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ABSTRACT 

We investigate the relative computing power of Turing machines with differences 

in the num/3er of work tapes, heads pro work tape, instruction repertoire etc. We con- 

centrate on the k-tape, k-head and k-head jump models as well as the 2-way multihead 

finite automata with and without jumps. Differences in computing power between ma- 

chines of unlike specifications emerge under the real-time restriction. In particular 

it is shown that k+l heads are more powerful than k heads for real-time Turing ma- 

chines. 

i. INTRODUCTION 

Since the first Turing machine appeared in 1936, there have been many advances 

in the field. In the late 1950's the multitape Turing machine was introduced, often 

equiped with a separate read-only input tape. Since then we saw the arrival of the 

multihead Turing machine, Turing machines with a fast rewind square (also called 

limited random-access machines) and Turing machines with head-to-head jumps, and 

many others. One common feature in this abundance of models is that they all have a 

finite control and an unrestricted read-write storage facility. This allows each 

model, whatever its specification, to compute all recursive functions. Differences in 

capabilities become apparent if we impose time limitations, and in particular when 

we demand the machines to operate in real-time. As a standard in this area we may 

take the class of real-time definable languages R, which is the class of all languages 

accepted by multitape Turing machines in real-time, ROSENBERG [1967J. It has been 

shown that all of the above mentioned variations of Turing machines accept in real- 

time precisely R. Hence we observe that, within the world of real-time Turing ma- 

chine-like devices, R plays somewhat the same role as the class of recursively enu- 

merable languages in the world of computability at large. Like in this wider setting, 

we shall impose restrictions on the machines and observe what happens. In the prov- 

ince of real-time computations, differences in computing power amongst unlike Turing 

The results in sections 2 and 3 are taken from VIT~NYI [1979J. The present 
paper is registered as Mathematical Centre Technical Report IW 132. 
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machines may come out under variations in instruction repertoire, amount or type of 

storage devices, in short, under different specifications. 

The class of real-time definable languages is remarkably extensive (e.g. the set 

of unmarked palindromes is in R, GALIL [1978~). To prove that a given language is not 

in R is often hard. Proofs usually rely on an information-capacity argument, see 

HARTMANIS & STEARNS [1965] andROSENBERG [1967]. 

Real-time computations of Turing machines are especially interesting because of 

their intrinsic feasibility. Originally, they were defined relative to the multitape 

Turing machines. Most algorithms, however, are more naturally stated in terms of com- 

puting models which allows faster memory access. A k-head tape unit consists of a 

Turing machine with a single storage tape on which k read-write heads operate. 

P. FISCHER, MEYER & ROSENBERG [1972] proved that one can simulate a k-head tape unit 

in real-time by a multitape Turing machine with llk-9 tapes. Later, LEONG & SEIFERAS 

[1977] improved this to 4k-4 tapes. ~%BIN [1963~ has observed that 2-tape Turing ma- 

chines are more powerful in real-time than l-tape Turing machines. (Recall that a l- 

tape Turing machine has one input tape and one storage tape with a single head.) 

AANDERAA [1974] demonstrated that k+l tapes are more powerful than k tapes in real- 

time. Together with the LEONG & SEIFERAS' result this shows that more heads will yield 

additional power in real-time. Specifically, it follows that a (4k-3)-head tape unit 

is more powerful in real-time than a k-head tape unit. We shall show that AANDERAA's 

result implies that a (k+l)-head tape unit is more powerful than a k-head tape unit 

in real-time, section 2. 

In ~OSENBERG [1967] several closure properties of R are investigated. We investi- 

gate such questions for the classes R(k) (languages recognized by k-tape real-time 

Turing machines), RH(k) (languages recognized by k-head real-time Turing machines) 

and RJ(k) (languages recognized by k-head real-time Turing machines with head-to-head 

jumps). Furthermore, we shall consider the relations between R(k), RH(k) and RJ(k), 

sections 3 and 5. 

In SAVITCH & VITANYI [1977] it was shown that a k-head jump Turing machine can 

be simulated in linear time by an (Sk-8)-tape Turing machine. KOSARAJU [1979] has 

claimed a proof that jump Turing machines can be simulated in real-time by multitape 

Turing machines at the cost of many tapes in the latter pro head in the former ma- 

chine. In section 4 we show that the analog of this result does not hold if we restrict 

ourselves to 2-way multihead finite automata. The sample languages we use to prove 

this result are interesfing in their own right, since they give once more an indication 

how wrong our intuition can be with respect to which languages belong to R and which 

languages do not. 

But for RABIN's and AANDERAA's results, all results in the area of models of 

real-time Turing machines are about feasibility of simulating one type of machine by 

another one. Virtually nothing is known about the nonfeasibility of certain computa- 

tions, which are possible on a machine of specification A, by a machine of specifica- 
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tion B. Obvious open problems in this area of specified Turing machines are, for in- 

stance: 

R(2) c R{(2) ; RH(k) c RH(k+I) ; RJ(k) c RJ(k+1) ; R(k) c RH(k) ; R(k) c RJ(k) ; 

RH(k) c RJ(k) ? Some of these questions we shall decide, or alternatively~ show some 

interdependence among seemingly unrelated questions. 

For formal definitions and so on concerning multitape- and multihead Turing ma- 

chines, real-time computations, etc. we refer to ROSENBERG [1967], FISCHER, MEYER & 

ROSENBERG [1972] and LEONG & SEIFERAS [1977~. In this paper we do not give all proofs; 

complete proofs and additional results shall be provided in a final version to appear 

elsewhere. 

2. k+l HEADS ARE BETTER THAN k HEADS IN REAL-TIME 

AANDERAA [19743 proved by a very complicated argument that there ~s, for each 

k a 0, a language ~+i which can be recognized by a (k+I)-RTTM but not by a k-RTTM. 

For completeness we define ~+I below by a real-time algorithm which accepts it using 

k+1 pushdown stores. The input alphabet is Zk+l = {0i'li'Pi I 1 ~ i ~ k+l}. The al- 

gorithm is as follows: 

"ACCEPTENABLED := TRUE; 

Initialize k+l stacks to empty; 

REPEAT FOREOVER 

CASE NEXTINPUTLETTER OF 

0 : Push 0 in stack i 
i 
I.: Push I on stack i 
l 

P.: IF stack i empty 
l 

THEN ACCEPTENABLED := FALSE and reject input 

ELSE BEGIN 

pop stack i; 

IF element popped was 1 

AND ACCEPTENABLED 

THEN accept input 

ELSE reject input 

END 

ENDCASE" 

The strategy used to prove that k+l heads are more powerful in real-time than k 

heads (on a single tape) is, by a judicious choice of input, to force the heads so far 

apart that for a given recognition problem the k-head unit must act like a k-tape 

Turing machine since the heads will never read each o~ers writing. 

THEOREM 2.1. There is a language which is recognized by a k+l head real-time Turing 

machine but not by any k head real-time Turing machine. 
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PROOF. By induction on the number o ~ heads. (k=0 is obvious). 

k=__J. The language A 2 cannot be recognized by a /-tape (= l-head) real-time Turing ma- 

chine, but can be recognized by a 2-tape (and hence by a 2-head) RTTM. Set H 2 = A 2. 

k > i. Suppose the theorem is true for all j < k. Hence, in particular there is a 

language H k such that H k is recognized by a k-head RTTM but not by a (k-1)-head RTTM. 

Define Hk+ 1 as follows: 

Hk+ I = H k u H k * ~+I 

where * is a special symbol not in the alphabet of A , i ~ 2. 
2 

Let Mk be  a k - h e a d  RTTM c l a i m e d  t o  r e c o g n i z e  Hk+ l . P r e s e n t  ~ w i t h  s t r i n g s  o f  

the form 

(2) (2) (2), (3) (3) (3), (k+l) (k+l) (k+l) 
w = a I a 2 ...a a a ...a . . . . .  a n 2 i 2 n 3 "*al a2 nk+ 1 

= w2*w 3 .-.*Wk+ 1 

such that w. is over the alphabet of A , 2 ~ i ~ k+l. During the processing of w2, 
l l 

Mk must recognize A 2. Since A 2 cannot be recognized by a l-head RTTM, the distance 

between the outermost heads on the storage tape of ~ must grow larger than any given 

constant c 2 for a suitable choice of w 2. Hence, subsequent to the processing of w 2, 

we can single out a tapesegment of length at least c2/k tape squares, contained 

by the tapeseqment delineated by the outermost heads, such that no tape square of the 

k+l (ni+l) former segment is scanned by a head. Choose c 2 later so that c2/k > 2 Zi=3 

Therefore, for the remainder of the computation on w, ~ consists in effect of at 
( 1 )  ( 1 )  . . . .  ( 1 )  , ( 1 )  > . . . ( i )  . ( t )  , , 

best a k I -head and a k 2 -head zape un±z, ~l , K 2 _ i an~ ml _+ K 2 = K, where 

k (1) is the nuD]aer of heads left of the unscanned tapesegment and k~l) is the number 
1 

of heads right of it, at the end of processing w 2. Now ~4k is presented with w 3. Since 

w 3 E A 3 cannot be decided in real-time by 2 single-headed tapes, ~k must use one, or 

both, of its remaining tape units in an essential way during the processing of w 3. 

I.e., for at least one of the tape units (and one containing more than one head), 

(1)-head unit, the distance between the outermost heads must grow larger say the k 1 

than any given constant c 3 for a suitable choice of w 3. Hence, subsequent to the pro- 

cessing of w3, we can single out a tapesegment, no square of which is scanned by a 
., ( 1 )  

head and of length at least c3/K 1 , which is in between the outermost heads of this 
(i) (I) k+l 

k I -head tape unit. Now choose cz, and hence wz, later so that cz/k I > 2 Zi=4(ni+l). 

S;m±lar to before, we now dlvlde the k~ I) heads-lnto k~ 2) and k~ 2~ heads to the left 

and right, respectively, of the latter nonscanned tapesegment, and we observe that, 

a k (2) for the remainder of the computation on w, ~4 now consists in effect of -head-, 

(2) (2) - t k (2)k (2) . (2) > i, k~2)+k~ 2) +.K312) k, a k_ -head- and a k 3 -head tape uni , = 
(2f . (2) . (I) , , (2) ~ h) 1 ' k2 ' K3 - 

k + n = K ana K = K 2 . 
1 2 1 3 

Repeating the argument we can choose w4,...,w k such that after the processing of 
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w k we are left in effect with a k-tape RTTM which is required to determine whether 

Wk+ I ~ Ak+ I . According to AANDERAA [19747, for each k-tape RTTM claimed to recognize 

Ak+ I we can construct a word v which fools the machine. Let Wk+ I be such a word, and 

choose Ck,Wk,Ck=1,Wk_1,...,c2,w2, in that order, so that the above inequalities and 

conditions are satisfied. Hence w is accepted by ~ iff w i Hk+ I which contradicts 

the assumption that M k recognizes Hk+ I. (The above argument seemingly contains a cir- 

cularity which might invalidate it. The word v which fools the machine trying to 

recognize ~+i does not only depend on the finite control but also on the initial 

tape contents. Thus the argument seems to become circular: Wk+ I depends on 

w2* w3*...*Wk* , while w2,w 3 ..... w k depend on the length of Wk+ I. As it happens, 

AANDERAA's argument does not need to make any assumptions about the initial tape con- 

tents of the k-RTTM assumed, by w~y of contradiction, to accept ~+i" Hence he proves 

in fact that for all k-RTTM ~ there exists a positive integer n such that for all 

initial tape contents of ~ there exists a word v of at most length n which fools ~. 

The existence of such a bound n eliminates the apparent circularity from the above 

argument.) It is easy to see that k+l pushdown stores can recognize Hk+ I in real- 

time. 

Surprisingly, an argument like "H k is not accepted by a (k-l)-head RTTM and 

hence Hk+ I = H k u H k * ~+i is not accepted by a k-head RTTM" does not work, since we 

cannot assume a priori that in a k-head RTTM recognizing H k all heads get pairwise 

arbitrarily far apart for some input. We could only conclude that all k heads are 

necessary, but it might very well be that for each time t some heads are near to each 

other. Then we could be stuck with a set of tape units, one of which is a multihead 

one, for which AANDERAA's proof might not work. 

The situation we have in mind is exemplified by, e.g., dne languages Ek, k A 4, 

in section 5 (although AANDERT~h's proof technique fails there for another reason, as 

shall be pointed out). As an example of a language which can be recognized by a 4- 

head RTTM in which there are always 2 heads together, and which probably cannot be 

recognized by a 4-RTTM, or a 3-head RTTM, we give the language L below. Clearly, we 

cannot conclude from L i RH(3) (if that is the case) that L u L * A 5 { RH(4) just be- 

cause A 5 ~ R(4). We would need to show at least that A 5 cannot be recognized by a 

RTTM with one 2-head tape and 2 l-head tapes as storage. 

L' = {UlwwRu2vvRu32 01ulwl2 02]wi2 0]u3v}2 01Vl]ulwu2vu3 ~ {0,1}*}; 

L = {x E {0,1,2}* I x is a prefix of a word in L'}. 

For suppose we want to recognize L by a 3-head or a 4-head RTTM. Essentially, up to 

reading the marker 2 on the input tape, it would seem that we can do nothing more 

than record the input prefix over {0,I} on the storage tape. 
• 2/3 2/3 

Now if we take lwl, Iv] { @(n ), lu21 c 0(n), luiI,lu31 • @(n ), where n is 
R R 

the length of the input word, we need 2 heads to check ww (since to cheek ww with 

1 head takes time 8 (n 4/3) ) and 2 heads to check w R (for the same reason). To cross 
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u 2 with some head takes time 0(n), but upon meeting the first letter 2 we have only 

time @(n 2/3) left. Hence 4 heads seem necessary, although ~here always are 2 together. 

If this conjecture is true, then L c RH(4) - RH(3). But in this case L c RH(4) -R H(3) 

together with A 5 { R(4) does not, without additional considerations, imply 

L U L * A 5 ~ RH(4) . 

By the proof method of Theorem 2.1 we precluded this flaw in the argument. Due 

to the form of ~H I+., the line of reasoning works also for ~+i itself. Hence, 

~+i £ R(k+i) - R (k). 

COROLLARY 2.2. There is a language which can be recognized by k+l pushdown stores in 

real-time (and h.ence by a (k+I-RTTM)) but not by any k-head RTTM. 

The relation between tames and pushdo~al stores is direct; clearly 2k pushdown 

stores can simulate k tapes in real-time. Hence from AANDERAA's result we have: (if 

RP(k) denotes the class of languages recognizable by k pushdown stores in real-time) 

P 
R (k+l) - R(k) ~ ~; 

R p (k) c R p (k+i) ; 

R(k) c R(k+l) 

R(k) c RP(2k) 

By the result above it follows that we can replace R by R H in the first 

formula above. It also follows that 

R(k+l)  - RH(k) # @; 

Rg(k) c RH(k+I). 

By using LEONG & SEIFERAS' [1977~ result we obtain 

LEMMA 2.3. R(k] ~ RH(k) c R(4k-4). 

3. CLOSUP~ PROPERTIES OF R(k) 

In ROSENBERG [1967~ several closure properties of the class R of languages ac- 

cepted by real-time Turing machines were investigated. It appeared that R is closed 

under union as well as intersection, complementation, suffixing with a regular set, 

inverse real-time transducer mapping, and minimization. R is not closed under con- 

catenation, Kleene star, reversal, (nonerasing) homomorphism, inverse nondeterminis- 

tic sequential machine mapping, quotient with a regular set, maximization and pre- 

fixing with a regular set. 

When we restrict ~qe number of tapes the picture gets different: R(k) is closed 

under complementation, union as well as intersection with regular sets, suffixing 

with regular sets, inverse gsm mapping and minimization. R(1) is not closed under 

union or intersection, nor under inverse real-time transducer mapping. 
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In this section we will investigate some more closure properties of (number of) 

tape restricted real-time languages. It will e.g. appear that R(k) is closed under 

several marked operations; furthermore it often happens that the closure under cer- 

tain operations of R(k) is in R(2k) but not in R(2k-l). (Proofs to be provided later). 

LEMMA 3.1. R(k) is closed under marked union, marked concatenation and marked Kleene 

star. 

LEMMA 3.2. Let kl,k 2 be positive integers such that k I + k 2 ~ i. 

(i) R(k) is not closed under union or intersection, for k > O. If we take A e R(k I) 

and B ~ R(k 2) then AUB,ANB E R(kl+k2) , but not necessarily AUB,AnB ~ R(kl+k2-1). 

(ii) If A ~ R(k I) and B e R(k 2) and the alphabets of A and B are disjoint, then 

shuffle (A,B) E R(k1+k 2) but shuffle (A,B) does not need to belong to 

R(k1+k2-1). Hence R(k) is not closed under shuffle over disjoint alphabets. 

(iii) R(k) is not closed under inverse real-time transducer mapping. The closure of 

R(k I) under inverse k2-RTTM mapping is contained in R(k1+k 2) but not in 

R(kl+k2-1). 

(iv) (i)-(iii) hold also if we replace everywhere "R" by "R H''. 

The results in Le~na 3.2 are obtained by reducing the problems to the recogni- 

tion problem of Ak1+k 2. 

LEMMA 3.3. If A E R(0) and B ~ R(1) then shuffle (A,B) does not need to belong to R. 

I.e., R is not closed under shuffle. 

(L = {~x~*2x R I E = {0,I}, x e ~*} / R and an isomorphic language can be obtained 

as a shuffle of languages in R(0) and R(1).) 

Acoording to FISCHER, MEYER & ROSENBERG [1972~, the family of multihead RTTM 

languages equals R and hence the (non) closure properties mentioned before apply. 

If we look at multihead RTTM languages in RH(k) the situation is different. Here not 

more was known than we could readily deduce from the results on R(k) and simulations 

like LEONG & SEIFERAS [19773. with the preceding results we obtained more. Also, RH(k) 

is closed under complementation, union and intersection with regular sets, suffixing 

with regular sets, inverse gsm mapping and minimization. Lemma 3.2 holds even if we 

denote by k only the total number of heads on the storage tapes, and don't take into 

account the way in which the heads are distributed. 

Clearly, RH(k) is closed under marked union. The markers in an input, due to 

marked concatenation or marked Kleene star, serve to indicate the beginning of a new 

task. Accordingly, it seems reasonable to assume that recognizing RTTMs ignore, sub- 

sequent to reading such a marker, the garbage left on the storage tapes by the preced- 

ing computation segment. Under this assur~\ption we can prove Conjectures 3.4 and 3.5. 

CONJECTURE 3.4. RH(k) is closed under marked concatenation iff RH(k) is closed under 

marked Kleene star iff RH(k) = R(k). 
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A k-head jump Turing machine (cf. SAVITCH & VITANYI [19777) is a k-head Turing 

machine where at each step the k heads may be redistributed over the scanned tape 

squares. In SAVITCH & VIT~NYI [19773 it was shown that a k-head jump Turing machine 

can be simulated in linear time by a (8k-8)-tape Turing machine. KOSARAJU F1979~ has 

claimed that, by a complicated simulation, a k-head jump Turing machine can be simu- 

lated in real-time by a multitape Turing machine. It is at present unresolved whether 

k heads are more powerful than k tapes in real-time. A possibly easier problem is 

to show that k heads with jumps are more powerful than k tapes in real-time. We will 

show that these matters are related. 

It is easy to see that RJ(k) (the class of languages accepted in real-time by 

k-head jump Turing machines) is closed under marked concatenation and marked Kleene 

star. By first feeding ~, we can always reduce a k-head RTTM to a k-tape RTTM. This, 

however, is not the case for a kLhead jump RTTM. Hence, k jurap heads are more power- 

ful than k tapes iff k jump heads are more powerful than k heads. Similarly, if k 

heads are more powerful than k tapes then k jump heads are more powerful than k heads. 

Hence we have 

CONJECTURE 3.5. 

(i) R(k) c RJ(k) iff RH(k) c RJ(k) ; 

(ii) if R(k) c RH(k) then RH(k) c RJ(k). 

4. REAL-TIME 2-WAY MULTIHEAD FINITE AUTOMATA WITH AND WITHOUT JUMPS 

Recall that we saw before that KOSARAJU [19791 has shown that the jump Turing 

machine as defined in SAVITCH & VIT~TYI [19773 may be simulated in real-time by multi- 

tape Turing machines. Hence R J = R (where R J = %= 1RJ(k)). In this section we show 

that for 2-way multihead finite automata the head-to-head jump facility does extend 

the class of languages accepted in real-time. Incidentally, this shows also that the 

class of languages accepted by real-time 2-way multihead finite automata is strictly 

included in R. To obtain the result, we give several example languages which are ac- 

ceptable in real-time by 2-way 2-head finite automata with jumps, but not by any real- 

time 2-way multihead finite automaton without jumps. Hence these languages belong to 

R, and constitute nontrivial examples of the power of the head-to-head jump option. 

Let in the following h: {0,1,0,1} ÷ {0,i}* be a homomorphism which is defined by 

h(a) = h(a) = a for a ~ {0,I}. 

L 1 = {~aavR I wv • {0,i,0,I} , v ~ {0,i} , a • {0,I}, h(v) = v}; 

. . . . . .  w 
L 2 = {wbucva I wu • {0,i,0,I} , v • {0,1}*, c 6 {0,[}, lu] = Ivl, 

a • {0,1}, b e {0,i,0,[}, h(b) = a}. 

The reader will easily figure out more complicated examples along these lines. 
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Note that LI, L 2 are linear context free but not deterministic context free. 

LEMMA 4.1. LI, L 2 are accepted by real-time 2-way 2-head finite automata with jumps. 

PROOF. Let M be a 2-way 2-head finite automaton with jumps as follows. The front head 

reads from left to right one letter at a time. Whenever this first head reads a barred 

letter it calls the second head to its present position. This second head starts 

reading from right to left one letter at a time. So M is able to recognize L I. A 

minor variation of M can recognize L 2. 

LEMMA 4.2. LI, L 2 are not accepted by any real-time 2-way multihead finite automaton. 

PROOF. Along the same lines as the proof of Theorem 2.1. 

Hence we have: 

THEOREM 4.3. (i) There are languages accepted by real-time 2-way 2-head finite auto- 

mata with jumps which are not accepted by any real-time 2-way multihead finite auto- 

maton without jumps. 

(ii) The class of languages accepted by real-time 2-way k-head finite automata with 

jumps properly includes the class of languages accepted by such automata without jumps. 

Computations of l-way multihead finite automata have been considered by YAO & 

RIVEST [1978~. They show that k+l heads are better than k heads for both the deter- 

ministic and the nondeterministic versions of the machine. Furthermore, they show 

that the k-head nondeterministic variety is strictly more powerful than the k-head 

deterministic one. Recently, JANIGA [1979~ studied the analog questions for 2-way 

real-time multihead deterministic (rasp. nondeterministic) finite automata, from now 

on called 2DRTFA and 2NRTFA, respectively. He obtained, mutatis mutandis, the same 

results for the 2-way real-time machines as did YAO and RIPEST for the l-way (no time 

limit) variety. Whereas the latter used "palindromes" of (~) strings to obtain their 

result, for the 2-way real-time case the former employed strings of k palindromes. 

E.g., let PALM be the set of palindromes in {0,1}*{2} {0,i}*. Let Pk = (PALM{*})k" 

Then Pk is recognized by a (k+l)-head 2DRTFA but not by any k-head 2NRTFA. 

{0,i,2,~} -Pk is accepted by a 2-head 2NRTFA but not by any k-head 2DRTFA. Now con- 

sider the language P = Uk= 1Pk" It is easy to see that P is recognized by a 2-head 

2DRTFA with jumps, but that P is not accepted by any multihead 2NRTFA without jumps 

because of JANIGA's result. Therefore we have: 

THEOREM 4.4. The class of languages accepted by k-head 2NRTFA with jumps properly in- 

cludes the class of languages accepted by k-head 2NRTFA without jumps, k ~ 2. The 

same holds for 2DRTFA's (i.e. Theorem 4.3). 

Another matter which we would like to decide is the power of jumps versus non- 
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determinism for the machines. 

THEOREM 4.5. There is a language acceptable by a 2-head 2NRTFA which is not accept- 

able by any multihead 2DRTFA with jumps. 

PROOF. The language L in the proof of Len~na 3.3 was not in R, and hence, by KOSARAJU's 

[1979] result, is not acceptable by any multihead 2DRTFA with jumps. It is easy to 

see how L can be accepted by a 2-head 2NRTFA. 

The only question remaining seems to be whether (k+l)-head 2DRTFA's with jumps 

are more powerful than k-head 2DRTFA's with jumps, and the same matter for the non- 

deterministic versions. For a proof we might use the language Jk over the alphabet 

where 

= { 0 , 1 }  x F x M x O ,  

F = {f I f is a total function f: {0,i} k x ~ ÷ {0,1}I, 

M = {m I m is a total function m: {l,2,...,k} × ~ ÷ 

÷ {left,right,no move} and m(1,q) = right 

for all q E Q}. 

The interpretation is as follows. Jk is recognized by a k-head 2DRTFA ~ with 

state set Q. Suppose M has an input SlS2...sisi+l...s n on its tape, 

s i = (ai,fi,mi,qi) e Z, i S i ~ n. At the i-th step the vanguard head i of M reads s i 

in state qi-I e Q and outputs fi(ajl,aj2,...,ajk,qi_ I) where ajh is the first element 

of the symbol read by the head h at that moment, I ~ h < k. Subsequently, ~ reposi- 

tions head h according to mi(h,qi) , I ~ h ~ k, and enters state qi" 

THEOREM 4.6. Jk+l is accepted by a (k+l)-head 2DRTFA but not by any k-head 2NRTFA 

with jumps. Hence ~k+l)-head 2DRTFA (2NRTFA) with jumps are strictly more powerful 

than k-head 2DRTFA (2NRTFA) with jumps. 

If we take J~ equal to Jk but without "left" in the range of m £ M we can simi- 

larly prove: 

COROLLARY 4.7. J' is accepted by a (k+l)-head IDRTFA but not by any k-head INRTFA 
k+1 

with jumps. This implies that all inclusions according to the number of heads in the 

IXRTFA are proper, where X 6 {D,N,D with jumps, N with jumps}. 

All results in this section hold whether or not we assume end markers, or that 

the heads can detect coincidence. 

We think that Theorem 4.3 also holds for the corresponding Turing machine ver- 

sions which are allowed to modify the contents of each square on the storage tapes 

but a bounded number of times, for some fixed constant bound. 
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5. ON THE RELATIVE POWER OF TAPES, HEADS AND JUMP HEADS IN REAL-TIME TURING MACHINES 

One of the major drawbacks in the game of showing a difference in power between 

two very similar machine types A and B such as considered in this paper, apart from 

the difficulties involved in giving a proof, is to find some likely candidates for 

showing a difference between type A and type B. RABIN~s [19633 language in R(2) - R(1) 

did not generalize in an obvious way to show a difference between R(k+l) and R(k), 

k > i. AANDERAA [19741 provided a uniform construction for a language in R(k+l) - R(k), 

k ~ i. No likely candidates for showing the difference between, e.g., R(k) and RH(k) 

or RH(k) and RJ(k) have been proposed, except possibly {xy2x I xy e ~0,I} *} for show- 

ing a difference between RH(2) and R(2). In the present section we propose to fill 

this gap, besides proving some facts about the candidates. The only languages known 

to be in R- R(k) are ~,, k' > k, put unfortunately these languages are not in RH(k) 

either. SEIFERAS [personal communication~ claims to have proven that ~i { RJ(k), 

and we will proceed on this assumption. Hence the only candidates of which we have 

negative results are not acceptable either by placing all heads on the same tape nor 

by adding the jump option. From the existing simulation results it is also clear that 

there cannot be a single language L which is acceptable by some k-head (jump) RTTM 

but not by any multitape (multihead) RTTM, thus proving the required results by a 

single example as in section 4. Now consider a language which is like~ but with 

the extra requirement that at all times during the processing of the input w by a k 

stack machine at least 2 of the stacks are of equal length for w to be accepted. More 

formally, if Ivl i denotes the number of 0.'s± and l.'sl subtracted by the number of P.'si 

in v, then: 

E k = {w~ ~k l wE~ & Vv Eprefix(~) 3i,j(i~j end l~i,j~k) FIvli=]vlj+~,-l~+l]}. 

LEMMA 5.1. E k ~ R(k-2), RH(k-2), RJ(k-2). 

PROOF. Suppose, by way of contradiction, that the (k-2)-RTTM ~4 accepts E k. Now change 

M to a (k-2)-RTTM ~4" which accepts ~-i by having the finite control of ~{, for every 

letter 0k_l,lk_l,Pk_l read 0k_10k,lk_llk,Pk_iPk, respectively, and speed up the 

storage handling as much as required. Then ~-i is accepted by the (k-2)-RTTM ~* 

contradicting known results. E k { RH(k-2) then follows by Theorem 2.1 and for 

E k ~ RJ(k-2) see the introduction of this section. 

(The case k = 2 above is obvious since E 2 is not regular.) Note that AANDERAA's 

does not show that E k / R(k-l) since the subbet SE~ used in AANDERAA's proof proof 

(which in fact shows that no k-RTTM can distinguish between SE[ = D ~ and 

SE k N (~k-~)) is disjoint from E k- 

LEMMA 5.2. E2 e R(1), E 3 6 RH(2). 
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PROOF. E 2 c R(1) is obvious. E 9 ~ RH(2): keep the 3 stacks on different tracks of 

the recognizing 2-head RTTM M. Whenever there is a change in pairs of equal size 

stacks, all 3 stacks must be of equal length, otherwise we reject the input. Both 

heads of ~4 therefore come together with everything to the right of them blank, and 

therefore the role of the "fat" head, maintaining 2 tracks, can change. 

We conjecture that E 3 / R(2). To prove this conjecture would also prove that 

R(2) c RH(~), a well-known open problem. In general we conjecture that E k ~ R(k), 

k ~ 3, which for the case k = 3 would show that the LEONG-SEIFERAS simulation is op- 

timal for 2 heads. By Lemma 5.J and the fact that a multihead machine can detect 

coincidence we have that 

R H R H LEMMA 5.3. E k { (k) - (k-2). 

R J LEMMA 5.4. E k c (k-l) for all k > i. 

COROLLARY 5.5. E k • RJ(k-l) - RJ(k-2). 

We conjecture that E k cannot be recognized by a (k-l)-head RTTM for k ~ 4. A 

proof of this fact would show that RH(k) c RJ(k) for k 2 3, leaving open the case 

k = 2. Although we have an upper bound on the recognition of E k by multihead RTTM's 

(with respect to the number of heads needed) we have not yet a good upper bound for 

recognition by multitape RTTM's, except by the crude E k • R(4k-4) offered by Lemma 

5.3 and the LEONG-SEIFERAS' result. 

LEMMA 5.6. E 2 ~ R(1); E 3 ~ R(4); E k { R(2k-2), k h 3. 

We can generalize the above approach in several directions. For instance, by re- 

quiring that i of the k stacks have the same height at all times during the process- 

ing of ~le input, Formally, 

E(~) = W~ Z k iW ~ ~ & VV C prefix(w) ~jl,J2 ..... Ji ~ {l ..... k} 

1 Jl<J2 "''<Ji 

[Iivlj -IVljm I ~ 3 for all Jg'Jm ~ {J1'J2 ..... Ji}]}" 

These languages are especially suited to jump Turing machines since it is easily 

seen that: 

R J LEMMA 5. 7. E(k )_ ~ (k-i+l). 
1 

H 
Furthermore, we can easily show that E.,.. E R (k-i+l) provided i > k/2- 

H j 
E(k ) { R(k-i),~(k-i),~(k-i) ; and E,k )~ £ ) for i < k/2. (Some border cases for 

i H H i 
i h k/2:E~5 ~ e R (3) and Et5 ~ 6 R (2) c R(4).) 

Looking at [he above we see there is a relation between the optimality of the 
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real-time simulations of jump heads by heads and heads By tapes and how many tapes or 

heads are needed to recognize E(k). Let f(k) be the minimum number of tapes (heads) 

needed for simulating k jump heads in real-time. Then, if we need at least k tapes 

(heads) for accepting E(~), i < k/2, then 

f(k-i+l) ~ k. 

Hence the conjecture that we need k or more tames (heads) to recognize E(~) for 

i < k/2 can be dissolved if we can improve KOSARAJU's result to "less than 2 k tapes 

(heads) are necessary for the real-time simulation of k jump heads". From the real- 

time simulation of heads by tapes it follows that E(~) e R(4(k-i)) for i > k/2, and 

therefore e.g. E k £ R(k) 
(3k/4) 

Yet another language sequence we might consider is ~ - E k, k ~ i. Since ~ - E k 

contains AANDERAA's subset A k n SE~, it follows that ~-E k /R(k-I),RH(k-I),RJ(k-I). 

We also see that ~ - E k E RH(k),R (k). With respect to acceptance by k-RTTM's the 

i same upper bounds apply as argued for E k. This is not so for the languages A k - Ek, 

where E{ is like E k but the condition of two stack heights being equal only holds at 

the end of the processing of the input word, i.e., 

E{  = {w ~ z~ I w ~ A k ~ 3 i , j  ~ {~ . . . . .  k } E I l w l i - l w l j l  ~ 3 3 } .  
i#j 

Here we have that A 2 - E~ ~ R(3) but, presumably, that A 2 - E~ ~ R(2) . By the now 

familiar reasoning, if the latter case is affirmative then A2~(A2-E ~) £ RJ(2)-RH(2), 

settling the question whether or not RH(2) c RJ(2). 

Some of the candidates to try for solving the various questions met are given 

in the table below. 

k = 2 : 

arbitrary k -> 3: 

R(k) c RH(k)? RH(k) c RJ(k)? 

L = {xy2x I xy £ {0,I}*} A2*(A2-E ~) 

E3, A 2 - E~ 

E k, % - E{ Ek+ I 

Acknowledgements. J. SEIFERAS pointed out to me that the earlier version of the 

proof of Theorem 2.1 may have been prone to circularity of the argument. Discussions 

with W. SAVITCH were valuable for section 4. 
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