From Standard to Implementation Denotational Semantics

Martin Raskovsky and Phil Collier
January 1080
Under the Sun of Menorca

Computing Science
University of Essex
England

Abstract

We are developing a compiler compiler. It takes as input the formal definition of a programming language in Denotational Semantics and produces as output a fairly efficient compiler written in a systems programming language which in turn will prodice code for a real machine. This work aainly deals with the code generation parts.

Contents

0 Introduction
1 A simple case study. IL: a Toy Lanciage
2 Further developments. RTL: a Recursuve Toy Lanuage
A Notation
B Syntax of TL
C Standard Denotational Semantics of TL
D Implementation Danotational Semantics of TL
E The Generatpd Compiler
F References

Q. Introduction

According to the trafition of denotational/functional semantics(0s) of programming languages(PL), the meaning/referent of a program is a function frum states to states of some underlying store. Compilers, on the other hand. generate code for some machine given the program as input. On the face of it these enterprises - writing semantic equations in the Scott-Strachey style and compiler-writing -seem very different. The former requires a certain degree of mathematical sophisticatiun and the latter a certain competence as a system programer. Moreover, the end products of the two enterprises appear to be differont; un the one hand the result is a precise mathematical description of the programning lanquage and on the other one ends up with a set of proceduras which constitute a compiler for the language in question. In the original literature on functional semantics[Scottlo] it was claimed that the semantic equations should serve as a quide for the compiler writer; any notion of correctness for the compiler would have to make reference to the semantic equations.

We believe that semantic equations can provide us with the information required to implement a compiler for the lancuage in question. In other words, the DS of a particular Pl at an appropriate level of abstraction could embody detailed infor mation about control, environment and state serving as an inout for a conpiler-compiler.

Let's try and make this a little clearer. Given a DS equation, the process of code generation closely follows its text. For example the equation for the assignment command in a particular PL could be:

```
CIe:=e'lpc=
    RI eflp{\lambdav.L[e]p{\1.Update Ivc}).
```

while reading this equation we can imagine a compiler that, in the presence of an environment(p), will generate code first to find a value, then to find a location, then to update the store and finally to Jump if necessary to the given continuation. In fact, it is reasonable to arque that DS has formalised, at an aporopriate level of abstraction, the behaviour of a program. A compiler needs to understand the behaviour called for by a program in order to plant code to exacute it. Thus it is reasonable to conjecture that there may be a close relationship between semantic equations and compilers. If one could qutomate the production of a compiler from semantic equations then this could be viewed as a kind of compiler-compiler.

Indeed it is a part of our conjecture concerning the relationship between compilers and semantic equations that not only could the semantic equations dictate the structure of the compiler but
0. Introduction
conversely intuitions and experience of compiler writers should influence the $D S$ equations themselves.

However, we do appreciate the need to have a 'standard' denotational semantics without any bias towards implementation ideas. So we propose to distinquish between two different forms of DS which for any particilar laquage we shall have to prove congruent, namely:

Standard Denotational Semantics(SDS): A canonical definition free of bias towards any particular implemantation.

Implementation Denotational Semantics(IDS): Enbodying all implementation strategies desired.

We have developed a translation process which, starting from the IDS equations of a simple PL, generates a number of BCPL procedures[Richardso 0][BCPL77]. We have written the primitive functions and machine code interface to produce code for the DEC- 10 system. To generate the parser an appropriate generator is interfaced[Sufrin77]

The final result is the following:
-An efficient compiler using standard compiling-techniques.
-Efficient cude generated.
-Flexibility to inplement different 'styles' of code.
-Flexibility to implament in different machines.

Research related to ours is the work by [Mosses74-5-6-3] and [Jones80] where semantic equations are uniformly translated to an intermediate code which in turn is interpreted. Both systems achieve generality by explicity separating the concept of a correct compiler from that of a usefill one, and it is instructive to see why wile uniformiy encoding all 'functions' and 'values', both methods throw away a great deal uf the knowledge contained in the semantic equations. For example the $[L \rightarrow V]$ function is simulated, insteal of making 'natural' use of the machine store; and the familiar and useful concept of a pointer to the code is nonexistent. Standard semantic equations as developed by the oxford school provide us with certain information about how to implement the language efficiently and this is lost in a uniform translation. These observations have been paramount in guiding our translation process.

The first. step of our work was to consider simple langrage constructs and to implement a translator accepting languages whose characteristics were similar to those. In Section 1 of this paper we describe a lanquage within this framework. We briefly motivate its Implementation Denotational Semantics and tnen we informally describe

From Standard to Imolementation Denotational Senantics
the transformation process to generate a compiler for it. Appendices B, C. D and \mathcal{E} show respectively its Syntax, SDS. IDS api Conpiler.

Currently we are enlarging the set of programing constructs accepted by our systom. In Section 2 we consider recursion showing the impact that this featire has in the domains of its IDS specification. Finally we show how to prove the congruence between buth SDS and ins definitions.

L. A simplecase_stuly. TL: Io Toy Lanauage

The toy landuage(TL) chosen contains a number of basic commands like assignment, conditional, while, parameter-less procerture call, structured jumps (BPEAK. LOOP, RETURN), input/output and blocks. It has arithmetic and hoolean expressions, as well as data types: integers and procedures.

Recursion is not allowed. So that every storage location can be determined at compilation time (Static storage allocation). Voreover. a crucial attribute of such a language, which amounts to a simplification relative to ALgoL-like languages, LIS? or SIMULA, is thet for overy procedure, a single unique data area[Griesti] (Analogous io an ALooL stack frame or template[Bornat76-7]) can be set at compile tine. In this respect TL resembles FoRT.AAV.

1. 1 The Implementatiun Denotational Semantics of TL

In this section we will briefly motivate the IDS of Th. The three issues we discuss are the meaning of boolean expressions, the allocation of locations and efficiency in arithmetic expressions. The complete SDS and IUS specificmtions can be found in Appendices A, B, C and D.

1. A simple case study, TL: a Toy Language

1.1.1 Boolean expressions

Consider a fraqnent of the syntax of boolean expressions in TL:

```
b ::= b' "and" b"/ ; b' "or" b"f ; "true" ; "false" ; ...
```

and the corresponding semantic equations:
$B:[B e x \rightarrow U \rightarrow S \rightarrow T]$.
B[b" "and" br $]_{p=}=$

B.Ib' "or" $b^{\prime \prime} 1 p=$

BIb-1p a Cund<xs.TRUE,BIb’lp>.
B.I-"true"lps=

TRUE.
B.["false" ${ }^{\text {lps }}=$ FALSE.

Boolean expressiuns viewed in this way are like any other expression with the exception that they evaluate to boolean values. But it happens that these can be evaluated in a completely different way. The evaluation of a boolean expression need not produce a value but can select the next path of the computation. This is exactly how Cond can be thought to behave: given two expressions. it picks one on the basis of a given noolean value.

To model this benaviour we redefine the function B, as a semantic valuator taking twu continuations, one to be applied if the supplied boolean expression evaluates to true, and another if it evaluates to false.

```
B:[Bex > U > C > C > C].
```

BIb' "and" b'locc'=
BI $b^{\prime} \mathbf{I} p\left(\right.$ BI $\left.^{\prime \prime} 1 \mathrm{l} \rho c^{\prime}\right\} c^{\prime}$.
B.Ib' "or" b"lpcc' =
BI $b^{\prime} \mathbf{l p c}\left\{\right.$ BI $^{\prime \prime} \boldsymbol{l}_{\mathrm{pcc}}$ \}.
B.I"true"Ipcc'=
c.
BI"false" $\mathbb{p c c}=$
c^{\prime}.

The only time that a truth value is really produced is when a general expression contains boolean subexpressions.

This model of boolean expressions with two continuations corresponds precisely to a way that efficient compilers implement them, namely as true and false chains.
L.L.2_Markiny locations 'in use'

Consider now the allocation of locations in the SDS of TL:

```
s:S=[[L > V] x Vk 人M* 人[L T T]]. States
p:U=[[Ide > )] x C x C x Cl. environments
New:[S > [L < S]].
Cl"begin" d:c' "end"1pos=
```



```
DI"integer" i lp=
    New * >l s.<p[[i]/l],s>.
```

The function 'New', which obtains unused locations when necessary, seems to be abstracting a'free storage' mechanism which is not the one dictater by a block structured discipline. Also the location deallocation nechanism. where the area function [L \Rightarrow T] indicates which locations are in use, is not satisfactory from an implementation point of view. (The area function is stored on entry

1. A simple case study, TL: a Toy Lanquage
to each bluck. so that it can be restored on exit.) It would seem reasonable that locations be marked 'in use' in the environment allowing "automatic" deallocation of locations at the end of a block. as environments. and therefore details of the amount of storage in use are bound into the continuation following the end of the block.

Accordingly, we rewrite in IDS the SDS definitions as follows:

```
a:A=[L > T].
Area function
s:S=[[L > V] x V* x R*].
p:U=[[Ide>D] x C x C x C x A].
New:[U > [L X U]].
```

C["begin" $d: c$ " "end" $] p c=$
C[$\mathrm{c}^{-1} \mathbf{]}(\mathrm{DI} \mathrm{d} \mid \mathrm{p}) \mathrm{c}$.
D["integer" ilp=
New $\left.p=>\lambda<1, p^{\prime}>\cdot p^{\prime}[I i] / 1\right]$.

1.L. 3 Crucial code fragments: Expressions

In order to clain to be praducing an efficient compiler, we must ensure that expressions are compiled into efficient cole. For examole the semantic equation for arithmetic expressions in SDS is:

```
RIe'ae"/lp=
```

 RI \(e^{\prime l} \mathrm{p}\) @ \(\lambda \mathrm{v} .\left(\mathrm{RI} \mathrm{e}^{\prime 1} \mathrm{p}\right.\) Q AIalv).
 If we leave this as it stands the corresponding fragment of the generated compiler will be:

```
CASE Exp. Aop:
    RR(First (. Node, Req)
    RR(Third OF Node, NextReg(Reg))
    AA(Second IF Node. Reg, NextReg(Reg))
    ENDCASE
```

where R R and AA are the generated procedures to plant code respectively fur expressions and operators. If we forget about restrictions on the maximun number of reqisters available. this

In fact, this equation abstracts the 'register-allocation' technique of 'tree weighting' and 'dumping'.

1. A simple case study, TL: a Toy Language

1.2 The translation

Ne now descripe the translation that takes as input the IDS equations and produces BCPL procedures which are the code generation part of a compiler for the language defined. (These procedures can be found in Appendix E.)
1.2.1 Removal of the State

In the first stage of the translation process we remove all references to the state. This is in keeping with the fact that a state to state transformation is a function perforned by the code generated together with the hardware of a particular machine. The compiler is performing a translation that ends one step behind the state to state function. As an example, consider the semantic equation for assignment:

```
C[i:=e]pc=
    RIe|p@Assiqn(pIi]LL) & c.
```

For a detalled specification of the operators refer to Apendix A. After the unalysis of the operator $@$ we end up with the following procedural text:

LET CIi:=elpc BE
(Assign(pIil:L)(RIelp) \& c
\}

To emphasize that this is not a mathematical equation we enclose the new procedural-text within curly brackets.

The analysis of the operator 2 will in fact produce two statements. and after uncurrying the assignment example will now look like:

LET C(II:=e1, p, c) $B E$
(Assign(p(Ii))L, R(IeI, p))
C
\}

From Standard to Implementation Denotational Semantics

1.2 .2 Stored values

Next we introduce hardware registers to replace direct references to stored values. The introduction of fast reqisters transforms the procedural text for the compilation of the assignment commend into:

LET C(Ii:=e], D, c) BE
(R (Iel. p. FirstReg)
Assign(p(Iil):L, FirstRea)
C
)
so that R will know where to store the result of evaluating the expression and Assign where to get it from.

1.2 .3 Continuations

Consider the semantic equation for a WHILE loop:

CI"while" b "do" $c^{\prime \prime} \mathrm{lpc}=$

Before the analysis of continuations it will be translated into:

LET C(I"while" D "do" c ’], $p, c) B E$
(Fix(xc, $\mathrm{B}\left([\mathrm{b}]\right.$, $\left.\left.\rho, \mathrm{C}\left(\left[c^{\prime}\right], \mathrm{p}[\beta R K / c]\left[L O O / c^{\prime}\right], c^{\prime}\right), c\right)\right)$)

The translator, knowing what a continuation is, and being able to analyse the context in which it appears will be able to translate this text into:

1. A simple case stuty. TL: a Toy Language
```
LET C(["while" b "do" c'1, p, c,t) BE
( LET c' = ThisContinuation()
    LET c"= ForwardContinuation()
    B(IbI, p, c",c,FALSE)
    FixContinuation(c/")
    C(IC'], p[BRK/c][LOO/c']. C'. TRUE)
)
```

Where the three procedures This. Forward and Fix-Continuation are used in such a way that they leave to the compiler writer the final choice of implementation. For example they could respectively be -Currentprograncounter. NewChain and FixChain- in a chaining mechanism' or -Plant?ewlabel. ForwardLabel and PlantLabel-relying on the activity of a loader.

1.2.4 Environments

We arque that a simuletion of the mathematical environment function is not feasible if efficiency is desired. Thus we translate in a way to have only one global environment around at a time, for which we provide a fata structure and primitives to declare and undeclare denoted elements. Environments disappear from parameter lists. The inverse of some functions are defined in order to undo any alteration to the global environment, so that we normally end up with a 'sandwich' or the form:

```
Update environment(...something...)
Call to some procedure
Undo environnent(...s ame sometning...)
```

Thus, after these transformations the procedural text corresponding to the WHILE jecomes:

From Standard to Implementation Denotational Semantics

```
IET C(I'whilen b "do" col. c,t) BE
( LET c' = ThisContinuation(.)
    LET c" = ForwardContinuation()
    B(Ibl, c^r.c. False)
    FixContinuation(c")
    Declare(BRK, c)
    Declare(L(X), C')
    C([c^1. c'. True)
    UnDeclare(L(O))
    UnDeclare(BRK)
}
```

Note that the procedure Decl are and UnDeclare (and also This, Forward and Fix Continuation) do not generate code. They are part of the 'compile time' activity.

1.2 .5 BCPL

Finally we translate into BCPL. This involves only syntactic transformations, i.e. renaming curly functions and making them procedures selecting by cases via a SWITCHON statement, renaming decorated variables. making syntactic references into node references via selectors. and a translation for those procedures returning a tuple. The fragment of the resultant procedure to generate code for commands corresponding to the assignment and WHILE commands is:

1. A simple case stidy. TL: a Toy Lanquage
```
LET CC(Node, c. t) BE SWITCHON Type OF Node INTO
(
    CASE COm.assignment:
            RR(Second OF Node, FirstReg)
            Update(U)(First OF Node) . FirstReg)
            JumpContinuation(c, t)
            ENDCASE
    CASE Com.wnile:
            (LET ci = ThisContinuation(.)
            LET c2 = ForwardContinuation()
            BB(First OF Node. c2. c. FALSE)
            FixCont inuation(c2)
            Declare(BRK. c)
            Declars(LO), cl)
            CC(Second OF Node, c1, TRUE)
            UnDeclare(Lo())
            UnDeclare(BRK)
        )
            ENDCASE
)
```


1.2.6 Example of code aeneration

Consider a fragnent of a program in TL which is a procedure to compute the function factorial by iteration :

```
begin integer v;
    integer F;
    procedure Fact;
    beqin : := 1;
        while N>0 do beqin F:=F N N:N:=N - 1 end
    end;
    call Fact;
end
The corresponding code for the \(D E C-10\), planted by our generated compiler will be
```

From Standard to Implementation Denotational Semantics

L2:	JRST MOVEM	0.11 16.13	; integer N ; New(w) ; Declare(N, WI) * integer F ; New(W2) - Declare (F. W2) ; procedure Fact; ; New(113)
	MOVEI	16.13	; New(n3) ; Declare(RET . L3) - Declare(BRK . L4) ; Declare(Loo . L4)
	MOVEI	1, ${ }^{\text {D }}$; $F:=1$
	MOVEM	1,N2	
L5:	MOVE	1.W1	- while $\mathrm{N}>0$ do
	JUMPLE	1,L3	; Declare(BRK , L3) ; Declare(LOO . L5)
	MOVE	1.W2	; $\mathrm{F}:=\mathrm{F} *$ N
	I MUL	1.WI	
	MOVEM	1.W2	
	MOVE	1,W1	; $\mathrm{N}:=\mathrm{N}-1$
	SUBI	1. ${ }^{\text {A }} 1$	
	MOVEM	1,N1	
	JRST	0.15	; UnDeclare(LOO , L5)
			; UnDeclare(BRK . L3)
			; UnDeclare(LOO . L4)
			; UnDeclare(BRK , L4)
			; UnDeclare(REI : L3)
L3:	JRST	0.043	; Declare(Fact, L2)
LI:	. .		
	JSP	16.12	; call Fact
	JRST	0, L6	; UnDeclare(Fact. L2) ; Free(w2) ; UnDeclare(F, W2) ; Free(vil) ; UnDeclare(F , WI)
L.4: Wrong/]	PRINTs	O, [ASCIZ/	
L6:	*		
W1:	XWI)	0	
W2:	XWD	0,	
W3:	XND	0.	

2. Further developments, RTL: a Recursive Toy Language

2. Eurther developments. RTL: Becursive Toy Lanauage

In this section, we introduce recursion in our toy language, so that now we talic about a language RTL (Recursive TL). We dovelop the IDS equations and then we indicate how to carry out a prof that the SDS and IDS are congruent.

2.1 Declaration and InvocationEnvironment

If we simply add recursion to the IDS of TL. we obtain an equation like the following (we also add one call-by-value paraneter):

```
D.I"procedure" i(i');c峦=
    Fix(\lambdap\prime.p[[i]/\lambdaavc.(New(p
                x<1, 年>.CICl
                                    (p\prime[[i/1/l][RET/c][BRK/Wrong]
                                    [Loo/wrong])c}].).
```

Again we are interested in an equation which will indicate how to plant efficient code but it seems that this equation does not help us. If we consider the virtual machine behaviour at the different times of declaration, invocation and execution of a procedure, we can isolate five different objects. which are manipulated in a way that characterises most of the flavour of different programming languages. Namely, associated with every procedure there is:

1 I) Local biading
A function to map everything which is bound within the procedure.
(II) Exteraal binding

A similar (but not equal) function to map everything which is free.
(III) Lecal workspace

A function to keep track of those locations defined within the procedure which follow a block structured discipline as opposed to those following a heap discipline.
(IV) Return continuation

The function mapping what remains to be done when the procedure activation terminates.
(V) Current continuation

The function mappin.) what remains to be done within the procedure.

Some of these are defined at declaration time. For example part of (I). (II), part of (III) and (V) are defined at this time in languages with static binding like Algol.

At invocation time, a copy of what was created at declaration time is made and some other functions are defined, for example (IV) and in dynamically bound languages (II).

At execution time, some functions may be updated. For example (I) and (III) may be extended by new declarations. For a full description of this model. the reader is refered to [Hayes78].

If we now look at our domain definitions and equations we can see that there is no clear mathematical machinery to abstract our model at the different $t i n e s$ of declaration and invocation. The environment appears to be abstracting most of the objects above, but they are not structured in the same way:
$p: U=[[I d e \Rightarrow D] \times C \times C \times C \times A]$.
environments

Secondly, there is no distinction whatsoever between free and bound identifiers. From a (purely) mathematical point of view. it is not necessary to distinguish between them. However, from an implementation standpoint, we have to be able to tell whether a variable has been declared within the current procedure or in an external one. leading to a completely different behaviour of the look up function. For example it might be necessary to walk down a link chain in a stack.

Finally the domain of locations is not absracted at an appropriate level. In the implementation of block structured languages it is reasonable to associate variables to 'offsets' within the workspace of a procedure or block at compilation time. Loçtions are only allocated at execution time when a 'base' is calculated for all the offsets of the local variables.

To overcome these problems we are going to modify the environment so that it precisely abstracts the model described above. The first four functions are going to be members of the environment while (V), the current continuation is still going to be passed as an explicit parameter to the valuations.
2. Further developmonts. RTL: a Recursive Toy Language

In relation to [Hayes 78], F is an Invocation Record Frame and U is an Invocation Record. or in terms of [Bornat77] a Process State Descriptor.

We now describe the parts of the environment, or invocation record in detail:
(I) Local binding

The binding map:

```
m:M=[[Ide > D] x C x C].
    binding Map
```

is quite similar to the oriqinal environment donain. It binds identifiers to thair denoted values and the structured jumps BREAK and LOOP to their respective continustions. The empty binding map is defined to be:

Nilm:M.

```
Nilm=
    <xIil.Nild, Nrung, wrong>.
```

(II) External binding or an Environment link

This is a reference to the environment of the textually enclosing procedure where the denotation of free identifiers can be found. The function

Look Up:[Ide $\Rightarrow U \rightarrow E]$.
Look Up.I i] $\mathrm{p}=$
p[i]=>
Xd. $d=N i l d>L$ ook Uplil(ptXT),
$d ?() \rightarrow \operatorname{Loc}(N \operatorname{loc}\langle p B A S, C: O>):: E, d ? F \rightarrow d: F: E, T e$.
defined recursively, implies a behaviour which searches down this chain of environments when the denotation of a free identifjer is required. Bound identifiers are found in the binding map. LookUp also converts offsets in D to their corresponding locations by reference to the Base in the lucal workspace component of U.

The semantic equation for a single identifier inside an expression then becomes:

R.[i]p=

Load(LookUpIIIpil).
(III) Local workspace

In a function closure, or declaration record frame. the local workspace is an offset. It indicates which is the first free offset at declaration time, whereas in an environment in IDS it is a pair $<b, o>$ indicating where the workspace starts and ends, respectively: <pBAS. Firsto> and <pBAS. pToP>.

It would be nice to identify locations with the product of bases and offsets in the following manner:

```
L}=[B\times0]
```

However, if we to this we cannot achieve a realistic implementation semantics. As it stands identifying L with $B x$) (assuming B and 0 are countably infinite domains, 50 that for any B and 0 that might occur in a program the corresponding location exists) means we have an infinite number of locations - which is certainly not required in an implementation semantics. However, if we restrict B and 0 to being finite domains, we then imply an arbitrary limit to the number of blocks that can appear in a program, and an arbitrary number of locations that can be used in each. Neither of these two possibilities matches up with the standard semantics of the language.

So we are forced to postulate that there are a finite number of locations and a function:

```
Loc: \([\mathrm{N} \rightarrow \mathrm{L}]\).
```

Undefined
which gives a proper location when given an integer in \{i: $1<=i \leqslant n$, where n is the number of locations, and otherwise indicates an error. Also we need a function:
2. Further developments. RTL: a Recursive Toy Language

```
Nloc: \(\left[\begin{array}{lll}{[B} & x & 0\end{array}>N\right]\).
to indirectly find the location corresponding to each B x 0. (we do not make Noc:[[B x 0 ] \(>\mathrm{L}]\) as we may want to store a <b, o> pair without assuming that the corresponding location exists.)

As we have already indicated, the existence of \(\langle b .0\rangle\). for some \(b\) and o does not guarentee the existence of the corresponding location, and we therefore need the function 'ivew' again, this time with functionality:

New: \([1 B \times 0] \rightarrow\) L].
\(\mathrm{New}<\mathrm{b}, 0>=\)
Loc (Nloc<b,o>).

We must, of course, insist that the locations are used in ascending numeric order. with Nloc<FirstB. Firsto> \(=1\), and in fact \(B\) and 0 could be identified with N, but we prefer not to do this. Instead we define two primitive functions to obtain new bases and offsets. which we assume satisfy the above two conditions:
```

NewB:[[B x 0] > B]. Undefined
NextO:[0>0]. Undefined

```
and two constants which are the first base and first offset:
\begin{tabular}{ll} 
FirstB:B. & Undefined \\
First \(: 0\) ( \()\) & Undefined
\end{tabular}

To increase the size of the workspace at invocation time we use the post-fix operator:
```

p[TOP / NextO(pTOP)] = p', where p'TOP = NextO(pTOP),
and p'X = pX otherwise

```

Getting a olock structured location and binding it to an identifier is now a single activity modelled by the primitive functions BindF at declaration time, ant by Bindp at invocation time:

From standard to Implementation Denotational Semantics

```

BindFIIlmo=
<m[Iil/ol, lext0 o>.
BindP:[Ide }=>U\geqslantU]
B indP\i\p=
New(pLOC)=> \l.l=Tl >Tp.p[TOP/NextO(pIOP)][Ii]/pTOP].

```
(IV) The fourth element in a function closure is a member of \(P\) the domain of procedure values:


It models the meaning of the procedure which is expecting an environment and an zctual value for its formal parameter. While in an environment, it is \(a\) member of \(C\). the domain of (return) continuations. In relation to [Hayes78]. (IV) can be seen as a reference to the current continuation field of the calling invocation record (environment).

The action of activating a function closure icreating a new invocation environment, is modelled by:
```

Activate:[F>[B x O] > C > V > C].

```

Activate \(\mathrm{f}<\mathrm{b}, \mathrm{o}>\mathrm{cv}=\)


Assuming contiguity of caller and callee, activating means pushing the callee's base on top of the worksoace of the caller's invocation environment.

After incorporating the new environment structure and their associated primitive functions the IDS definition of procedure declaration in RTL is:
```

D["procedure" i(i');c]p=
Fix(\lambdap'.(BindFIi'Jlilm Firsto)=>
\lambda<m,o>.p[[i]/<m,p, o, tp"/v.{New<p"/BAS,p"/Ii"]:0>=>
\lambda1. (Assion lv o
CIClp\prime\prime(p\prime(RET))}>>]))

```
2. Further developments. RTL: a Recursive Toy Lanquage

The equation shows how the binding map ( \(m\) ) is formed from the empty one (Nilm) with an additional binding of the parameter [ir] to the first free offset, an external binding ( \(p^{\prime}\) ) which is the newly created fixed point environment, an indication of how many offsets have already been claimed (one in this case) and finally the procedure value in \(P\).

The IDS equation for a procedure call in RTL is:

Cl"call" i(e) lpc=
RIelp Activate\{LookUpilp:F\}(pLoc)c.

\subsection*{2.2 Belationshio between the definitions}

We indicate here how a proof of congruence between IDS and SDS of TL can be obtained. This is based on the proof of congruence between IDS and SDS of the recursive version of TL , which is similar in many respects.

There are two substantial changes between the two semantics given for TL: the structure of the environment is altered and the semantic function for boolean expressions has different functionality. As these are entirely separate issues we propose to split the proof into two parts so they don't become confused (which they could do as the environment is a parameter to the valuation (semantic function) for boolean expressions). The disadvantage of splitting the proof into two parts is that we need an intermediate semantics between SDS and IDS which nas one of the changes referred to above, but not the other. This is a little unfortunate especially as later on we need two further internediate semantics for the environment part of the proof, but we persist with the method in the belief that it is the easier to follow.

As the proof of congruence between the valuations for boolean expressions i'i considerably easier than that between the two environment donains we consider that first by defining a semantics SDS(B) differing from SDS by having the boolean expression valuation from IDS. Later we consider the conqruence between SDS(B) and IDS which will estgblish that the new environment domain does not significantly alter the semantics of the language.

From Standard to Implementation Denotational Semantics
3.1 The Congruence between SDS and SDS(B)

Definition of SDS(B).
As SDS except: \(B:[B e x \rightarrow U \rightarrow C \rightarrow C \Rightarrow C]\). and of course all the clauses in the definition of \(B\) are altered to look like those in IDS, where p refers to the environment in SDS rather than IDS. Also change the following clauses:

CI"if" b "then" \(c\) ' "else" c"lpc=
B.IbIp \(\left\{\mathrm{CI}\left[\mathrm{c}^{\prime} \mathrm{lpc}\right\}\left\{\mathrm{CI} \mathrm{c}^{\prime \prime} \mathrm{Jpc}\right\}\right.\).

Cl"while" \(b\) "do" \(c\) " \(1 p c=\)
Fix( \(\left.>c^{\prime} . \operatorname{BIb} \operatorname{lo}\left\{C I c^{\prime}\right]\left(p[B R K / c]\left[L O O / c^{\prime}\right) c^{\prime}\right) c\right\}\).

Theorem : SDS is congruent with SDS (B).
Proof:
We assume here that all the functions starting If... and Is... in the IDS valuation fur B[ere'] give false for any argument. So

B[ere \(\left.{ }^{\prime}\right] \mathrm{pcc}^{\prime}=\)


We need the following lemma (where \(B 1\) refers to \(B\) in \(S D S\) and \(B 2\) refers to \(B\) in IDS):

Bliblp © Cond<c. \(\left.\mathrm{c}^{\prime}\right\rangle=\mathrm{B} 2.1 \mathrm{blp}\).
which is easily proved by induction over the structure of \(b\). The result follows immediately from this lemma.
2. Further dovelopments, RTL: a Recursive Toy Language

\subsection*{3.2 The congruence Detween SDS(B) and IDS}

Many of the equations in the SDS(B) and IDS of TL now look alike, and although the state and environment domains in the two semantics are different, the proofs of their congruence are trivial. The interest, therefore, lies in the equations in the two definitions which look different. ant in particular in the semantic function D. Although we only have a handfil of cases to consider the task is more difficult than appears at first sight for reasons we now outline.

The alterations to the state and environment domains appear to be minor, but they are very fundamental. We are taking information out of the state underlying \(\operatorname{SDS}(B)\) and putting it into the environment in IDS. For these two semantics to be congruent we have to insist that this information corresponds at all times, otherwise they could be using the locations in different ways.

An establisned method[Milne761[Stoy 77-9] for relating two domains in semantics wich are to be proved congruent, is by imposing inclusive predicates on them. In particular here we have to relate the information in the \(L \rightarrow T\) component of the SDS(B) state and the \(L \rightarrow T\) component of J in IDS, which contain information about the locations in use in either semantics. As this information is kept in different domains in \(\operatorname{SDS}(B)\) and \(\operatorname{IDS}\), predicates defined on corresponding domains cannot insist that it is the same.

One way to overcome this problem might seem to be to define a composite pradicate on pairs of states and environments. so we can relate the locations in use. Unfortunately this does not work for at least one reason: environments are bound into contiouations in IDS (as well as in SDS), and when we are supplying a state to a continuation in IDS there is no way of checking that the environment bound into that continuation contains the same location in use' information as the state supplied in SDS(B). Infact we cannot find out anything about the environment bound into a continuation. A possible solution to this might seem to be to split a continuation so that it is a member of the domain \([U \rightarrow S \rightarrow S] \times U\), leaving the environment explicit, but this involves changing the semantics in such a way that it is not inplementation oriented. In any case we are trying to find a proof that \(\operatorname{SDS}(B)\) and \(I D S\) are congruent, not find a proof and then make up IDS.

Unfortunately we are led to the conclusion that two intermatiate semantics are required to prove the congruence between SDS(3) and IDS. These are SDS(M), which is SDS(B) modified by having a copy of the \(L>T\) component of the state in the environment, and IDS(4), as IDS except that the state has a copy of the \(L \rightarrow T\) component of the environment in it. The details of the semantics have to be altered a little to keep the new parts of the domains in step (ie containing the same infornation) as the originals. This still does not solve all

From Standary to Implementation Denotational Semantics
the problems. thouyh. as we still have environments pound into continuations, and even though the state now also contains the 'location in use' information we must ensure that it is the same as that in the bound in environment when a state is applied to a continuation. To take care of this problem we propose continuation transforming' functions which take as arguments a continuation and the environtent to be bound into it, and only allow the continuation to be applied to a supplied state, when the "location in use, information agrees with that in the bound in environment. These functions appear in the semantics everywhere where a new continuation is being croated 3 argument to a semantic function (and a few other places where they help in the proof - don't forget we are now creating a semantics for this purpose). The net result is that every continuation in the semantics contains a check that the supplied state contains the same 'location in use' information as the bound in enviroment before it is applied; this is because every time a continuation is crated the check is incorporated, and all continuations have to be created somewhere in the semantics.

What then have we achieved after all this effort, and how is the proof to proceed? Nell we now have four semantics:
\(\operatorname{SDS}(B) \leftrightarrow->\operatorname{SOS}(m) \leftrightarrow \operatorname{IDS}(M) \leftrightarrow \operatorname{IDS}\)
(where the two (M) semantics contain the 'continuation transforming' functions referred to above) which are all congruent. For SDS(B) and SDS(M) to be congruent we have to show that the added component of the environment dres not affect the semantics of any program in any significant way, and that the checks for identity of location information in each continuation have no effect. Similarly for the congruence betiveen IDS(i) and IDS. when we have established these results, and they are intuitively fairly clear, all wa have to do is show the congruence between \(\operatorname{SDS}(M)\) and \(\operatorname{IDS}(M)\) to finish the whole proof.

\section*{Acknowledgement}

We acknowledge the help and support from Ray Turner and the SRC. Wike Brady has alvays given encouraging support.
A. liotation
A. NQtation

Operators
\(d: D=A n y\) Domain \(n\)
0):
. \(\rightarrow\). \(:[[T \times D \times 0] \rightarrow 7]\)
This is the conditiunal finction. An expression \(t \rightarrow x\) d will take the value \(d\) when \(t\) is True and the value \(d\) when \(t\) is False.
```

02:

```

```

f:[D > D
g:[D'>
(fog) d=g(fg)

```

This is the reversed form of the composition operator.
\(03:\)

\(f:\left[D^{\prime} \rightarrow\left[\square \times D^{\prime \prime}\right]\right]\)
\(g:\left[D \rightarrow\left[D^{\prime \prime} \rightarrow 1\right] \times 1\right]\)
\((f \notin g) d^{\prime}=d d d^{\prime \prime}\) Wheref \(d^{\prime}=\left\langle d, d^{\prime \prime}\right\rangle\)
Reversed form of the star operator used by C. Strachey in the semantic equation for the Nhile-loop.
\[
04:
\]
.a. \(:\left[\left[\left[D^{\prime} \rightarrow D\right] \times\left[D>\left[D^{\prime} \Rightarrow D^{\prime \prime}\right]\right]\right] \rightarrow\left[D^{\prime} \rightarrow D^{\prime \prime}\right]\right]\)
\(f:\left[D^{\prime} \rightarrow D\right]\)
\(q:\left[D \rightarrow\left[D^{\prime} \rightarrow D^{\prime \prime}\right]\right]\)

This operatur will normally be used for expressions without side effects.

\section*{From Standard to Implementation Denotational Semantics}
```

05:
.=>.:[[[D < [D> D']]> D']
f:[D > (D']
x:D
d =>> >x.fx is the same as (\lambdax.fx)(d)
This operaror. wnich reads as "produce" is the reverse of
application, so that we can read equations from left to right.
06:
. :.
d:[D1 + ... + Dn]
i:N}\mathrm{ and l <= i <= n
diDi is the projection of d into the suodomain Di of
[D] + ... + Dn]
07:
. |.
d:Di
i:N and }|<=i<=
d![[[D] + ... + Dn] is the injection of d into [D D + ... + Dn]
08:
.F.:[[[[D] x ... x Dn] x N] > D]

```

```

d 直 i=di
So that is used to extract individual components of tuples.
09:
.t.

```

```

d+i=<d(i+1), ...,Dn>
Operator used to remove elements from tuples.

```
A. Notation
```

0)10:
. =
d=< dl, ... , di >:[Dl x ... x Di]
d'= <dj, ... , dn >:[Dj x ... x Dn]
i,j:N and j=i+1<= n

```

Operator used to concatenate tuples.
() 11:
.?.:
\(d:[\mathrm{D} 1+\ldots+\mathrm{D} \boldsymbol{+}]\) ]
i:N and \(\mid<=i<=n\)
d?Di Is True if d is in the Di subdomain of \([D 1+\ldots+\) Dn \(]\).
otherwise if False

012:
\([/]:\left[\left[U \times D \times D^{\prime}\right] \rightarrow U\right]\)

This is the postfix operator to create new environments. (The notation pSEL, where SEL has been defined as a semantic selector, is equivalent to SELp.)

\title{
From Standard to Implementation Denotational Semantics
}

\section*{B. Syntax of II}

\section*{Syntactic donains_(common to ooth SDS and IDS versions)}
```

a:Aop. Arithmetic operators
b:Bex. Boolean expressions
c:Com.
d:Dec.
e:Exp.
i:Ide.
j:Jmp.
n:Num.
q:Quo.
r:Rop.
w:Wri.

```
Commands
```

Commands
Declarations
Declarations
non boolean Expressions
non boolean Expressions
Identifiers (Undefined)
Identifiers (Undefined)
structured J'imps
structured J'imps
Mumbers (Undefined)
Mumbers (Undefined)
Quotations (Indefined)
Quotations (Indefined)
Rel ational operators
Rel ational operators
writable expressions

```
```

writable expressions

```
```


Syntax (common to both SDS and IDS versions)

```
a ::= + ; - i * i /
b ::= b' "and" b"' : b' "or" b'' : "true" ; "false" ; (b') ;
    ere"
c ::= c';c"' i i:=e ; "if"b "then" c' "else" c". i
    "while" b "do" c' i "call" i i "dummy" i j i "read" i i
    "write" w i "begin" c' "end" : "begin" dic' "end"
d ::= "procedure" i;c : "integer" i : d'; d"
e ::= i i e'ge"' i n i (e')
j ::= "break" i "loop" ; "return"
r ::= > ! < ! = ' >= ! <= ! <>
w ::= e : q
```

C. Standard ')enotational Semantics of TL
C. Standard Denotational Semantics of TL

ISL: SDS_of TL

Semantic domains

```
c:C=[S>S].
    D=[P+L].
1:L.
    N.
    P=[C>C].
    Q.
r:R=[N+Q].
s:S=[[L > V] x V* x P* x [L > T]].
    T={{ TRUE } + { FALSE }).
p:U=[[Ide m D ] x C > C 人 C].
v:V=[N].
```

Command cont.
Denoted values
Locations
integers
procedure values
nuotations
pRintable values
States
Truth values
environments
storable valies

Semantic selectors

$B R K==\lambda p . p \downarrow 2$.
$L(O)==\lambda p . p+3$.
$\mathrm{RET}==\lambda p . \mathrm{p} 4$.

```
From Standard to Implementation Denotational Semantics
```


Semantic_functions

```
B:[Bex * U > S > T].
C:ICOm > U > Pl.
D:[Dec > U >S > [U < S]].
J:[Jmp > U > C].
R:[Exp > U > S > V].
N:[Wri > U > P].
```

Semantic orivitives

```
A:[AOp > V >V V V]. Undefined
N:[Num }->\mathrm{ N]. Undefined
Q:[Quo > Q]. Undefined
O:[ROp > V > V > T]. Undefined
wrong:C.
Assign:[L }->v>C]
Assign lvs=
```



```
Load:[L > S > V].
Load 15=
    (st1)l.
New:[S > [L x S]].
Read:[S > [l x x S]].
Read s=
```



```
Nrite:[R > C].
Nrite rs=
    <s\psi|.s&2,sv3^r,st4>.
```

C. Standard رenotational Semantics of TL

Semantic_valuator fur expressions
R.[i]p=

Load(pIII:L).

R.[n]ps= NIn 1 .
$\left.\operatorname{RI}\left(e^{\prime}\right)\right] p=$ RI $e^{\prime} \mathbf{l p}$.

Semantic valuator for boolean_expressions
B.Ib' "and" $\left.b^{\prime \prime}\right]_{p=}=$

B.Ib' "or" polp=

B.["true"]ps= TRUE.
B.["f alse"]ps= FALSE.
$B\left[\left(b^{\prime}\right)\right] p=$
BI $b^{\prime} \mathbf{l} p$.
BIerélp=

Semantic valuator for commads

```
CIc';c'. ] pc=
    CIc'lp{CI c',lpc}.
CIi:=e]pc=
    RIElp Assign(pliliL) Q c.
```

CI"if" b "then" c^{\prime} "else" c" Jpc=
BIblp Cond<C[c $\left.\left.c^{\prime}\right] p c, C I c \%\right] p c>$.
al"while" b "do" $c^{\prime} \operatorname{lpc}=$

Cricall" ilp $\mathrm{pc}=$

CI"dummy"]pc=
c.
CIj]pc=
J.I ${ }^{i}$]p.
CI'read" ilpc=
Read \star Assign(pIiliL) $Q c$.
CI"write" $w \mathbf{I}_{p c}=$
W[W]pc.
C["begin" c^{\prime} "end"]pc=
CIc $c^{\prime} \mathrm{pc}$.
C["begin" d;c" "end"].pcs=

C. Standard Denotational Semantics of TL

Semantic_valuator for declarations

DI"procedure" i:clps=
<p[Iil/xc.CIcl(p[RET/c][BRK/Wrong][LOO/Wrong])c].s>.
D. "integer" ilp=

New * >1s.<p[I[1/1].s>.
DId'; $d^{\prime-1} 1 p=$
DI $d^{\prime \prime} \mathrm{P}$ * $\mathrm{DI} \mathrm{d}^{\prime \prime 1}$.

Semantic_yaluator_for structured jumps and writable values.

J!"break"1p= pBRK.
J. ${ }^{\prime \prime}$ loop" $] p=$ pLOO.

JI"return"]p= pRET.

WIelpc= RIelp@Nrite $9 c$.

WIq]pc=
Write(QIql) ac.

ISL: IDS of ri

Semantic_domains

```
a:A=[L > T].
c:C=[S > S].
    D=[P+L].
1:I.
    N.
    P=[A>C>C].
    Q.
r:R=[N+Q].
S:S=[[L > V] x v* x R*].
    T=[{ TRUE } + { FALSE }].
p:U=[[Ide > D] x C x C x C x A].
v:V=[N].
    N=[V+L].
    Y=[Aop + Bex + Exp + Rop].
```

Area function
Command cont.
Denoted values
Locations
integers
Procedure values
Quotations
pRintable values
St ates
Truth values
environments
storable Values
dumped Whlues
reversed sYntax

Semantic_selectors

$B R K=-x p . p t 2$.
$L(x)==x p . p \downarrow 3$.
RET $=-\lambda p . \mathrm{p} 4$.
$\mathrm{ARE}==\lambda \mathrm{p} . \mathrm{p}+5$.
D. Implementation Denotational Semantics of TL

Semantic functions
$B:[$ Bex $>U \rightarrow C \rightarrow C \rightarrow C]$. $C:[C o m \rightarrow U \rightarrow C \rightarrow C]$.
$D:[D e c \rightarrow U \geqslant U]$.
$\mathrm{J}:[\mathrm{J} m \mathrm{p} \rightarrow \mathrm{U}>\mathrm{C}]$.
$R:[E x p \Rightarrow U \rightarrow S \rightarrow V]$.
$W:[W r i \rightarrow U \rightarrow C \rightarrow C]$.

Semantic_primitives

```
A:[Aop > V >W \ S > V]. Undefined
N:[Num > N].
Q:[Quo > Q].
O:[ROp > V >W > C > C C C].
BJump:[Rop }=>V>C->C>C]
BLeaf:[Exp > Rop }>\textrm{E}->V>C>C>C>C]
Dump:[U->V S S > [L x U x S]].
IfNeedToDump:[Exp > T].
IfNeedToReverse:[[Bex + Exp] > T].
IfZero:[Exp > T].
IsLeaf:[Exp > T].
Reverse:[Y > Y].
RLeaf:[Exp > Aop >U \V > S >V].
Wrong:C.
Assign:[L > V >C].
Assign lvs=
    <x 1'.1=1\prime>*,(st|)1'.st2.st3>.
Load:[L > S > V].
Load 1s=
    (s申|)l.
```

New: [U \rightarrow [L X U]].
Read:[S $\rightarrow\left[\begin{array}{l}V \\ x \\ S\end{array}\right]$.
Read $s=$

Write: [R $\Rightarrow C]$.
Write rs=
<st1.st2.st3A~>.

```
RIilp=
    Load(p.Iil'L).
RIe'ae*/1p=
    IfNeedToReverseIe'ae\prime\primeI>R(ReverseI e'ae"'I;Exp)p.
    (RIE'Ip Q
        \lambdav.IsLeafle"1>RLeafI er.III alpv,
            I fNeedT ODumpIe'ノI>
            Dump pv \star \lambda<l,p'>.(RIe"rlp\prime a \lambdav.A(Reverselal;Aop)v1),
            (RIe"lp@ AIAlv)).
RInlps=
    N[n].
R[[(e')]p=
    RI erlp.
```

Semantic valuator for boolean expressions
B.Ib' "and" $\mathrm{b}^{\prime \prime} \mathrm{lpcc}^{\prime}=$
$\mathrm{BI} \mathrm{b}^{\prime} \mathbf{I p}_{\mathrm{p}}\left\{\mathrm{BI} \mathrm{b}^{\prime \prime} \boldsymbol{1}_{\mathrm{pc}} \mathrm{c}^{\prime}\right\} \mathrm{c}^{\prime}$.
BID' "or" $b^{\prime \prime} 1 p c c^{\prime}=$
BIb'Ipc \{BIb"Jpcc'\}.
BI"true" 1 pcc $^{\prime}=$
c.
BI"false"1pcco=
$\mathrm{C}^{\prime \prime}$.
$\mathrm{B} I\left(\mathrm{~b}^{\prime}\right) \mathrm{Jpcc}=$
BI $b^{\prime} \mathrm{lpcc}^{\prime}$.
BIere ${ }^{\prime}$ pcc $^{\prime}=$
IfZerolel>RIélp $\times v$. BJump (ReverselrliRop)vcc'.
IfZerole ${ }^{\prime} \rightarrow$ RIelp λv. BJumplrlvcc ,
If NeedToReverseIer $e^{\prime} \mathbf{1} \rightarrow B$ (Reverselerél;Bex)pcc'.
\{RIE]p ©

IfNeed oDumple'I>

D. Implementation Denotational Semantics of T

Semantic valuator for comands

```
CIc';c"1pc=
    CIc'lp{CIC'flpc}.
CII:=e]pC=
    RIe\p@Assign(p.IiJ:L) @ c.
C["if" b "then" c' "else" c"lpc=
    B[blp{CIc']pc}{C{c"lpc}.
G["while" b ido" c'lpc=
    Fix{\lambda\mp@subsup{c}{}{\prime}.\textrm{BID}]p{C[\mp@subsup{c}{}{\prime}](p[BRK/c][LOO/\mp@subsup{c}{}{\prime}])\mp@subsup{c}{}{\prime}}c}.
C["call" ilpc=
    (pIiliP)(pARE)c.
C["dummy"lpc=
    c.
C[ [J jc=
    J[ jJp.
C["read" ilpc=
    Read t Assign(pliliL) & c.
CI"write" wIpc=
    WIwlpc.
C["begin" c' "end"]pc=
    C[ c']pc.
c.["begin"d;c'"end"lpc=
    CICfl(DIdJp)c.
```

```
From Standard to Implementation Denotational Semantics
```

Semantic valuator for declarations

D["procedure $\left.{ }^{\text {n }} \mathrm{i} ; \mathrm{c}\right] \mathrm{p}=$ p[Ii]/גac.CIcI(p[ARE/a][RET/C][BRK/Wrong][L(O)/Wrong])c].

D["integer" ilp= New $p=>\lambda<1 . p^{\prime}>. p^{\prime}[111 / 1]$.

D[d'; $\left.d^{\prime \prime \prime}\right]_{p=}=$
$\mathrm{D}\left[\mathrm{d}^{\prime} 1 \mathrm{p}=>\mathrm{DI} \mathrm{Cl}^{\prime}\right]$.

Semantic valuator for structured jumps and writablevaluese

JJ"break ${ }^{11}$]p=
pBRK.
J["1 oop"]p= pLoO.

JI"return"]p= pRET.

WIelpc=
R[e]p@ Nrite \& c.
W.Iqlpc=

Write(QIqI) a c.
E. The Generated Compiler

E. The Cenerated Compiler

```
// File isk:TLBCL.MS
// Compiled by ISL 1A(23) at 10:32 21/2/80
// Outpirt of phase 6
LET RR(Node, Reg) Br SNITCHON Type OF Node INTO
( CASE S..i:
    Load(UU(Node), Reg)
    ENDCASE
    CASE Exp.Aup:
    TEST IfNoerToReverse(Node. Reg) THENi RR(Reverse(Node) , Reg)
    OR
    ( RR(First OF Node, Reg)
        TEST IsLeaf(Third OF Node)
        THEN RLeaf(Third OF Node. Second OF llode, Reg)
        OR
        TEST IfNeedTolump(Third OF Node)
        THEN
        (LET 1 = Dump (Reg)
            RH(Tnird OF Node. Reg)
                AA(Reversa(Second OF Node). Req, l)
                Free(1)
        )
        OR
        { RR(Third of Node. NextReg(Reg))
                AA(Second of Node. Reg, NextReg(Reg))
        }
    }
    ENDCASE
    CASE S..n:
        M(lode, Reg)
        ENDCASE
        CASE Exp.brackets:
        RR(First OF Node. Req)
        ENDCASE
```


From Standard to Implementation Denotational Semantics

```
LET BB(Node, c. cl, t) BE SWITCHON Type OF Node INTO
{ CASE Bex.and:
    (LET c2 = ForwardContinuetion()
        BB(First of Node, c2. cl. FALSE)
        FixCont inuation(c2)
        BB(Sec, nd OF Node, c.c.c.t)
    )
    ENDCASE
    CASE Bex.or:
        { LET c2 = ForwardContinuation()
        BB(First of Node, c, c2, TRUE)
        FixContinuation(c2)
        BB(Second of liode, c, c1, t)
        }
        ENDCASE
    CASE Bex.true:
        JumpContinuation(c, t)
        ENDCASE
    CASE Bex.false:
    JumpContinuation(cl, NOT t)
    ENDCASE
    CASE Bex.brackets:
    BB(First 0)F Node, c, c1, t)
    ENDCASE
```

E. The Generated Compiler

```
CASE Bex.Rup:
TEST IfZero(First OF Node)
    THEN
    (RR(Third OF Node. FirstReg)
        BJump(Reverse(Second OF Node), FirstReg. c.cl. t)
    )
    OR
    TEST IfZero(Third ()F Node)
    THEN
    ( RR(First oF Node. FirstReg)
        BJumo(Second oF Node. FirstReq. c. cl, t)
    }
    OR
    TEST IfNeedToReverse(Node) THEN BB(Reverse(Node), c, cl, t)
    OR
    (RR(First (OF Nude. FirstReg)
        TEST IsLeaf(Third OF Node)
        THEN B! eaf(Third OF Node. Second oF Node, FirstReg, c, cl, t)
        OR
        TEST If NeedTolump (Third OF Node)
        THEN
        (LET L = Dump (FirstReg)
            RR(Tnird OF Node, FirstReg)
            oo(Reverse(Second oF Node). FirstReg. l, c, cl, t)
            Free(1)
        )
        OR
        ( RR(Third ()F Node. NextReg(FirstReg))
                OO(Second Of Node. FirstReg. MextReg(FirstReq). c. cl. t)
        }
)
ENDCASE
```


From Standard to Implementation Denotational Semantics

```
LET CC(Node, c, t) BE SWITCHON Type of Node INTO
{ CASE Com.semicolon:
    { LET c\ = ForwardContinuation()
            CC(First OF Node. cl. FALSE)
            FixContinuation(c1)
            cc(Second of Node, c, t)
    }
    ENDCASE
    CASE Com.assignment:
    RR(Second oF Node, FirstReg)
    Assign(UJ(First OF Node). FirstReg)
    JumpContinuation(c, t)
    ENDCASE
CASE Com.if thenelse:
    (LET cl = ForwardContinuation()
        LET c? = ForwardCont inuation(.)
        BB(First OF Node. c1, c2. FALSE)
        FixContinuation(cl)
        CC(Second OF Node, c, TRUE)
        FixContinuation(c2)
        Cc(Third OF liude, c, t)
    }
    ENDCASE
        CASE Com.wniledo:
    (LET cl = Thiscontinuation(.)
        LET c2 = ForwardContinuation()
        BB(First OF Node. c2, c, FALSE)
        FixContinuation(c2)
        Declare(BRK, c)
        Declare(Loo. cl)
        CC(Secund oF Node, cl. TRUE)
        UnDeclare(L00)
        UnDeclare(BRK)
    )
    ENDCASE
    CASE Com.call:
    CallContinuation(Uu(First (OF Node))
    JumpContin'uation(c, t)
    ENDCASE
CASE Com.dummy:
    JumpContinuation(c, t)
    ENDCASE
```

E. The Generated Compiler

CASE Jmp.break: CASE Jmp. 10op: CASE Jmp.return: J (Node)
ENDCASE
CASE COm. read:
Read(FirstReq)
Assign(Uu(First of Node), FirstReg)
JumpContinuation (c, t)
ENDCASE
CASE Com. write:
WW (First of Node. c, t)
ENDCASE
CASE Com.beginend:
CC(First OF Iode, c, t)
ENDCASE
CASE Com.beginsemicolonend:
(LET cl = ForwardContinuation() JumpContinuation(c1. DeclareingContinuation(First of Node)) 00 (First of lode) FixContinuation(cl) CC(Secund ot Node. c, t) UnDD(First of Node)
\}
ENDCASE
\}

LET WW (Node, c, t) BE SWITCHON Type of Node INTO
(CASE S..i: CASE S...n: CASE Exp.AOp:
CASE Exp.brackets:
RR(Node, FirstReg)
Write(FirstHey)
JumpContinuation(c, t)
ENDCASE
CASE S..q:
Write(on(llode))
JumpContinuation(c. t)
ENDCASE

Fron Standard to Implementation Denotational Semantics

```
LET DD(Node) BE SWITCHON Type OF Node INTO
{ CASE Dec.procedure:
    ( LET cl = ThisContinuation()
        LET c = EntryContinuat ion(.)
        Declare(RET. c)
        Declarg(BHK, wrong)
        Neclare(loo. Wrong)
        CC(Second OF :'ode, c, FALSE)
        UnDeclare(LOO)
        UnDeclare(BRK)
        UnDeclare(RET)
        ExitContinuation(c)
        Declary(First OF Node, cl)
        }
        ENDCASE
    CASE Dec.integer:
        (LET 1 = New()
            Teclare(First OF Node. 1)
        )
        EPDCASE
    CASE Dec.semicolon:
    DD(First OF Node)
    DD(Secony of Note)
    ENDCASE
)
LET JJ(lode) BE SMITCHON Type OF Node IMTO
{ CASE Jmp.break:
    JumpContinuation(UU(BRK). TRUE)
    ENDCASE
    CASE Jmp.loon:
        JumpContinisation(UU(LOO). TRUE)
        ENDCASE
    CASE Jmp.return:
        JumpContinuation(UJ(RET), TRUE)
        ENDCASE
```

F. References

E. Beferences

[BCPL77] Reference manual. Department of Computer Science. Essex University. 1977.
[Bornat76]R.Bornat. Notes for Comparative Study of Programming Languages, Department of Computer Science. Essex University. 1976.
[Bornat77]R.Bornat. Understanding and Ariting Compilers. MacMillan 1977.
[Gries71]D.G. Gries. Compiler Construction for Digal Computers. J.Wiley and Sons. 1971.
[Hayes78]P.J.Hayes. Invocation Records: A conceptual Framework for Evaluating Program Text. Department Of Computer Science. Essex University. 1979.
[Jones80]N. J .Jones and D.A.Schmidt. Compiler Generation from Denotaional Semantics (Preliminary Report) Workshop on Semantics-Directar Compiler Generation. Department of Computer Science. Aarilis Iniversity. 1980.
[Milne76]R.Milne and C.Strachey. A Theory of programming language semantics, Chaoman and hall. 1976.
[Mosses74]P. .1 . 0 sses. The Semantics of Semantic Equations. Mathematical Foundations of Computer Science. Lecture Notes in Computer Sciemce 23. Springer-Verlag. Proc. 3rd MFCS Symposium. warsaw. 1974. 2p.40\%-422
[Mosses75]p.0. Mosses. Mathematical Semantics and Compiler Generation. PhD. thesis. Iniversity of oxford. 1975.
[Mosses76]P..). Cosses. Compiler Generation using Denotational Semantics. Aathematical Foundations of Computer Science. Lecture Notes in Computer Science 45. Springer-Verlag. Proc. 5th MFCS Symposium. Gdansk Poland. 1976. pp.436-441
[Mosses78]P. D. Mosses. SIS: A Compiler Generator System using Denotational Semantics, Reference Manual. University of Aarhus. 1078.
[Raskovsky70]M.R.Paskovsky and R.Turner. Compiler Generation and Denotational Semantics. Fundamentals of Computation Theory. 1970.
[Raskovsky 0] in. R. Qaskovsky. ISL (In preparation) Department Of Computer Science. Essex University. 1980.
[Richards69]4. Richards. BCPL:A tool for compiler writing and system programing. proceedings of the 1960 Spring Joint Computer

Conference. Boston AFIPS Montvale $1969 \mathrm{pp} .557-566$.
[Scott70]D.Scott. Outline of a Mathematical Theory of Computation. PRG-2. Oxfort University Computing Laboratory. 1970.
[Scott71]D. Scott and C. Strachey. Toward a Mathematical Semantics for Computer Languages, PRG-6. Oxford University Computing Laboratory. 1971.
[Scott76]D.Scott. Jata Types as Lattices, Procedings of the 1974 Colloquium in Mathematical Logic. Kiel. Springer-Verlsg. Berlin 1976. pp.579-650.
[Stoy 77]J.E.Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory. MIT Press. 197.7.
[Stoy 77$]$ J.E.Stoy. The congruence of Two Programming Language Definitions. (man!sscript). 1979.
[Strachey 6610. Strachey. Towards a formal semantics, Formal Language Description Languages for Computer Programming. (edited by T.B.Steel). North-Holland. Amsterdam 1966. pp.198-220.
[Strachey67]. Strachey. Fundamental Concepts in Programming Languages. International Summer School in Computer Programming, 1967 (Typescript).
[Strachey74]. Strachey and C.P.Nadsworth. Continuations, A Mathematical semantics for handling full jumps, PRG-11. Oxford University Computing Laboratory. 1974.
[Sufrin77]B.Sufrin. LLI: A Parser Generator. Department of Computer Science. Essex Jniversity. 1978.

