IMPL=(ZSORT,EOP,ZHID,EHID) consists of operations ZSORT and 

ZHID, called sorts implementing operations resp. hidden operations, and of equa- 

tions EOP and EHID, called operations implementing equations resp. hidden equa- 

tions, such that 

i. the range sorts of all ~GZSORT belong to SO, 

2. SORTIMPL=SPECI+<SO,ZSORT,~> and OPIMPL=(SORTIMPL+<~,XHID,EHID>)+<~,ZO,EOP>are 

specifications, called sort implementation resp. operation implementation level. 

2.3 REMARKS 

Sorts implementing operations are domain constructors which combine SPECl-data 

to build up SPECO-data. ZSORT may be partly identified with the syntactical de- 

vices "mappings" in SPECIAL and ~'representation" in ALPHARD and /GHM 78/. 

Operations implementing equations can be considered as programs that implement 

the SPECO-operations, especially if'EOP represents recursive definitions of ZO- 

operations on (Z+ZI+ZSORT)-terms. These definitions make use of hidden operations 

ZHID which are specified in EHID. EHID+EOP corresponds to "programs" in /GHM 78/, 

"abstract programs" in SPECIAL and to the "implementation" part of ALPHARD speci- 

fications. Note that ALPHARD as well as the "derivor" approach to implementa- 

tions (ef. /GTW 78/, /GN 78/) do not allow recursive definitions of SPECO-opera- 

tions. 

2.4 EXAMPLE 

Each of the following specifications ~ 2 ~ ,  ~-~m and ~ implicitly shares 

a specification ~ of truth values TRUE and FALSE and boolean operations such 

that TRUE,FALSE and contains for all sorts s a conditional 

IF-THEN-ELSE:bool s s ~ s with equations 

IF TRUE THEN x ELSE y = x 

and IF FALSE THEN x ELSE y = y° 

Let specifications ~ and ~[!~ of natural numbers resp. strings be given with 

successor SUCC, equality predicates EQ? and the empty string &. 

We want to implement a data type of histograms which provides an operation that 

for each string returns the number of its occurrences in a file. A simple speci- 
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fication of such a data type is the specification of string files enriched by an 

operation that counts equal entries. But the linear structure of a file implies 

that histograms specified as string files may be distinct even if the operation 

for counting string occurrences returns the same values. Thus all implementations 

of histograms would be forced to maintain unnecessary distinctions of data. This 

fact is also a formal consequence of correctness criterium II for implementations 

(see chapter 3). Especially, the implementation given in /LRS 79/ (see above) 

which we shall describe algebraically would not be an implementation of such an 

enriched file specification. Hence we add a commutativity axiom for strings to 

this specification and thus identify all files which are permutations of the same 

set of string occurrences. Therefore the specification of histograms corresponds 

to that of multisets (or bags) of strings together with a counting operation HOW- 

MANY: 

sorts: hist 

opns: @: --+ hist 

INSERT: hist string ----> hist 

HOWMANY: hist string ~ nat 

eqns: INSERT(INSERT(h,w),v) = INSERT(INSERT(h,v),w) 

HOWMANY(~,w) = O 

HOWMANY(INSERT(h,w),v) = IF EQ?(w,v) 

THEN SUCC(HOWMANY(h,v)) 

ELSE HOWMANY(h,v) 

A histogram is implemented by an array al of strings and an array a2 of natural 

numbers as follows: a2 contains the number of occurrences of a string w at the 

same position where w is located in al. The arrays are unbounded and initialized 

with 6 resp. O. 

sorts: arrayl 

opns: NEW: ----~ arrayl 

ASSIGN: arrayl nat string ---> arrayl 

-[-3: array[ nat ~ string 

eqns: ASSIGN(NEW,n,6) = NEW 

ASSIGN(ASSIGN(a,n,x),m,y) = IF EQ?(n,m) 

THEN ASSIGN(a,m,y) 

ELSE ASSIGN(ASSIGN(a,m,y),n,x) 

NEW In] : E 

ASSIGN(a,n,x) [m] = IF EQ?(n,m) THEN x ELSE aim] 
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~ ( ~ )  is the same as ~ ( ~ )  except that ~[!~, arrayl, string and & 

are replaced by nat, array2, nat and O, respectively. Instead of ~ ( ~ )  and 

~{~Z(~$~) one may specify ~Z(~$~) where ~$em comprises only those proper ~ 

ties of the parameter that are necessary for specifying arrays. For a formal 

treatment of type parameterization see /TWW 78/. 

Access to the arrays is performed as follows: A hash function supplies for each 

string w a directory location that contains the array index where the search for 

w or an empty slot for w should start. The hash function values are assumed to 

range from O to m-I so that the directory is specified as an m-tuple of natural 

numbers : 

sorts: natm, tup 

opns: - MOD m: nat ~ nat 
........ m 

[-, .... ~ : nat m ---> tu___pp 

ENTRY: tup natm ----> nat 

CHANGE: tup nat nat ---+ tup 
m 

eqns: Succm(i) MOD m = i MOD m 

ENTRY([xl,..,xm3, k MOD m) = x(k+i) for all O4 k<m 

CHANGE([xl .... xm], k MOD m, x) = [xl ...... xk,x,x(k+2) ..... xm] 

for all 04 k<m 

Hence, the implementation of ~ [ ! 9  combines three specifications: 

SPECI = tU~.m (nat) + ~5~ (~Z) + ~I{~Z (~) 

implements SPECO = histogram by 

sorts implementing operations: 

TRIPLE: tup arrayl array2 ----> hist 

hidden operations: 

HASH: string---~ nat 

SEARCHSLOT: arrayl nat ---> nat 

SEARCHHIT: array l string qa% ---> nat 

LOC: tup arraYl string ---~ nat 

INCREASE: array2 nat ~ arraY2 

hidden equations: 

E(HASH) (equations for HASH) 

SEARCHSLOT(a,n) = IF EQ? (a[n],£) 

THEN n 

ELSE SEARCHSLOT(a,SUCC(n)) 

SEARCHHIT(a,w,n) = IF EQ? (a In3 ,w) OR EQ? (a In 3,6) 

THEN n 

ELSE SEARCHHIT(a,SUCC(n)) 
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LOC(t,a,w) = SEARCHHIT(a,ENTRY(t,HASH(w)),w) 

INCREASE(a,n) = ASSIGN(a,n,SUCC(a[n])) 

operations implementing equations: 

= TRIPLE ( [O ..... O],NEW,NEW) 

INSERT(TRIPLE(t,al,a2),w) = 

= IF EQ?(ENTRY(t,HASH(w)),O) 

THEN TRIPLE(CHANGE(t~HASH(w),SEARCHSLOT(aI,SUCC(O))), 

ASSIGN(aI,SEARCESLOT(aI,SUCC(O)),w), 

ASSIGN(a2,SEARCHSLOT(aI,SUCC(O)),SUCC(O))) 

ELSE IF EQ?(al[LOC(t,al,w)],£) 

THEN TRIPLE(t,ASSIGN(aI,LOC(t,aI,w),w), 

ASSIGN(a2,LOC(t,al,w),SUCC(O))) 

ELSE TRIPLE(t,aI,INCREASE(a2,LOC(t,al,w))) 

HOWMANY(TRIPLE(t,al,a2),w) = IF EQ?(ENTRY(t,HASH(w)),O) 

TEEN O 

ELSE a2 [LOC (t,ai ,w)] 

HASH may be considered as a parameter such that SORTIMPL +<~,HASH,E(HASH)> is an 

enrichment of SORTIMPL (see chapter 3). The com/non subspecification of SPECI and 

SPECO is given by SPEC = ~{~ + ~. 

3, SEMANTICS AND CORRECTNESS OF IMPLEMENTATIONS 

3.1 DEFINITION 

Given a weak implementation IP~L=(ZSORT,EOP,XHID,EHID) of SPECO by SPECI, the 

semantical construction SEMIY~L is the composition (to be applied from right to 

left) 

SEMIMPL = IDENTIFICATIONoRESTRICTIONoSYNTHESIS 

such that 

SYNTHESIS(TsPEC I) = TOPIMPL, 

RESTRICTION(ToPIMPL) = REPIMPL := eval(Tz+zO) 

where eval is the unique ~O-homomorphism from TZ+XO to TOPIMPL, 

IDENTIFICATION(REPIMPL) = REPIMPL/~E+EO. 

SEMIMPL(TsPECI) is called the semantics of IMPL. 

IMPL is correct and thus an implementation if 

I. OPIMPL is an enrichment of SORTIMPL, 

i.e. TSORTIMPL and TOPIMPL are (Z+Zl+[SORT)-isomorphic, and 

II. IMPL is RI-correct, i.e. SEMIMPL(TsPEC I) is (Z+ZO)-isomorphic to TSPEC O. 

3.2 REMARKS 

SYNTHESIS extends the implementing data type TSPEC I by the data and operations 
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that are to be implemented. Correctness in the sense of /EKP 79 a,b/ also re- 

quires type protection, i.e. that TSPEC 1 and TSORTIMPL are (Z+ZI)-isomorphic. But 

here we have restricted weak implementations to canonical ones(cf. /EKP 79b/, 5.3) 

so that type protection is always guaranteed (/EKP 79 b/, Lemma 5.1). 

RESTRICTION extracts all data from the OPIMPL-semantics that are generable exclu- 

sively by ~+~O)-operations. IDENTIFICATION identifies all data of REP which 
IMPL 

are semantically equivalent with respect to SPECO. 

OPIMPL being an enrichment of SORTIMPL means that the operation implementation 

level preserves the semantics of the sort implementation level. 

The "RI" of RI-correctness reflects the order of application of RESTRICTION and 

IDENTIFICATION. Goguen and Nourani (cf. (GTW 78/, (GN 78/) apply their corre- 

sponding constructions vice versa and take the result to be isomorphic to 

REPIMPL/-------E+EO. But IR-correctness has been proved to be stronger than RI- 

correctness by /EKP 79b/, Example 5.7. 

If the common subspecification SPEC of SPECO and SPECI (cf. 2.2) is "protected" 

by SPECO and SPECl, i.e. TSPEC is E-isomorphic to TSPEC O and TSPECI, then TSPEC 

and SEMIMPL(TsPEC I) are [-isomorphic, too (/EKP 79a/, 3.11). 

Before proving the correctness of our histogram implementation in chapter 4 we 

state some conditions equivalent to 3.11. resp. 3.[ II. which will be shown to 

hold for our example. 

First we give a characterization of enrichments. 

Let SPEC=<S,Z,E> and SPEC'=<S,Z',E'> be two specifications such that Z ~Z' and 

E.~ E'. Then we have a unique [-homomorphism h from TSPEC to TSPEC , . Moreover, 

h is defined by the following commutative diagram where inc is the inclusion of 

terms and nat, nat' are natural homomorphisms: 

inc 
T~ ~ TZ, 

nat ( I ) at' 

TSPEC h > TSPEC ' 

SPEC' is called an enrichment of SPEC if h is bijective. 

3.3 LEMMA (correctness c[iterium I) 

SPEC' is an enrichment of SPEC iff one of the following conditions holds true: 

i. For all t'eTz, there is teT Z such that t~E,t' , and for all tl,t2eT Z 

tl------E,t2 implies tibet2. 

2. TSPEC can be extended to a SPEC'-algebra and h to a Z'-homomorphism. 
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Proof: Diagram (I) implies that i. is equivalent to bijectivity of h. 

Let A be a SPEC'-extension of TSPEC such that h is ['-compatible. Then there is 

a unique >-'-homomorphism g:TsPEC,---~ A. Since TSPEC and TSPEC , are initial in 

AlgsPEC and AIgsPEC , , respectively, (2) and (3) below are commuting diagrams that 

consist of Z- and Z'-homomorphisms, respectively. (id and id' are identities.) 

h 
TSPEC-- > TSPEC, 

i d  i d  ' 

A h > TSPEC ' 

Hence h is bijective. 

On the other hand, if h is bijective~ then we immediately obtain a SPEC'-extension 

of TSPEC such that h becomes ['-homomorphic. 

Thus 2. is equivalent to bijectivity of h. 

3.4 REMARKS 

Condition 3.3.1 which was already given in /EKP 78/ may be considered as an 

"operational" enrichment characterization because it refers exclusively to trans- 

formations of terms via the congruence relations ~E and ~E'" Although the con- 

gruence between two terms is undecidable in general, sufficient conditions for 

3.3.1 which can be verified automatically are about to be investigated. The re- 

search on term rewriting systems (see e.g. /KB 70/, /Ros 73/, /Huet 77/, /Der 79/) 

has influenced the formulation of "syntactical" conditions that imply 3.3.1 (cf. 

/GH 78/, /Mus 78/, /EKP 78/, /EKP 80/, /Pad 80/). Instead of verifying such 

syntactical conditions in order to prove correctness criterium I for our histogram 

implementation we directly show the "semantical" enrichment characterization 

3.3.2. More precisely, TSPEC will be replaced by another SPEC-algebra A that is 

~-isomorphic to TSPEC and h by the unique Z-homomorphism h A from A to TSPEC ~ that 

is defined by 
inc 

TZ~ ~T Z , 

A- h ~ TSPEC 
A 

Hence h A is (Z'-Z)-compatible iff for all ne ~, sl,...,sn,seS, 6:sl...sn---~s in 

Z'-X and all ti~Tx, si, I~ J~ n, we have hA(6-A(tl A ..... tnA)) =[6(tl ..... tn)]E , (5) 

where tA=evalA(t). 
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A SPEC-algebra A that is isomorphic to TSPEC may be called an abstract model of 

SPEC. It was shown elsewhere that A~-~T iff eval is bijective on some set of 
SPEC A 

Z-terms which contains a representative of each equivalence class in TSPEC. 

Finally, let us point out that the second part of 3.3.1 as well as the first part 

of 3.3.2 are both equivalent to the injectivity of h. Therefore the first part 

of 3.3.1 together with the first part of 3.3.2 is also an enrichment characteri- 

zation. D 

Given a weak implementation IMPL of SPECO by SPECI (cf. 2.2), there is an unique 

ZO-homomorphism 1 from TSPEC O to REPIMPL/~E+EO that is defined by the following 

diagram where eval' is the restriction of eval to its image REPIMPL and nat, nat' 

are natural homomorphisms (cf. 3.1): 

eval' 
TZ+ZO ..... > REPIMPL 

I 
nat ! (6) nat' 

i 

TSPECO-- 1 > REPIMPL/~ E+EO 

Since eval' and nat are surjective, 1 is surjective, too. 

The following characterization of RI-eorrectness is also given in /EKP 79 a,b/ 

(Theorem 4.3 resp. 5.5). 

3.5 LEMMA (correctness criterium II) 

IMPL is RI~correct iff one of the following conditions holds true: 

i. For all tl,t2~Tz+~O tl--~_~t2 implies tl_~E+EOt2 where ~--E+EI+EHiD+EOP. 

2. There is a (Z+ZO)-homomorphism rep:REPIMPL > TSPEC O. 

Proof: I. and 2. are equivalent because (Z+ZO)-compatibility of rep implies 

repoeval~=nat and, vice versa, if rep is a function that satisfies repoeval'=nat, 

then rep is (Z+ZO)-homomorphic. 

If 1 is injective, then rep exists by the well-known diagonal fill-in lemma (cf. 

/AM 75/). On the other hand, since TSPEC O satisfies E+EO, rep induces a (Z+ZO)- 

homomorphism rep':REPINPL/=---E+EO ~ TSPEC O. By i n i t i a t i t y  of TSPEC 0 in AlgsPEC 0 
we have rep'ol=id. Hence 1 is injective. 

3.6 REMARKS 

Our remark in 3.4 concerning the operational enrichment characterization 3.3.1 

also applies to 3.5.1. 

The homomorphism rep in 3.5.2 is mostly called abstraction function. 
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rep guarantees a structure-preserving representation of TSPEC O. Moreover, rep is 

always surjective because repoeval'=nat (cf. diagram (6)) so that the representa- 

tion is complete. The abstraction function is central to all implementation con- 

cepts. It is called representation function in ALPHARD and mapping function in 

SPECIAL and is sometimes given by an "equality interpretation" (cf. /GHM 78/) that 

would be a (~+/O)-congruence on REPIMPL in our approach. 

Note that rep is only defined on those OPIMPL-data which are generated by 

(Z+~O)-operations. 

4, THE HISTOGRAM IMPLEMENTATION IS CORRECT 

In this chapter we present the correctness proof for our histogram implementation 

IMPL given in Example 2.4. We provide abstract models A and B for SPEC! resp. 

SPECO and show that OPIMPL is an enrichment of SORTIMPL and that IMPL is RI-correct 

using Lemma 3.3 and 3.5, respectively. 

Let SPECI = ~m(~) + ~ ( ~ )  + ~ ( ~ ) -  

The abstract modei that makes precise what we imagined when writing SPECI is given 

by the following SPECl-algebra A. The carrier sets of A are 

A = Z for some alphabet Z, 
string 

= N, Ana t =~0 ..... m-l}, A = m, 
tup 

Anat {f: N~Z If(n) = ~ for a~ but finitely many ne ~}, 
Aarrayl 

Aarray 2 = {f: ~---+ ~If(n) = O for all but finitely many ne ~ }. 

All operations of ~-~m have obvious meanings in A, and the ~{~-operations are de- 

fined as follows: 

For all n~ N, feAarray I resp. feAarray 2 and xqZ resp. x6 N we have 

NEWA(n) = & resp. NEWA(n) = O, 

ASSIGNA(f,n,x ) = Ai. i~f i=n then x else f(n), 

f[n]A = f(n). 

The proof of A~-----TsPEC 1 is left to the reader (cf. Remark 3.3.3). 

A represents the sort implementation of hi@t2~ra ~ by 

Ahist = Atup x Aarray.l × Aarray2 and 

TRIPLEA(t,f,g) = (t,f,g). 

In order to show that OPIMPL is an enrichment of SORTIMPL we want to apply Lemma 

3.3 to SPEC=SORTIMBL and SPEC'=OPIMPL and therefore define the operations of 

XHID+ZO on A as follows. 

We assumed that SORTIMPL+<~,HASH,E(HASH)> is an enrichment of SORTIMPL where 

E(HASH) is the subset of EHID that specifies HASH. Hence, by Lemma 3.3, HASH can 

be defined on A such that A satisfies E(HASH) and h A is compatible with HASH. 
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For all feAarray I, w~Z and all ne 

SEARCHSL0~(f,n) : min{ie ~li~,f(i) : ~} ~d 

SEARCHHITA(f,w,n) = min{i~ ~li~n,f(i) : w or f(i) :E}. 

Since each of the operations LOC, INCREASE, ~, INSERT and HOWMANY is implemented 

as a derived operation (cf. /EKP 78/, 2.5), it is simply defined on A by interpre 

ting the right side of its respective (EHID+EOP)-equation in A. For example, for 

all g~Aarray and all n@ N 

INCREASEA(g,n) =~i. if i=n then g(i)+l else g(i). 

Clearly, this extension of A to a (ZHID+ZO)-algebra satisfies EHID+EOP. Hence A 

is an OPIMPL-algebra. 

It remains to show that h A (cf. 3.4) is compatible with ZHID+EO. Of course, this 

holds true for the derived operations of ZHID+ZO, while compatibility with 

6=SEARCHSLOT (and, analogously, with SEARCHHIT) is proved as follows: 

For all tl@T-+Zl,arrayli and all t2@T[,nat let 

n(tl,t2) : ~A(tlA,t2A)-t2 A. 

We show 3.4(5) by induction on n(tl,t2). If n(tl,t2) = O, then ~A(tlA,t2A)=t2A 

and tlA(t2A)=£ by definition of G A. Since eval A is (E+Zl)-homomorphic, 

t! [t2]A=g A. Thus tl [t2]~B+El £ s o  that EQ? (tl [t2],£)~_E+EITRUE. Hence 

6(tl,t2)_=E+EI+EHIDt2, and we get 

hi(GA(tlA,t2i))=hA(t2i)=[t2]E ,= G(tl,t2) E' by 3.4(4) where E'=E+EI+EHID+EOP. 

If n(tl,t2)>O, then ~A(tlA,t2A)=~A(tIA,SUCC(t2)A) and tlA(t2A)~A6 . Therefore 

tl [t2]~E+EI £ so that EQ?(tI[t2],£)~-E+EIFALSE. Hence 6 (tl, t2) ------ E+EI+EHI D 

G(tI,SUCC(t2)). 

SUCC(t2)A=t2A+I implies n(tl,SUCC(t2))<n(tl,t2). Thus we obtain 

hA (% (tiA' t2A) ) =hA (% (tlA' SUCC (t2)A) ) =[~(tI,SUCC (t2))~E '=[~(tl't2)~ E' by induc- 

tion hypothesis. 

As we have already seen, the semantics of SPECO=~{~may be represented by 

the multisets of strings. The following abstract model B for ~!~to~[a_m describes 

such multisets by their characteristic functions: 

= Z ~ Bstring (see above), Bna t = N, 

Bhist = {b:Z ~---~ ~Ib(w)=O for all but finitely many ~z~}. 

The operations of b ~  are defined accordingly. 

Let A' be the subalgebra of A that consists of all (Z+ZO)-generable elements of A. 

Then A '~ REPI~ L (cf. 3.1) . In order to get a well-defined abstraction function 

rep:A'---+ B one must show that for all (t,f,g)eA]. _ f is injective up to £, i.e. 
nis~ 

f(i)=f(j) implies i=j or f(i) =6. But this property follows from the fact that 

(t,f,g) is generated by (Z+ZO)-operations. Therefore rep is given by 

rep(x) = x for all x~Z u 
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rep(t,f,g) = ~w. if f(i) = w then g(i) else O for all (t,f,g) e A' 
-- hist" 

The proof that rep is (Z+[O)-homomorphic is rather tedious but straightforward 

and thus omitted here. 

Hence, by Lemma 3.5, our histogram implementation is RI-correct, and the correct- 

ness proof of Example 2.4 is finished. 

The abstract models A and B for SPECl resp. SPECO may be replaced by canonical 

term algebras as introduced in /GTW 78/ and further investigated in /Nou 79/. 

The utility of canonical term algebras in correctness proofs for implementations 

has been demonstrated in /Pad 79/ at an implementation of stacks by array-pointer 

pairs. The proofs that A satisfies EHID+EOP and that rep is ~+ZO)-homomorphic 

were done by structural inductions and term replacements. 
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