Specification of compilers as abstract data type representations

M.C. GAUDEL (INRIA, FRANCE)

Summary

This paper presents a method for specifying and proving compilers. This

method is based on the algebraic data types ideas. The main points are :

- to each language is associated an algebraic abstract data type,

~ the semantic value of a program is given as a term of this data type,

- the translation of the semantic values of source programs into semantic
values of target programs is specified and proved as the representation of
an algebraic data type by another one.

A compiler generator, PERLUETTE, which accepts such specifications as input

is described. The proof technic is discussed.

I - INTRODUCTION

Several experiments have been or are currently performed in order to use
formal semantic specifications in a compiler generator. Although automatic
production of parsers from a B.N.F.-like specification of a grammar is now
widely knownand used (see [1, 2] among many others), it still remains that
the development of the other parts of a compiler is made, most of the time,
in an 'ad hoc' manner. Tools like Knuthian attributes (W-grammars, Affix-
grammars) are useful to specify compilers but the generation of all the parts
of a compiler is possible only if there exists a formal and well-suited way
to describe languages semantics. Of course, this description must be directly

acceptable by the compiler generation system.

141

Among the works in this area, one of the most interesting is the SIS system
developped by P. Mosses [3, 4]. This system takes as input a denotational
definition of the Source Language semantics. The resulting translator compiles
every source program into an expression of the intermediate language LAMBDA.
This expression can be then evaluated by the LAMBDA interpreter.

Our approach [5, 6, 7, 8] is a bit different since our goal is to produce
compilers which generate any given target code. Accordingly, a definition

of both the Source and Target languages must be given to the system as well

as the implementation choices

Source Language Definition

~\\\\N“- Compiler

Target Language Definition ——e—eo | Generation j=—» Compiler

Implementation Choices;—*”’—d#”—'

System

In his paper 'advice on structuring compilers and proving them correct' [9]

F.L. Morris stood by a similar idea : as he pointed out, it is necessary to
specify source and target semantics ; moreover this approach makes it possible
to get a correctness proof of the specified compiler, proving that the following

diagram commutes.

Source Language > Target Language
Y(compiler)
¢ (source y{(target
semantics) semantics)
Source Meanings Target Meanings

e(representation)

142

Depending on the theoretical framework used, meanings of programs can be of
various sort : continuocus functions, predicate transformexs, algebraic
values, ... However we think that a well suited formalism to specify and
prove representations is given by algebraic data types [10, 11, 12]. Thus,
the semantic value of a program is considered to be a term of an algebraic
data type and the bottom line (g) of the diagram above is nothing more than
the representation of a 'Source data type' by a 'Target data type'. This re-
presentation must be proved correct in the sense of [10] or [11] : the
commutativity of the diagram is, obviously, not sufficient since it is true
in the trivial case where there is only one value in the Target semantic
domain !

We are currently developping a system, PERLUETTE<1{ which generates a compiler
from such specifications. The system is presented in part II of the paper. In
part III an example of compiler specification is given. In part IV the proof

method is outlined.

11 - GENERAL PRESENTATION OF THE SYSTEM

PERLUETTE takes into account only the 'syntatic' part of the abstract data
types associated with Source and Target Languages,It is a compiler generator,
not a prover. The axioms (the 'semantic' part) of the data types are needed
for the correctness proofs which, at this time, are done by hand. It is
definitely possible (and highly desirable) to mechanize thése proofs using or

modifying an existing system such as LCF [13], AFFIRM [14,15] or PROLOG.

The first part of a source language definition is the presentation of the
algebraic data type associated to this language. This data type describes in

a formal way the properties of the operations (using the more general meaning
of this word) of the language. The semantic value of a program is a composition
of some of these operations, i.e a constant term of the data type. Semantic
equations specify the semantic value of a phrase of the programming language

as a composition of the semantic values of the components of this phrase.

(I)Production Elegante et Relllement aUtomatiquE de TraducTEurs - 'Perluette’ is

the french name of the character '&',

143

. {ch has
These equations define, in a syntax directed way, a semantic function whic
programs as domain and constant terms as co-domain.

The general scheme of the system is given below :

Sourgf Program

Source Language

Definition : Syntax

+ A.D.T1 + Semantic

<)

equations term of A.D.T
Representation of

A.D.T1 by A.D.T2

éi

|

term of A.D.T2

Definition : A.D,T

'i
Object Language)
&3

+ Code Generation

0

Code

Compiler Specification PERLUETTE Compiler
System

The resulting translators work in three steps : the first one produces an inter—
mediate text, which is a term of the Source data type ; this term is rewritten
by the second step as a term of the Target data type ; the last step performs the
code generation starting from this second term.

In the current version of the system, the semantic equations of the source
language are programmed using synthesized attributes (16, 17]. The language

used to write these attributes is LISP. Attributes evaluation (and parsing) is
performed by the DELTA system previously developped by B. Lorho [183. The two
parts of DELTA, the constructor and the evaluator have been respectively intro-
duced in the first part of the generator (&!) and the first step of the trans-

lators (STEP1). The result of the first step is a LISP form, since the attributes

144

are specified in LISP. The STEPZ of the translators must evaluate this form

using a LISP subsystem which is the result of &2. This subsystem is a set of

LISP functions which are built from the representation specification : every

operation name of the Source data type which can occur in the first term is
considered, at this step, to be the name of a LISP function whose result is
the translation of this operation into a composition of Target data type
operations.

As it will be seen in the example of Part III, the second intermediate text
close to the target code. STEP3 of the translators has to rewrite this text
into some code, performing tasks such as registers allocation or unecessary
statements removing. This step works in the same way as STEP2, evaluating
the second term as a LISP form whose result is the generated code.

This system is currently developped. Several examples of compiler
specifications [19,5,8] have been tested with this method.

To avoid inefficencies, STEP] in addition of evaluating the semantic value

of a source program, checks its correctness. Thus, no intermediate text is

generated if the program is not valid. This verification has to be specified

in the same time as semantic equations, using attributes.

is

From a practical point of view, the resulting translators seem, so far, to be

efficient in time but rather expensive in space. The quality of the generated

code depends on...the quality of the given specification. Let us consider

now an example of such a specification.

III - EXAMPLE OF A COMPILER SPECIFICATION

The compiler presented here tramslates a source language with Algol-like
blocks and arrays into a target language with addresses, registers,
hexadecimal numbers, etc. Only some points of the specification are given
since the goal is to show the specification method, not the compiler.

The implantation is a very classical one. Simple variables and arrays
information vectors are allocated in a static memory area. Arrays are
allocated at run~time, in a dynamic memory area, at the end of the memory.

The complete specification is given in appendix.

145

III.!1 — Source Language Definition

The syntax of the source language is given below
P -+ BLOCK
BLOCK - begin DL ; SL end
DL + DL ; DD
D » integer ID|array ID [E:E]
SL -~ 8L ; SIS
§ - ID:=E|ID[E]:=E|BLOCK |begin SL end]
iﬁ C then S else S|while C do 8
E » E+T|E-T|ExT|E/T|T
T + (E)|ID|ID[E]|NB
C + E=E|E=E

NB and ID are considered to be terminal (their syntax will be dealt with

by the scanner constructor).

ITI.1.1 - Semantics of expressions

As usually, the presentation of a data type associated with this language
is made up of a list of names of type, a list of names of operation with
their domains and co~domain and some axioms (or laws) which express the relationshin
between operations. In order to specify error cases, some restrictions are
given, which describe the forbidden terms of the data type [1 2].
For the considered source language there are boolean (Bool), integer (Int),
identifier of integer and array (Int-id, Array-id) among the names of type.
type Bool ;

op
() » Bool : true, false ;

(Bool) > Bool : ™
(Bool,Bool) + Bool : and, or, impl, eq ;

axioms

end Bool ;
Bool and Int data types are well-known and their axioms are not given.
Moreover, boolean operators are going to be used in a infixed way, with the

usual rules for priority.

146

type Int ;

op
(Int,Int) » Int : add, sub, mult, div

(Int) - Bool : neg ;
{Int,Int) -+ Bool : eq, neq ;
axioms
end Int ;
Let us call V the semantic function which returns the term of Int type
corresponding to an arithmetic expression, and B the semantic function for

conditions which returns a term of Bool type. Among the semantic equations,

there are:
VIE+T] = plus (VIE] , ViTD)
Vi)) = vie]

V{NB] = Int'NB’
BiE1=E2] = neq (VIEL] , VIE2])

Note that constants of a type are enclosed between quotes, preceded by the name
of their type.

It is important to point out that the operation names are not interpreted : we
have no more information about 'plus' or 'meq' than what is specified in the
presentation of 'Int'.

Semantics of identifiers is less straightforward to state since the properties

of block structure must be described. A way to do that is to introduce some

types environment (Env) and variables (Var) and to specify by means of axioms whic
variable is designated by an identifier in a given environment. It must be

noticed that an ‘environment' here, is no more than a stack of identifiers which

is modified by declarations and block’'s entries or exits.

type Array-id ;
°p
(Array-id, Array-id) - Bool:ieq ;
axioms
eq(Array-id 'C1', Array-id 'C2') = eq(Cl, C2) ;
end Array-id j
type Int-id ;

147

end Int-id

type Id = union (Array-id, Int-id) ;

end Id ;
type Env ;
op
() » Env : current—env ;
{) > Env : empty ;
(Env) -+ Env : newblock, eraseblock ;
(Env, Array-id) »> Env : add-array :
(Env, Int-id) -+ Env : add-int ;
(Env, Id) -+ Bool : is-in.a, is~in.i ... ;
axioms
is-in.a(empty, id) = false :

is~in.a(newblock(e), id) = is~in.a(e,id) ;

#

is-in.a(add-array(e,idl),1d2) if eq(idl, id2) then true

else is-in.a(e, 1d2) ;

is~in.a(add-int{e, idl), id2) = if eq(idl, id2) then false
else is-in.a(e, id2) ;

eraseblock(newblock(e)) = e ;

eraseblock(add-array(e,id)) = erase(e) ;

end Env 3
The complete presentation of Env data type can be found in the appendix
type Var ;
op
(Var, Var) -+ Bool : eq ;
(Int-id, Env) - Var : des ;
(Array-id, Env, Int) - Var : elt ;
(Array~-id, Env) > Int : lwb, upb ;
(Var) = Int : val ;

axioms

148

eq(des(id, newblock(e)),des(id,e)) = true ;
eq(des(idl, add~int(e, id2)), des(idl, e)) = if eq(idl, 1d2)
then false else true ;

s

end Var ;

The scope rules are expressed by preconditions on the term of type Var-For
instance :
Pre(des,id,e) = is~in.i(e, id) ;
specifies that the term 'des(id, e)' can be written only if 'id' belongs to the
Tt

environment 'e'.

Thus, the identifiers semantics is given by the following equations :

Vﬁ[Dﬂ = val(des(Int~id 'ID', current-env)) ;
VEID[E]B = val(elt(Array-id 'ID', current-env, VIE])) ;

(the preconditions, as it was said in Part II, had been checked using attributes)

ITT.1.2 - Notions of state and modification

So as to describe the semantics of statements (or declarations), we introduce a
new name of type :

type Modif
The semantic value of a statement is a term of this data type. Let S be the

corresponding semantic function. Among the semantic equations there are :

Sﬁinteger IDH = int-decl(Int-id 'ID") ;

S{1Ip := E] = int-assign(Int-id 'ID', V[E]) ;

SESL H Sﬂ = concat{(S[{SL], SHSD) H

Sﬂkggig DL ; SL gggj = concat3(enter-block,SﬂDLﬂ,SﬂSLﬂ, exit~block) ;

where 'int-decl', int-assign', 'concat', 'enter-block' and 'exit-block' are some

operations of the Modif data type :

op
{(Int~id) > Modif : int-decl ;
(Int-id, Int) - Modif : int-assign ;
(Modif, Modif) + Modif : concat ;

() » Modif : enter-block, exit~block ;

149

The intuitive meaning of this data type, is that a modification is a change of
state. Thus, we have to define what is a state. Before giving this definition,
it must be pointed out that Modif is the 'type of interest' of the algebraic
data type associated with the programming language.

Definition :
Let <T, F, A> be the presentation of the algebraic data type associated with a
language.
A state is a set S of formulas t=t', where t and t' are some terms of the data

type, which satisfies the following properties :

i) t =t € 8 for all the terms t of the data type ;
iy t=t'eS=t"=tes§ ;
idii) t=t' e§, t' =t eSS 2> =t"€e§ ;

(2)

iv) for all f of F such as the co-domain of f is not Modif , if t and t'
belongs to the domain of f :

t=t'"¢e S =>f(r) =£f(t") ¢ §.

A state satisfies the set of axioms A if it contains all the formulas obtained in
substituting, in each axiom a of 4, to all the free variables occuring in a, all
the terms of <T, F, A> of the relevant domains.
Given a current state, a modification (an assignment for instance) removes some
formulas from the state and add some new ones. In order to make easier the
definitions of the modifications and the proofs of their representations,
we suggest to use some primitives operations on modifications and states,
which are common to all the language definitions.
The first operation is the application of a modification to a state :

appl (m,8) = §'.
The second one is the adjonction of an axiom a to a state S : S+a is the

smallest state which contains S and all the formulas obtained in substituting

(2) It is necessary to have this restrictionm in order to deal with procedure

semantics without introducing some paradoxes [207.

150

to all the free variables in a, all the terms of the data type which are
relevant.
The last one is a ‘generalized substitutiom' which makes it possible to
define all kind of assignement

subst (£())
means, intuitively, that the value of function £, for all the terms equal
te } becomes .
subst is characterized by a rather camplicated definition given below
but it insures that no inconsistencies are introduced in the resulting state,
even if there are some occurences of f in A or u. Thus it is possible to
describe assignement for array's elements as well as for simple variables.

appl(subst(£(3),1),8) = {F}Fff'/f]es + £'(x) = if eq(x,A) then u else £(x)}

Using appl and subst, we can now give the definitions of the Modif data type
operations of the considered Source Language :
definitions
int-decl{id) = subst(current-env,add-int(current-env,id)) ;
int-assign(id,i) = subst(val(des(id,current-env)),i) ;
enter-block = gﬂégg(current—env,newblock(current—env)) 5
exit-block = subst(current-env,eraseblock(current-env)) ;
appl(concat(ml,m2),8) = appl(m2,appl(ml,S)) ;

e

end Modif ;

I1I.2 ~ Example of a Target data type

The complete specification of the Target data type is given in appendix.

As a consequence of the kind of target language considered, there are among
the name of types : hexadecimal numbers (Hexa), addresses , registers and
condition codes (Comd=code). Among the name of modifications : load, store,
compare, branch, branch under condition {(cond-branch), branch under reverse
condition {meg-branch) etc. We consider that the Hexa data type is predefined,

with the same axioms as the Int data type

151

type Hexa ;

op
(Hexa,Hexa) + Hexa : plus, minus, mult, div ;
(Hexa) - Bool : neg ;
(Hexa,Hexa) ~ Bool : eq ;

axioms

end Hexa

It is important to notice that the Bool data type is here, in some way, an
auxiliary type. It is needed to write conditionnal axioms, but the Target data
type the result of a comparaison is a condition code, not a boolean.

The Address data type contains an indexing operation. From an address or a
register ome can get a 'Content’, which is either an hexadecimal number or

1 1

an address. The corresponding operations are named 'ca' and '

cr'.
The Cond-code data type is a bit more complicated : there are three constants
in this type : 'lt', 'gt', 'eq'. These values are contained in a specific register,
Register 'cond', which is modified only by the modification 'compare'. Thus,
the definition of compare is :
compare(cl,c2) = EEEEE(CC(Register'cond'), test(cl,c2))
Vot

where 'cc' returns the content of the register and test(cl,c2) is the result

of the comparison.

III.3 - Specification of the implantation

In this part of the compiler specification, a representation is given for every
operation name wich occurs in the R.H.S of the Source semantic equatiomns.

Only these representations are needed to perform the translation. If one want to
get a correctness proof of the implantation, it becomes necessary to give

a representation of all the operatioms occuring in the axioms (of all the
operations, if the Source data type does not contain unecessary ones).

In this part of the paper, we are going to present only a part of the
specification. Let us consider the Int data type first. It is going to be

represented by the Hexa data type. This is specified in the following way

152

type Int

Hexa ;

repr Int 'I'" = Hexa 'CONVERT(L)'

repr add(i,j) = plus(repr i, repr i) ;

end Int ;
CONVERT is a meta-procedure which returns the text of the hexadecimal constant
corresponding to I.
The data types Int~id, Array-id, Id and Env are not represented. The Var data
type is represented by addresses, and the operation 'des' is represented

by a constant address since the allocation of simple variables is static.

type Var 3
Address ;
repr des (Int-id "ID', current-env) = Address 'SEARCH (ID)' ;
SEARCH is a meta-procedure. It looks for the address of identifier ID in a
table TABLE, starting from the last added identifier. Its definition is
given below :
SEARCH (ID) = SEQ-SEARCH (ID, SIZE~1)
where
SEQ~SEARCH (ID,i) = IF TABLE [i,1] = ID
THEN TABLE [i,23
ELSE SEQ-SEARCH (ID,i-1)
Before going on in the specification, we specify the way the couples
<identifier, address> are entered in TABLE. This is done by two functions :
ALLOC! for simple variables and ALLOC3 for arrays (3 words are allocated).
ALLOC1 (ID) (TABLE [SIZE] : = <ID, TOP (ALLOC-STACK)> ;
INCR (SIZE) ; INCR (TOP (ALLOC~STACK)))

1l

(TABLE [SIZE] : = <ID, TOP (ALLOC-STACK)> ;
INCR (SIZE) ; INCR3 (TOP (ALLOC-STACK)))

The three words allocated to an array are used in the following way : in the

ALLOC3 (ID)

i

first one is the address of the beginning of the array ; the last ones contain
the lower bound and the upper bound. Thus the representation of 'elt' is

(index underflow or everflow are not tested)

153

repr elt (Array-id 'ID', current-env, 1) = indexing (ca (Address 'SEARCH (ID)'"),
minus (repr i, repr lwb (Array 'ID', current-env))) ;

where

i

repr lwb (Array-id 'ID', currentwenv)
o ca (indexing (Address 'SEARCH (ID)', Hexa '1')

Going on with the representation of Var data type :

repr val(v) = ca (EEQE v) 3

Among the modifications, we give the representation of the declarations,
and of 'enter-block' and 'exit-block',

repr int-decl (Imt-id 'ID') = # ALLOCI (D) H nop ;

(the meta-statements, i.e compile-~time computations, are noted between .

'nop' is the 'no operation' target statement).

repr array-decl (Array 'ID', i, j) = & ALLOC3 (ID) ;
A : = SEARCH (ID) +#
seqcomp3 (store (repr i, indexing (Address 'A', Hexa '1")),
store (repr i, indexing (Address 'A', Hexa '2')),
load (minus (cr (Register 'free'),
plus (minus (repr j, repr i), Hexa '1")),
Register'free'),
store (cxr (Register 'free'), Address 'A')) H
(it should be verified that j-i = 0),
Register 'free' points on the first free address before the last allocated array
Dynamic allocation is done in a decreasing way in the memory addresses.
repr enter-block = # A : = TOP (ALLOC-STACK) ;
PUSH (ALLOC~STACK, A+1), PUSH (TAB- STACK, SIZE) +
store (cr (Register 'free'), Address 'A') ;
It is a bit confusing but not really complicated. Before entering a block,
at compile-time, the address following the previous block allocations is push
on a stack and the allocation of the new block will start from it {see ALLOC1)
and the SIZE of TABLE is saved. At run-time, the pointer in the dynamic area
is saved.
repr exit-block = $ POP (ALLOC-STACK) 3 A : = TOP (ALLOC-STACK) ;
SIZE : = TOP (TAB-STACK) ;
POP (TAB-STACK) 3 load (ca (Address 'A'), Register 'free')

s

154

It may be seen that the specification of the implementation becomes very
systematic and formal. But the main advantage is the ability to check up
such implementations. In several previous examples, some errors in the

specification come to light during the proof process.

IV ~ CORRECTNESS PROOF OF IMPLEMENTATIONS

The correctness proof methodology is based on the distinction of 'modifiable’
operations from classical operations. Modifiahle operations are operations

which appear in a subst, in some modification definition.

There must not be axioms on these operations since subst could introduce
some inconsistencies with them. Besides, to be correct, the representation
of such operations must verify some strong properties : if two such
operations are represented by the same operation of the Target data type,
then, there must be mno overlapping between the domains of these representations
(if it were the case, it would be possible to modify two Source operations
by the same Target modification).
The proof method is outlined below : first it must be verified that the
implementation satisfies the above property for modifiable operations ;
then, the Source data type, without the modifiable operations and the
modifications, is considered,and it must be proved that its representation
into the Target data type is correct in the sense of T10] (the axioms
are kept) ; the last step is the correctness proof of the representation
of modifications.
The representation of a modification is correct if :

- it keeps unchanged the representation invariants which arised in the
previous proof (Source data type without modifications)

- if the modification is defined by a subst (£(i),u), then the
representation embodies a modification which can be proved to be equivalent

to subst (repr £{i), repr u)

~ the other modifications occuring in the vepresentation are
"without side-effect"”, i.e without effect on the Source data type. They do not

modify the representation of any Source operation.

Such a proof is very long, but it is built systematically, and the various

steps are not very difficult, A complete proof is given in [20].

155

ACKNOWLEDGMENTS

Theoretical as well practical aspects of this work have heen studied
in collaboration with Ph., DESCHAMP, M. MAZAUD and C. PAIR. P. BOULLIER and
B. LORHO's previous works made it possible the effective developpment

of the system. P, DERANSART's knowledge of LISP was very useful.

REFERENCES

1] P. BOULLIER. Le systéme SYNTAX, Manuel d'utilisation, Groupe
Langages et Traducteur, IRIA, 1977.

r 9 P. BOULLIER. Automatic Syntatic Error Recovery for LR-Parsers,
Sth Annual III Conference -~ Guidel, Mai 1977.

[s] P.D. MOSSES. Mathematical Semantics and Compiler Generation. Ph.D. Thesis,
Université d'Oxford, 1975,
ful P.D. MOSSES. SIS, a Compiler-Genmerator System using Denotational Semantics

Dept. of Computer Science, Université d'Aarhus, June 1978,

51 M.C. GAUDEL. A formal Approach to Translator Specificationm, IFIP Congress,
Toronto, 1977.

fel M.C. GAUDEL, Ph. DESCAMP, M. MAZAUD. Semantics of Procedures as an
Algebraic Abstract Data Type, Rapport Laboria n° 334 - 1978,

[73 M.C. GAUDEL, C. PAIR. Construction de Compilateurs basée sur une
Sémantique Formelle. Acte des journées francophones sur la certification

du logiciel, Gendve, 1979.

s
o«
fud

M.C GAUDEL, C. PAIR. The Use of a Formal Semantics to Produce and Prove
Compilers. International Workshop on the Semantics of Programming

Language. Bad Hopnef. March 1979,

[el F. Lockwood MORRIS. Advice on Structuring Compilers and Proving them
Correct. P.O.P.L. 1973 .

r1al J.V. GUTTAG, E. HOROWITZ, D.R. MUSSER., Abstract Data Types and Software
Validation. CACM. December 1978,

[11]

[12]

[131

[1u]

f15]

[18]

£171

[18]

{191

[20]

156

J.W. THATCHER, E. WAGNER, J.B. WRIGHT. An Initial Algebra approach

to the Specification, Correctness, and Implementation of Abstract Data
Type. In Current Trends in Programming Methodology IV (R. Yeh. Ed).
Prentice Hall 1979.

M.C. GAUDEL. An introduction to Algebraic Abstract Data Type.
Lecture notes of the an advanced course on Computing System Reliability.

IRIA, Sept 1979.

M. GORDON, R. MILNER, C. WADSWORTH ~ Edinburgh LCF. Internal Report
CSR-11-77 University of Edinburgh, Sept 1977.

D.R. MUSSER. A Data Type Verification System based on Rewrite Rules.

6Ch Texas Conference on Computing System, Austin, Nov. 1977.

D.R. MUSSER. Abstract Data Type Specification in the AFFIRM System.

IEEE Transactions on Software Engineering (to appear).

D.E. KNUTH. Semantics of Context-free Languages, Math. Systems Theory,
Vol. n°5, n°1, 1971.

B. LORHO. De la Définition & la Traduction des Langages de Programmation:

la méthode des attributs sémantiques. Thése d'Etat - Toulouse, 1974.

B. LORHO. DELTA : manuel d'utilisation, Groupe Langages et Traducteurs,
IRIA, Nov. 1977.

M.C. DENDIEN-GAUDEL. Applications des Structures de Donndes 3 la
description et @ la preuve de Traducteurs. Congrés AFCET Informatique,

Gif-sur-Yvette, Nov. 1976.

M.C. GAUDEL. Thesis, University of Namey (France), March 1980.

157

APPENDIX 1

JEFTNITION OF THE SOURCE LANGUAGE.

typn Bool
QB
(Y -> Bool ! true, false
{Bool) -> Bool ¢ 7 4%%54%it is the "not’
fRBool, Bool) -> Bool ! and, or, impl, eqg}
axinms

ggé Bool H

type Int 2

op.
Tnt., Int) -> Int : add, sub, mult, div :
‘Tnt) -> Bool ! neg ;
Tnt, Int) -> Bool ! eq, neq |

arinms

end 1nt :

Fype Array-id
op.

ffrray-id. Array-id) -> Bool ! eq ;
axioms

calArray-id'Cl’, Array-14'C2") = eq(Cl, C2)

end Array-id

typo Int-id
[s]

fTnt-id, Int-i1d) -> Bocl teq
axiome
on(Int-id'Cl’, Int-id'C2") = eq(Ct, C2)

end Int-id i

typo Id = wnion{Array-id, Int-:1d)
QfE_
fTd. Id) -> Bool :eq :
axioms
eqlInt-1d'C1", Array-id'C2")
eq(firray-id’'C1’, Int-id'C2")

2N N

eq(C1, C2)
eql(C1, C2)

.
*

operator##s#

.
L4

P):En Env H

oD

e

.

(v -> Fnv ¢ empty |
ty - Eav

(Eny, Array-id)

158

- _+ current-env |
{Env) -> Env ! neublock, eraseblock ;
- Env

1 add-arra

Fav, Int-id) -> Env : add-int
(Env, Id) -» Bool ! is-in.,a, is-i

Xioms

X

is—in.alempty,
iz-in.al{newblock{e},
is-in.aladd~array(e.

is-in.aladd-int(e, id

iz—in.ilempty,
is-in.i(newblock{el,
iz-in.i{add-array(e,

in-in.iladd-1ntle, idl), id2} = if eqlidl, id2} then true

1n-local(empty, id} =
is-local{neuwblock{e),
i~-localladd-arrayle,

id} = false ;

id) = is-in.afle, 1d) :

1d1), id2) = if eqlidl, id2) then true
else is-in.afe,id?2)

1), id2) = eq(idl, idZ) then false

if
else is-in.ale,

Y s

.

n.i, is-local ;

id?2)

id} = false ;

d) =
idt),

1s-in.,
id2) =

ile, id)
if eqlidi, 1d2) then false

id2)

else is-in.ifle,

else is-in.ile, id2) ;

false
1dy = false
1d1), id2)

eraseblock{empty) =empty |
arvaseblock (newblock{e)) = e 3

eraseblock (add-arrayle,

eraseblock (add-int(e,

id)}) = er
1d)) = eras

-"if eqlidl.id2) then true
1de)
iz-localladd-int(e, idl), id2) = if eqlidl, id2) then true

else is-localle,

glse is-localle, idd)

aseblockle)
eblock (e}

~ectrictions
Fre(add-array, e, id) = 7 is-localle, 1d} |
Protadd-int, e, id) = " is-localle, id) ;|
end Env
type Var |
op
(Usr, Yar) ->» Bool ieq i
(Tnt-id, Env} -» Var ! des |
{Array-id, Env, Int) -» Var ! elt |
(Array-id, Env) -> Int lub, upb ;
fUay) -> Int ¢ wval

2X

F#%% eq 1z an equivalence relation and besides

ioms

c(deslidl, &), des(i

sql{des(id, newblockle)), deslid. &)} =
2g(des(idl, add-int(e, id2)), destidl, e)) = “eqlidl, 1d2) ;
id2) and eqli,

saleltlidl, e, i), el
aa(eltlid,newblockte)

en{deslidl, el), eltl

rectrictions

Prefdes, 1d, &) = is-
Pretelt, id, &, 1) =

Pralupb, id, e) = 18-
Pre(lwb, id, &) = 18-

<+%% zrrays underflow and overflow specifications *¥%x
Failuretelt,
=> Failurelelt,

peglsubli, lwb(id, e}

n=gl{sublupblid, e},

and Var ;

i1}

d2, el)) = eq

t(id2, e. J)
, i), elt(id
id2, e2., i})
in.i (e, id)
is-in.ale, i
in.ale, 1d)

in.ale, 1d)

1y =3

A%k
tidt,id2)
truve

y o=
y By

eglidl,
i)y =

true

= false }

.
.

d)

»
¥
+
+

i)
0o

16, @,
id, e,

*
*

.
p

.

¥

.

1

ealeltlidl, add-array(e, id2}, i}, eltlid, e, 1)) = “eqlid?l,

it i

1dZ)

»
*

159

type Modif o
2B,
fint-id) -» Modif ! int-decl
{Avvay-i1d, Int. Int) -> Modif ! array-decl :
tInt-id, Int) -> Modif : 1nt-assign
ffirray~id, Int, Int) -> Modif : array-assign |
(Y -> Modif : init.,‘enter-tlock, exit-block :
(Bool, Modif, Modif) -> Modif ! cond ;
tPool, Modif) -> Modif : loop ;
(Modif, Modif) -> Modif : concat
definitions

int-decllid) = subst{current-env, add-int{current-env, :d)) ;
avray-decl(id. i, j) = concat(subst(current-env, add-array(current-env, id)),

subst(<lubtid.current-env),upblid,current-env)>
iy i)Y

*¥¥¥ gubst(<tix), gly)>, <v, w») is a concurrent substitution #x#x
irt-agsign{id, 1) = subst{val{des(id, current-env)), i)
array-assign (id, i, j!} = substlvall(elt{id, current-env, i}), j)
init = subst(current-env, empty) }
enter-block = subst(current-env, newblock (current-env)) !
#vit-block = subst{current-env, eraseblock{current-env)) :
#%#% 8 means 'belongs to | ¥ARFAARRREAXAXALLHRHS
h={rue @ 5 => appl(cond(b, mt, m2), 5} = appliml, &) :
b=false @ & = appl{cond(b, ml, m2), S5) = applim2, 5) ;
b=true @ S => appl{loop(b, m), 5} = appl(icop(b, m), applim. S)) :
b=falce 8 S => gppl(loapib, m), 5) = & ;
znpllconcatiml, m2), S) = applimZ, applimit, 5} :

cectrictions
Pre(int-assign, 1d, 1} = is-in.ilcurrent-env, 1d) ;
Prelarray-assian, id, 1, j) = is-in.al{current-env, 1d) o

neq{sub(i, lwb(id, current-env})) =» Failure(array-assign, id, i. j)
neaisub(upb(id, current-envi, j}) => Failure(array-assian. id. i, i)
end Modif

[P

A4t Enh St A R ASEMANTIC EQUATIONGHH 45 % M40 H AR HH R R A A H A KR F AR FH LR AR #

M1 P ~> term of data type Modif
Mibegin DL 1 SL end} = concat.BCintt, SEDL}, S{SL})

S ¢ D,S,DL,SL - term of data type Modif
S{DL;D} = concat(S{DL}. S{D}) :
S{integer ID} = int-decltInt-id"ID') :
Slarray IDIE1:E21} = array-decl{firray-id ID' ,VI{ET},VI{ECZ}) ;
SESL1SY = concat(S{SLY, S{S}) ;#*#xzsorry for the S{S} #¥xx
S{ID:=E} = int-assign{Int-id’ID', V{E}) :
SUIDIET):=£23 = arvay-assian(Brray-1d"ID', V{E1:, VIE2})
Sibegin DLISL end} = concat.4(enter-block,5{DL},5{5L}.exit-block} :
S{begin SL end} = 5{SL} :
S{if C then 51 else S2} = cond(E{(C}
Stwhile C do 5} = looptB{C}, S{&})

S5{s13

90
—
921
(]

*
.
+

V.V ¢ E,T -> term of Int data type
VIE+T} = add(V{E}, V{T}) :
#*#%%:1 15 the same thing for the other operations##%#%
VI(EYY = V{E}
(1Y UIIDY = val(des(Int-id ID',current-env))
(2y VLIDIEDY = val(elt{Array-id"ID', current-env, V{E}})
V{NB} = Int'NB’
##4#4Y1 is defined by the same equations as V, but equatlions*etrtss
#4#44(1) and (2) where current-env is replaced by AR A
#¥¥r¥erase({current-envi.Indeed in an array declaration the ¥¥e¥xsxxy
*txtshounds must be evaluated in the embedding environment #¥%*xxxs¥
B : C -> term of Bool data type
B{E1=E2} eq{V{E1}, V{E2}) :
B{E1#EZ2} neq(V{ET}, V{EZ})

)

160

APPENIIIX 2

3 R R RERE Rt TORGET DATA TYFE 5548589030830 3030 3 50 5 30 40 240 5 50 504033 36 36 0 238

Hewa) - Hewma

plus:minus.multt.div 3
Mexa) —> Bool @ 3

@&® 3

x aw

<.

tvre Adidress 3
oe
(Address, Hexa) > Address @ indexing 3
(Addresss Address) ~> Bool §# g9 3
axioms
indexinaia, Hexa '07) = a 3
indexwinas(indexina(a, hid: h2) = indexing(a, plus(hl, h2)) 3
ea{fAddress Tl Address C27) = eadlll, 122) 3
e¢nd Address 3

tyre Resister i
———
ap
=f) .
(Register .Register) —» Boaol @ a9 3
axioms
—— P,
eq({Register 017,
end Reaistaer 3
ens

= eq(lf, C2) 3

+

ype CDontent = yunion (Hewa. Address) 3

{éddrcs:) -» Content @ ca 3
(thzqtcr) ~ Content * or 3
entrictions

re (ors) ~oaa(r, Register cond”) 3
tvpe Cond-code ¥
W
o

f

() = Cond-code 3 it.st.ea i

{(Content, Content) ~» Copd-code ¢ test 3
{Register) ~» Cond-oode § oo 3
(Cond-code) —> Cond-code & sym 3

Hioms

‘miea) = @9 3
sym{at) = 1t 3
gvem{it) = st 3
testihl: Plusi{h®, Hexa 1)} = if galhl, h2) then 1%t
—— ——
else if ealhi.rplus(h2,Hexa 171

e@lee feqf(hl HEy 3
(hily b)) then st
@lese it ealhl.minus(hZ.Hexa"17)}
thaen eq
glse testi(hl. h&) 3
testial, indexinm{aZ, Hexa“17)Y) = if ea(al, a2) then 1t
glsg if e=sfal.indexins(aZ,Hexa 17}
tuCﬂ @9
glzse test(al, az) 3

test(hl. minus(h, Hexa "17)) =

test(cl, o) = svymitest{n, ci1)) 3
restrictions

Frge (ce. r) = gal(r, Resister cond’) 3
end Cond-code 8

161

tvpe Label 3
ap

{(Label, Label) -2 Bnol iga 3
axioms

ea(label"C17, Label "C27) = ea(li, L2} 3

gnd lLabel 4

tvee Modif 3

“Content, Resister) - Modif @ load @
{(Content. Address) - Modif @ store
{(Cantent, Content) - Modif @ compare 3

(Label: Modif) -3 Modif @ labelled

(Modif. Label) - Bool § ewit,entry 3

(Label) - Modif 5 branch ¥

(Label, Cond-code) - Modif @ cand-branch, nes—branch 3
(Modif, Modif) - Madif @ seacome 3

() =% Modif ¢ noe 3

(Modif, Content) -» Content @ zide-~effect

(Modif, Cond—-code) —~» Cond-code @ c.side-eff, no.side

"h
“+
.x

Al oms
AL,

entrv(toad(c, rd), 1) = false 3
entrv{store(c, ar, 1) = Fais H
entrv{comrarel(cly o2}, 1) = false 3
entrvl{branch(ili), 12) = false 3
entrv(cond~branch{(ll. ccondyy 12) = false 3
gntev(nega~branch(1i, ccond). 12) =false 3
entre(labelled(1l, m). 12) = if eal{li, 12) then true

else entrvim. 12} 3
) ~ PALEACE v
gntrviseqcome{ml, m2), 1) = entr+(mi, 1) ar entrelms +1) 3
antryinoe. 1) = falge 3

exit{ioadic, ri¥. 1) = falsge 3
exwiti{store(c: 2, 1) = false 3
exit{compare{ol, c2¥. 1) = false 3

tibrarch(11), 12) = ea(ll, 12 %
t{oond~branch(tl, ccond), 12} = eg(li, 1Z
t{nes~branch(il, ccondl, 12} = ea(li., 12
exit{labelled(ll, m), 12) = if ea(11,12} th s

&1 exitlm. 12) 3
gmitiseacomp{ml. mZ), 1) = if entrvimi. 1) o entre(mi, 1)
then false

glse exitimi. 1)

exit(mz, 11} %

E

exitinor, 1) = false 3

dafipitians
Toad({a. r) r o)
storel(c, al ca(a)q [
compare{cl, ol gubstloc{Re

o3
cgister cond’), testlcl. c2)) 3
emitimy 1) =X apel(labelled(l, m), S) = applim,) 3

aepliseacomp(labellied(l, mi}, m3}, 5} =
appl(labelledi{t.searamp(mi. mZV}y. S) 3

Cesitiml. 1) =3 appli{seacompiml. mZ), %) =apel](m?, apelimi.S)) @

appliseacomp.3(branch(1}, ml, labelled(l, m2)}, S) =
appl{labelled(l, m2y, S 3

162

coond=co (Register"cond™) @ 5 =3
appl (seqacompP. 2(cond-branch{l, ccond).mi,labelied{l.md)),
appl{labelled(l, m2), =) 3

“coond=oc{Resister'cond”) @ 5 =X
appliseacomp, B(cond-branch(l,occond).mi.labelled(l.m2)),
= gppl(seacome(ml, labelled(l, mZ)), 2) 3
##¥rules tor neg-branch are the reverse ones HFEFHERERARHHEEIIHE
lgt m=labelled(1l,seacome. S{mli s cond-branch (12, coond) . m2 - branch(11),
Tabelled(12.m3)))
For all 1 jin lLabel, gxit{ml, =Ffalse and exitim, D=Ffalse
then the two tollowime rules hald @
coc{Resistercond Y=ccand € appliml, 5) =3
applim, %) = geel(sgacomp(ml. labelled(1Z, m3)}, B} 3
~rol{Register cond) =ccand @ apprliml, 5 =X
appl{m, %) = appl(m: arpl(seacome(ml, m2), 5)) 3

=
3

applinor, S) = i

ca(h.side—~effectimra)) = h.side-effectim, calal) i

cand~branch(lsc.side-eff(mrccnnd)) = seqoamp(m, cond—branch{l,ccond)) 3
cond-branch{(lsnc.side—ef+{mcoond)) = sescompimsnes—branch{l,ccond)} 3

neg~branch{l.c.side-gff{m.coond)) = geacaomp(m, neg~branch(l.cocond)) 3
neg~branch(l,ne.side~eff{ms ccand)) = seacome{m, cond-branch{l.ccond)) 3

*ERFFFEFFRAJEND OF THE TARGET DATA TYPE##RIEI 3483 E SR SR EXEEHEHE

163
APPENDIX 2

SFECIFICATION OF THE IMPLEMENTATION

#yaualinly the orerations and twpes ocouring in the semantic equationsasss
HERRFEEEE are represented . BFHEEEEEEEEEF R HE NS B H H U EHHH BRI RN E SRS

= Hewa "ZONVERT(L) 7 3
repr add(i. J) plus(repr i, Cepr) 3§
cepr sub(i. J} mlnu:(ggﬁm i [gpr o Jd) %
repr mult(i, J) = multl{cgpr i. pepr J)} 3
repr divii, J) = diviggpr i- repp 43} 3

repr Int 17

1]

- ea{i, 4) = side—effect.c{ comParel{pgpr i, Cegpr J)s @a) 3
repr nealdis J) = side—effect.nc(compare(pepr i. [Lgpr J). ea) 3
end Int 3%

wxrEgarlnt—id, Arrav—id,. Id and Env are not represented . #3radedsssssrsssis

type Var 3
Address 3
repr des(Int—id-ID". current—env) = Address SEARCH(ID) -

[ewr des(Int~id " ID"y erasebliock(current-env)) = Addres:quARPHi(IU)”f
ceer elt(Arrayv—id ID", current—env, i) = indexine(ca(Address SEARCHIID))
minus{reprr i.
reer lwbk{Array—1id4-1D7,
current-enviyy 3
reer Twb(Arravy—-id ID7, current-env) = za(:nde,Jnﬁ(éddress"EﬁR!H(ID)

e Yy s
reer elt(Arrav—id IR, eraseblock{current—env), i) = 1ndcm1na(

ca(Address "SEARCHLI (I 7).,
minus{pepr i rerpr lwh(Arrav-id ID,
eraseblock{current—-envii})
reer lwbh(Array-1id I07, eraseblack{current—env)) = calindexina(
Address "SEARCHI(ID) *, Hexa 1)) 3
repr o val(v) = calrepr v} 4

164

tvpe Modif 3
repr int—decl{(Int—id ID7) = # ALLOCI(ID) # nor 3
repr arrav-dect (Arrav—-1id 107, 1, J) = # ALLOCICID) Y At=SEARCHIID) #
seqcomp.4(store(reprr i» indexins(QAddress a7, Hewa " 17)),
store(pepr J. indexins(Address A7, Hexa“27)),
load(minus{cr{Register " free”).
rlus{(minus{reprr J.repr iy Hexa 179,
Remister " free).
storel{cr{Register " free): Address A7)) 3
s#ar#s% It should he verified that J—i+i20 . #5300 E0ERE00EE 5800003158 535304
rerr int-assion(Int-id7I07, i) = store(repr i, Address SEARCHCIDN ") 3
Lepr arrav-assisn{Array—id ID7, i, J) = # A=SEARCH(ID) ; R:=GENREG #
compsed.h{load{pegrr i+ Resister 'R7),
campare{ocr (Resister "R) calindexine (Address A7,
Hexa 27313},

cond=branch(Label "averflow’, st),
compare (or{Register "R Yy calindexina(Address
Hesa

-

s57A7
i7yn
cond~branch(babel “underflow, tt).
stoare(rerr Jj, indexins(calAddress A7),
minus(cr(Reaister "R7),
cal{indexing(
Address A7,
Hexa 173333} 3
repr enter—hlock = ¢ A = TORF(ALLOC-3TACK) 3 PUSH{ALLOC-STACK, A+l) 3
FUSH(TAB~STACKE, SI1ZE) 4%
staore(cri{Register " free)

» Address A7) 8

repr exit-block = % POP(ALLOC-STACK) 35 A &=
SITZE = TOR(TAB-STACE) 3
toad(calAddress A7), Register free’) 3

rger init = & ALLOC-STACK = EMPTY 5§ FUSH(ALLDC-STACK, 1) @ SIZE:= 1 3
TAR-STACK 1= EMPTY % Toad{ Address'max", FRegister free’) 13

