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1. INTRODUCTION 

The purpose of this paper is to affirm and applaud the advice given by F. L Morris (1973) at the Second 

SIGACT/SIGPLAN Symposium on Principles of Programming Languages and to correct, refine, and complete 

the example he gave there. 

The goal, first announced by McCarthy, is to make compilers for high level programming languages 

completely trustworthy by proving their correctness. Morris (1973) stated his belief (shared by many) that 

the compiler correctness problem is much less general and better structured than the unrestricted program 

eorreemess problem. 

The essence of Morris' advice was that a proof of compiler correctness should be a proof that a diagram 

of the form t 

(* )  

source 
language 

L 

sourc~ 
semantics 

0 

M 
source 

meanings 

target 

compile language 
~----T 

"/ I target semantics 

encode 
~---~U 

e 
target 

meanings 

commutes; that the corners of the diagram are not just sets but are many-sorted (heterogeneous) algebras and 

that the arrows are homomorphisms. 

This paper can be seen as the fourth in the sequence: McCarthy and Painter (1967), Burstall and Landin 

(1970) and Morris (1973). At each step the content of (* )  has become more algebraic and the example 

source language richer. Ours is not the last step! Much can be done to improve the picture, including a 

thorough analysis of the primitives used in the semantics of both source and target languages along the lines of 

Mosses (1978, 1979). The correctness proof should be mechanical; but the algebraic preliminaries must be 

further developed. 

t Morris' diagram had &U-*-M along the bottom, though in the text he uses e:M-~U. 
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Morris observed that the source language, being described by a context free grammar, determined an 

initial many-sorted (heterogeneous) algebra. This correspondence is discussed in detail in ADJ (1975); if G is 

the grammar and N is its set of non-terminals, then G is viewed as an N-sorted operator domain where the 

productions are the operator symbols. T G is the initial G-algebra and its carrier of sort A e N  is the set of all 

parse trees from non-terminal A. 

Recall that T a being initial means that there is a unique homomorphism from it to any other algebra with 

operator domain G. This is how the top and left side of the diagram (,/r) are determined; L is T G and M and 

T are G-algebras -- then y and 0 are unique homomorphisms. Initiality is also the method of correctness 

proof, for if ~p and e are also homomorphisms, then ~, off = 0 o e by uniqueness. This is an extremely powerful 

methodology; no "structural induction" is required for the definition of the arrows or the proof. 

So to describe the source semantics (the left side of the diagram) we need only define a G-algebra M, 

that is, carriers corresponding to the non-terminals and operations corresponding to the productions. Morris, 

"as a concession to readability," combined the specification of 0 and M's operations in a "conventional style 

of recursive function definition, following the notation of Scott and Strachey (1970)." However we claim the 

result is not more readable for two reasons; first, combining with the definition of 0 is just more notation -- 0 

is uniquely determined, and, second, the algebraic operations (composition, tupling, product, etc.) have not 

been separated out from the "local" operations, those involved with manipulating environments or "adding 

numbers." For example, for assignment, our semantic line is (see (M2)): 

(a)x:= M = aoassign x 

where a :E -*ExV (E = environments and V = values) and assign x is the obvious function from E x V  to E. 

(environments). Were we not being pedantic about writing arguments to the left of functions, that line would 

look even more familiar and simpler: 

In contrast Morris writes: 

X:=M(a) = aoassign x. 

0 [x := r l  = (hahe.Xw.w=0txl~-a,e(w))*0lr l  

where p*q -- Xx.p(q(x)l)(q(x)2)! This is an incredible difference. It comes from our attempt to isolate the 

fundamental operations used in the semantic definitions just as Mosses (1980) wants to do with his semantic 

data types. 

Our treatment differs substantially from that of Morris in that we have succeeded in making the 

right-hand side of (-k) algebraic. This is what Morris wanted to do, but his algebraic model of flow charts was 

too unwieldy. In particular, we do not see the justification for his claim that a semantic homomorphism is 

determined by specifying the effect of the homomorphism on the individual instructions. Recognizing 

fundamental operations for building up flow charts (Section 5) and uniqueness of interpretation (Section 7) 

are crucially important contributions of Elgot (1973). 

Thus, we take for the target language, an algebra T o of flow charts (actually a category) whose 

operations are things like parallel and serial composition and iteration, and whose individual instructions 

manipulate a stack and a "memory. '~ The semantics of this category of flow charts is uniquely determined by 
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the interpretations of the flow chart primitives. The semantic target (U 0) is a category of meanings for those 

flow charts (aetuaUy an algebraic theory in the sense of Lawvere (1963)). 

Then we extract from T O a G-algebra T, defining the operations of T in terms of the operations of T 0. 

(As the TCS referee emphasized, the "compiler writer must  be warned that the extraction of a G-algebra from 

T O (the true target language) is, in fact, the very difficult work he usually calls 'compiler design'  or 

' implementation choices. '" It is the essence of compiler construction.) By initiality this gives the compile 

function ~,:L-,-T and it also immediately determines an algebra U, extracted from Uo, and a homomorphism ~. 

from T to U. These arrows are each uniquely determined by the interpretations of certain primitives. All that 

is left is the "bot tom line," e:M-~U. Given the (simple) definition of e from the carrier of  M to the carrier of 

U we have to prove that e is a homomorphism, that is, that it preserves all the operations of M. Once this is 

done, the compiler correctness proof is complete for, by initiality, ~ off -- 0 o e. 

As Barry Rosen has pointed out to us, commuting of (jr) is not, in itself, "compiler correctness." T and 

U could be one-point  algebras and % if, and e, the unique homomorphisms to those one-point  algebras 

resulting in a commuting square. At first look this is somewhat misleading because we should assume that the 

source language (with semantics), O:L-*-M, and the target language are given. But, as indicated above, the 

algebraic structure of the target language is different from that of the source. The process of constructing the 

compiler consists of extracting an algebra T from the target language To; we could foolishly extract a 

one-point algebra, then U would automatically be a one-point algebra and Rosen's  point is reinstated. 

One possible way around the degenerate case of one-point algebras, suggested by Rosen, is to require the 

encoding (e) to be injective (it is in our ease). Then, as Steve Bloom has argued [personal communication], 

commutativity of Jr would say that there is a subalgebra of U which is isomorphic to M and up to this 

isomorphism a source program and its compiled target program have the same meaning. This is certainly a 

sufficient condition for compiler correctness. Several (including Steve Bloom and Barry Rosen) have argued, 

that it is necessary; you do not want to identify semantic objects in a translation of the source language. Two 

programs with distinct semantics must  have, at this level of abstraction, distinct target meanings. But is it 

conceivable that distinct program phrases might have the same target semantics. We are just not sure at this 

time that injectivity is necessary. 

Both Gaudel (1980, 1980a) and Mosses (1980) want to present source and (in effect) target semantics in 

terms of abstract data types. Then correctness becomes a property of the implementation or representation of 

the source data type in terms of the target data type. Mosses clearly requires this implementation to be 

injective; it is the part of his proof that is as long as ours. 

Although our example language is similar to that of Mitner and Weyrauch (1972) t and Milner (1976), 

our approach is different because we are explicitly avoiding the lambda calculus and because their target 

semantics is interpretive. In another treatment, and a concise one also, Germano and Maggiolo-Schettini 

(1975) present  a compiler from a simple source language which computes sequence-to-sequence partial 

Milner [personal communication] commented on the Milner and Weyrauch (1972) proof: "... we could only 
think clearly enough to do our proof at all on the machine by structuring it algebraically." (See page 58 of 
their paper.) 
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recursive functions, to a target language which is a modification of Markov normal algorithms. Contrary to 

the approach advocated by Morris and by us, semantics given by Germano and Maggiolo-Schettini is not 

homomorphie: "semantics consists in a correspondence between syntactic objects (strings of symbols) and 

mathematical objects ..." But both source and target semantics c o u M  be  homomorphie and it would be 

interesting to see how this reformulation would change their correctness proof. 

Our treatment differs from Morris (1973) in one other less significant respect. We make the advice that 

the starting point for the semantic definition should be an abstract data type in the sense of ADJ 

(1976,1976a). 

This paper presumes familiarity with many-sorted algebras, categories, and algebraic theories, but we 

hope that it can be read without detailed knowledge of those concepts. It is our intention that the example 

will prove potent enough to convince the reader of the importance of the algebraic ideas; that they are worth 

the investment of time and energy to obtain even better understanding. 

2. THE UNDERLYING DATA TYPE 

Let X be the following {int, B o o l } - s o r t e d  signature for integer and Boolean valued expressions. 

int, A = {0,1 } X int, int = { - ,Pr,Su} X int, in tint = { + , - ,  × } 

YBod, X= {tt,ff} Y. Bool, Bool = { ~ } X Boot, Boo l Boot = { ̂ , v } 

X BooLint = { e v e n }  X Bool, int int ={  < '> ,EQ} Y~int, Boot int int = {eond}. 

All other Xs, w are empty. Tx, in  t is the set (or algebra) of integer valued expressions and TX,Bool is the set of 

Boolean valued expressions. The underlying data type (an {int,  B o o l } - s o r t e d  algebra S) for our simple 

programming language is the abstract data type* determined by the signature X together with axioms E 

consisting of at least (the correctness of these axioms is not at issue for this paper) axioms El-E27 below. 

Assuming those axioms are correct (in 

and (for technical reasons) SBoot = [2] 

(El)  Pr(Su(x)) = x 

(E4) . ( t t )  = ff 

(E6) b^tt = b 

(E9) x+0 = x 

( E l l )  x - 0  = x 

(El3)  xx0  = 0 

(E16) 

(E18) x_<x = tt 

(E21) 

(E23) EQ(x ,y )=  

(E25) even(0) = tt 

the strong sense of ADJ (1976a)), we can take Sin t = 77 (the integers) 

= {1,2} (with tt s = 2). 

(E2) Su(Vr(x)) = x 

(E5) ~ ( f f ) = t t  

(E7) b^ff = ff 

(El0)  x+Su(y) = Su(x+y) 

(El2)  x -Su(y)  = Pr (x -y )  

(El4)  xxSu(y) = (xxy )+x  

cond(tt,x,y) = x (El7)  

(El9) 1 < 0 =  ff 

x<y= t t  =~ x_<Su(y)=tt (E22) 

(x<y)^(y<x)  (E24) 

(E26) even(l) = ff 

(E3) Su(0) = 1 

(E8) bvb'  = . ( . b ^ . b ' )  

(El5)  -(x) = 0 - x  

eond(ff,x,y) = y 

(E20) x<y = Su(x)_<Su(y) 

x_<y=ff =~ S(x)_<y=ff 

x>_y = EQ(x,y)v ~ (x<y) 

(E27) even(x )=  ~even(Su(x)) 

* See, for instance, Zilles (1974), Guttag (1975) or ADJ (1976a). 
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3. THE LANGUAGE L 

Our programming language is essentially the one employed by Morris (1973). As such, it is a slight 

enrichment of the language used as an example by Milner (1976). Our grammar will have non-terminals 

{<s t> ,<ae> ,<be>}  for "statements", "arithmetic expressions" and "Boolean expressions." The terminals 

include the symbols in the signature E above, plus those other letters in boldface occurring in the productions 

below. Further, we assume given a set X of variables or identifiers. 

We list the productions of G giving each a name which we can use in defining the semantic algebra. 

Thus, for example, when G is viewed as an operator domain, ifthenelse is an operator symbol to denote a 

function that takes three arguments of sorts < b e > , < s t > , < s t > ,  respectively, and yields a result of sort <s t> .  

Similarly result takes two arguments of sort <s t>  and <ae>  and yields a result of sort <ae>.  

(L1) continue <s t>  ::= continue 

(L2) x: = <s t>  ::= x : = < a e >  For xEX 

(L3) ifthenelse <s t>  ::= i f<be>then<s t>e lse<s t>  

(L4) ; <s t>  ::= < s t > ; < s t >  

(L5) whiledo <s t>  ::= while<be>do<st> 

(L6) c <ae> ::= c For CE~int,)~ 

(L7) x <ae>  ::= x For x c X  

(L8) aopl  <ae>  ::= aop l<ae>  For aopt~Eint ,  in t 

(L9) aop2 <ae>  ::= <ae>aop2<ae> For a o p 2 ~ i n t ,  in t int 

(L10) cond <ae>  ::= i f<be>then<ae>else<ae> 

( L l l )  result <ae> ::= <st>resul t<ae> 

(L12) letx <ae>  ::= let x be<ae>in<ae> For x¢X 

(L13) be <be>  ::= be For bCeEBoot, X 

(L14) prop <be>  ::= prop<ae> For prop~,Bool,  int 

(L15) tel <be>  ::= <ae>re l<ae>  For rel~Y.Boot, int im 

(L16) bop1 < b e >  ::= bop l<be>  For bopl~Y.Bool, Boo! 

(L17) bop2 < b e >  ::= <be>bop2<be>  For bop2eXBooI, Bootboo l 

4. SOURCE LANGUAGE SEMANTICS, THE ALGEBRA M. 

Now we want to define the semantic algebra M. For this we need the set Env of "environments," Env = 

[X--Z].  Then the three carriers are: 

M<st> -- [Env-o-~Env] M<ae> = [Env--o*Env×7/] M<be> = [Env-o--Envx[2]]. 

Here [A--B] is the set of (total) functions from A to B and [A-o-~B] is the (po)set of partial functions from 

A to B. 

The definitions of the seventeen operations on M (corresponding to the grammar's seventeen prod- 

uctions) involve certain primitive operations on M's carriers, including assign and fetch, along with standard 

(and some not so standard) operations on functions such as composition, tupling and iteration. Thus before 
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presenting M's operations we must familiarize the reader with what is, in effect, our metalanguage for giving 

the definition of M. The reader should be advised that this "metalanguage" will be used throughout this 

paper. 

We first list the primitive operations: 

assignx:Env x 2g-~ Env (y) <e ,v>  assign x = 
v if y = x  

(y)e if y # x  

fetchx:Env-~Envx2~ (e)fetch x = <e , (x )e>  

We also have available all the operations as, for aEX, from Section 2; e.g., + s  is addition on the integers. 

Now for the more general considerations. The set [2] was used in Section 2; [n] is the set {1,2,...,n}. 

For both total and partial functions, we will write f:A-~B to designate source and target, function arguments 

will usually be written on the left as in (a)f, and we will explicitly write o for the operation of function 

composition whose arguments are written in diagrammatic order: if f :A-~B and g:B-~C then fog:A-~C.  1A is 

the identity function on the set A (for f:A-~B, 1Aof = f = fo 1B). 

Given two (partial) functions, fi:A-~B, define the source tuple, (fl ,f2):Ax[2]-~B, by 

<a , i>( f l , f  2) = (a)f i. 

Define the sum, f l+ fx :Ax[2] -~Bx[2] ,  of functions fi:A-~B for iE[2] by: 

< a , i > ( f l + f  2) = <(a)fi , i>.  

If q:B-~Bx[2] is the injection sending bCB to <b , i> ,  for ie[2], then f l+f2--(f lot t , f2ot2 ). Bx[2]  is the 

disjoint union, sum or coproduct of B with itself, and more generally Bx[n]  is the eoproduet of B with itself n 

times (n disjoint "copies" of B); ti:B-~ B x [n] sends b to <b , i> ,  for i¢ [n]. Context will usually distinguish the 

source of an injection and for this paper, the target will always be clear. When necessary to distinguish 
B 

sources, we will write rj :B-~Bx[n].  

Given a partial function f :A-~Ax  [2], define the iterate, f*:A-~A, to be the least upper bound (i.e. union) 

of the sequence f(k) defined by: 

f(o) = O 

f(k+l) = fo(f(k) 1A) ' 

where 0 is the empty partial function from A to A. Iteration is the least familiar operation that we use; it 

replaces the fixed-point operator (Y) of other semantic definitions. Say f :Env-~Envx[2]  is a function that 

takes an environment e, creates a new environment e r and then performs some test, giving < e t , l >  if the test is 

false and <et ,2> if the test is true. Then the function f*:Env-*Env is the function corresponding to our 

intuition, "do f until its test is true." 

Given (partial) functions f i :A*Bi ,  define the target tuple, [fl,f2]:A-~BlXB2, by: 

(a)[fl,f 21 = <(a)f l , (a)f2>.  
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Note that if either fl or f2 is undefined at a, then [fl,f2] is undefined at a. The projection function 

~ri:AlX...XAn-~Ai takes <al , . . . ,an> to a i. Given functions fi:Ai-*Bi, define their product, 

fl xf2:At  x A 2 ~ B 1  xB2'  by: 

<a l , a2>( f  1 x f  2) = <(a l ) f  1,(a2)f2>. 

Paralleling the sum case above, the product of functions is defined in terms of target tupling and projections: 

fl X f2=['n'l °fI'~r2°f2 ]" 

Now for the definitions of M's  operations; 'r,'rl,'r2, range over M<st>; e , e l , e  2 range over M<ae> ; and, 

fl'fll'/32 range over M<be>. 

(M1) cont inue M = lea  v 

(M2) (e)x:= M = ~oassign x 

(M3) (/3,,t,~2)ifthenelse M = ~o('rl,~2) 

(M4) ('rl,'r2); M = "el o'r 2 

(MS) (/3,*)whilodo M = (/3o(*+lEnv))* 

(M6) c M = 1EnvXC S 

(M7) x M = fetch x 

(M8) (a )aop l  M = eO(1EavXaopls) 

(M9) (a l ,e2)aop2 M = a l o ( a 2 x  l•)o[,rrl,Cr3,zz2]o(1ErtvXaOp2S) 

(M10) ( /3,el ,a2)cond M = ~O(al,a2) 

(M11) (z ,e)resul t  M = ,roe 

(M12) (tz 1,a2)lotx M = fetch x ° [(a 1 o assign x o a 2) x 1 Z]  o [*r 1,~r 3,~r2] o (assign x x 12Z) 

(M13) bc M = 1Envxbcs 

(M14) (e)proPM = aO(1EnvxproPs ) 

(M15) (el,a2)rel M = a I o (a2x 1Z) o (1EnvXrels) 

(M16) (/3)~M = /3°(*2'L1) 

(M17a) (/31'flZ)^M ---- /31 *(t1'/32) 

(M17b) (/31,/32)VM = /31o(/32,~2) 

The Boolean expressions are treated differently from the arithmetic expressions. In the defirtition of aM, 

for example, /31 can give the value false (1) and /32 will not be evaluated, i.e., could be non-terminating: if 

(e) /3l=<e r, 1 > (false with new environment e~), then (e)/3I o (q ,B2)=<e ' ,  1 > independent of B 2. 

Calling our grammar above, G, we have made M -- <M<st> , M<ae> , M<be> > into a G-algebra with the 

seventeen definitions, (M1-M17). The algebraic semantics for G is the unique homomorphism O:TG-~M. 

5. THE TARGET LANGUAGE, To, THE (ENRICHED) CATEGORY OF FLOW CHARTS 

Our full target language will be a category of flow charts. Morris also used flow charts for the target 

language but his lacked the algebraic structure that we shall describe. This algebraic structure is one of the 

principal advances that we have to offer; it is lacking in previous treatments of the compiler correctness 

problem. Further translations could be performed on the target language, and they could be proved correct. 
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This is because the target language has a clean algebraic character. Then the composite translation would 

immediately (automatically) be correct by "pasting" commuting squares together. This is our answer to our 

TCS referee who asks, "but  who uses a compiler which generates flow charts?" Even though the flow charts 

are very close to machine code, we leave it to interested parties (the authors included) to carry out subsequent 

translations or "compilations." 

The referee has also raised the question of why the category of flow charts should be so general. We will 

see flow charts with n "entries" and p "exits," for non-negative integers n and p. But the specification of the 

compiler uses only n,p~ { 1,2}. This criticism is more difficult to answer. We could argue that if our language 

employed a conventional "case"-statement,  then the compiler specification would use all non-negative integers 

n and p. But the reason is really deeper than that; our category of flow charts will have semantics in what is a 

well known algebraic system, an "algebraic theory" in the sense of Lawvere (1963). In an algebraic theory 

you can take two morpbisms, one from n to p and one from q to r, take their sum and get a morphism from 

n + q  to p+r .  And this corresponds to a natural operation on flow charts, their "parallel composition." Closure 

under this operation demands that we have all "n-entry, p-exit" charts. 

We will begin with a general description of the category of flow charts (arbitrary operation symbols) and 

then, later in this section, specialize to the particular operation symbols for operations on stacks and stores. 

Our definitions of the the flow charts and the operations on them are detailed and (we hope) complete. 

Accompanying each formal definition is an informal description which should be adequate for a first reading 

of the paper. 

So to continue, let ~ be an arbitrary one-sorted signature or operator domain, i.e. an indexed family of 

disjoint sets, <fli>ie . Viewing ~ as the union of the fli' we associate with the operator domain a ranking 

function, ra:f l-*¢ where ( , ) r~ = k iff ae£~ k. f~± is the operator domain ~2 with i adjoined as a symbol of 

rank zero, i.e., (f~±)0=floU{Z}. Below we will fix on a specific operator domain ~ for our language T 0. 

We now define flow charts, identity charts, and the operations of composition, pairing and iteration on 

flow charts. That  these are the essential operations on charts is a key contribution of Elgot (1973). We 

obtain an enriched category of flow charts which is small (a set of objects instead of a proper class) by using 

the various In], nE~, as the sets of vertices. Elgot (1977) and Elgot and Shepherdson (1977) define an 

equivalent large category and consider the skeletal small category determined by isomorphism classes of flow 

charts. 

In addition to the operations used in Section 4 (composition, pairing, iteration, etc.), we need the 

following: 0A:[0]--A is the unique function from [0]=~ to A; and, where A* is the (underlying set of the) 

free monoid generated by a set A and f:A-*B is a (total) function, f*:A*-~B* is the "extension" of f which 

takes a string al...a n to (al)f-..(an)f. 

Definition 5.1. A (normalized) ~±-flow chart from n to p of weight s consists of  a triple <b , r ,g>  where: 

begin function b:[n]-*[s+p] 

underlying graph ~: [s] -* [s+p]* 

labeling function t ~ :[s]-~ ~2 ±, 
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satisfying the requirement that I ( i)rl  =((i)g)r£1. 

(i)b is called a begin vertex, ie[s] is an internal vertex, i e s + [ p ] = { s + j l  je[p]} is an exit and in particular, 

s+ j  is the jth exit vertex. (i)~ e is the operation symbol labeling the i th internal vertex; by the above requirement 

it must  have rank [ (i)r [. Note that the exit vertices are not labeled, though the begin vertices are. This 

makes composition of flow charts work well. Let Flon±(n,p) be the set of £±-flow charts from n to p. [3 

This definition of flow chart employs the convenient definition of directed ordered graph introduced by 

Arbib and Giveon (1968). To relate to more familiar notions of flow charts, say the function , :[s]-~[s+p]* 

k * takes ke[s]  to 1...kue[s+p] . This says that there is an edge from vertex k to each of the vertices k i (i¢[u]) 

and the natural ordering on [u] induces the (local) ordering on the edges leaving vertex k. This ordering is 

essential to distinguish between, for exampte, the "true" and "false" branches of a (binary) test node. 

Definition 5.2. The identity fai-flow chart from n to n, denoted In, has weight 0 and: 

begin function l[~]:[n]-~ [n] 

underlying graph O[n] *: [0] -* [n] * 

labeling function 0£, :[0] ~ fa ±. [3 

Informally the identity chart from n to n has n begin vertices which are also exits and thus there is no 

labeling. 

Definition 5.3, The composite of fix-flow charts, F = < b , r / >  from n to p of weight s and Fr=<br , r r , f f>  

from p to q of weight s t is F o F '  from n to q of weight s + s  ~ with: 

begin function 

underlying graph 

labeling function 

where f and g are the following functions, 

bo f : [n]-*[s+s '+q]  

(,r o f*,~%g*):[s+s'] -~[s+s '+q]* 

( e / ' ) : [ s+s ' ] -~  fa~ 

f= l[s ] +b ' : [s+p]-~ [ s+s '+q ]  

g=0[s ]+ t[s,+q]:[s~+q]-*. [s+st+q]" [3 

Informally FoF '  is obtained by "laying down" F and F' "end-to-end" and by identifying the p exits of F 

with the p begin vertices of F r. Note that the labeling works here; the labels of the identified vertices are 

those of F t since the exit vertices of F are not labeled. At the same time the vertices of F r are "translated" 

(~numbered)  by adding s, i.e., a vertex j of F ¢ becomes s+j  in F*F ' .  

Theorem 5.4. For each n ,p~0,  let Flo~z(n,p ) be the set of fax-flow charts from n to p (i.e., FIo£±(n,p)). 

Then Flo£± is a category with the nonnegative integers as objects, with composition given by Definition 5.3~ 

and with identities given by Definition 5.2. [3 

Without identifying it as such, Elgot (1973) describes a category of normal descriptions over £ which is 

essentially the same as Flo£±, and it is also equipped with the operations of pairing and iteration which we 

now proceed to define. 
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Definition 5.5. The pairing or coalesced sum of two f~±-flow charts F = < b , r / >  from n to p of weight s 

and F r = < b r , z r y >  from n p to p of weight s t is (F,F r) from n + n  r to p of weight s+s  I where 

where 

begin function 

underlying graph 

labeling function 

(b o f,b' o g): [n+ n']-~ [s + s  t + p] 

( , o f  , ,  og ) :[s+s ] -*[s+s  +p] 

(~,e ' ) :[s+s ']-*~ x 

f = 1 [sl +0ls'l + 1 [pl:[S +p]-*- [s+ s' + p] 

g=0ls]+ i [s,+pl:[s~+P]-* [ s+s '  +P]. I3 

Informally, the effect of pairing is to put the two charts F and F t next to each other identifying the p 

exits of F with those of F t. 

Proposition 5.6. Pairing of 9z-flow charts is associative, i.e., 

(FI,(F2,F3))= ((F I,F2),F3) 

for F 1, F 2, F 3 where the pairing is defined. 0 

Definition 5.7. For any function f:[n]--~-[p] we define an associated ~±-flow chart f^ from n to p of weight 

0; f^=<f,0[p]*,09±>. 

The charts f^ are trivial ones which simply allow us to permute or identify exits by composition on the 

right; we already have an example which is the identity chart, 1 a -- l[n] ̂ . Using these trivial charts corre- 

sponding to maps (Definition 5.7) and coalesced sum or pairing (Definition 5.5), we define the separated sum 

of F i from n i to m i (iE[2]) to be the chart 

F I G F  2 = (FlOfl^,F2of2 ^) 

where f i :[si+mi]--[Sl+S2+ml+m2] are the obvious injections for i -- 1,2. Informally FI~)F  2 is the result of 

laying the two charts side-by-side as is the case with pairing, except here there is no identification of exit 

vertices. 

We want special notation for the flow charts corresponding to certain maps (injections); this is notation 

used for the corresponding morpkisms in algebraic theories, vlrst, x(i ) :n i n l + . . . + n  r is i , where 

f: [n i] -- [n I +... + n  r ] 

x i : l -~n  where f:[1]-~[n] is the injection sending jE[n i] to n l + . . . + n i _ l + j .  Next (actually a special case) n is f^ 

sends t to i. In general we will not distinguish between the maps (f, above) and the corresponding charts, 

n l + . . . + n  r n 
x(i ) and x i . 

The last operation is perhaps the most important operation; it is the only one that employs '±'. Thus aH 

the definitions above apply to f~-flow charts with arbitrary f~ replacing our special ~±. The idea is that for an 

~2±-flow chart from n to n + p  of weight s, the 'iterate' of F, denoted F ~r, identifies the ith exit with the ith 

begin node, for i--1,...,n, thus introducing 'loops;' the result has p exits and weight s. The construction is 

more complicated than that, however, because the ith begin might be the ith exit and this iteration 
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(identification) has to yield an nonterminating loop (±). Worse, the first begin could be the second exit, and 

the second begin, the first exit; again the iteration yields non-termination. In general there could a loop of 

length n from the ith begin back to the ith begin in the manner indicated and the definition below finds such 

nodes and labels them z. 

Definition 5.8. Let F = < b j , e >  be a ~2±-flow chart from n to n+p  of weight s. Further, let 
s+n+p s+n+p 

f=(X(l ) ,b,x(3 ) ) : [ s+n+p] -~ [ s+n+p]  and factor fn to 

fn = h o ( l s + g + l p ) : [ s + n + p ] . ~ [ s + n + p ] ,  

where h : [ s + n + p ] - * [ s + u + p ]  and g:[u]-~[n] and u is the smallest natural number yielding such a factorization. 

The iterate of F is the flow chart F t from n to p of weight s + u  with: 

begin function b o h:[n]-~ [ s+u+p]  

underlying graph ( ,  o h*,~,u)):[s+u]-* [ s+u+p]  * 

labeling function (~,±u):[s+u]-~ £±, 

where hU:[u]-~[s+u+p] * sends each ie[u] to hE[s+u+p]*  and xU sends each ie[u] to ±¢£±.  

Now we present a signature (ranked alphabet) £ which we use to construct £ z f l o w  charts for the target 

language T O In that alphabet we include some of the symbols from the {int, Bool}-sorted signature ~ of Section 

2. 

£1 = {l°adx' s t ° rex lxEX]  u {switch} u Ow~{int}, ~int,w 
~2 = UwE{int}* ~Bool,w 
~2 = 0 ,  n = 0 , 3 , 4  . . . . .  

This signature determines the category Flo#l of ~x-ftow charts via Definition 5.1 and Theorem 5.4. This is 

T0! 

Once the operations and tests (£) have been interpreted in a (rational or continuous) algebraic theory, 

the interpretation of the flow charts is uniquely determined by certain natural preservation properties. The 

mathematics of  this interpretation is postponed to Section 7; here we provide an interpretation (it is the 

expected interpretation) of £ in Smm A where A = Stkx Env (stacks cross environments): 

Stk = [~-~Z] Env = [X-~7/]. 

For any set A, Sum A is the algebraic theory whose morphisms from n to p consist of all partial functions from 

A x [ n ]  to Ax[p] .  U o is Sumstk×En v. (See Elgot (1973) where this theory is denoted [A], or ADJ (1976b).) 

Composition in Sam A is function composition, identities are identities from Set, and tupling of n functions, 

f i :A-~ax [p] gives (fl,...,fn):[n]-~,[p] which takes <a , i>  to (a)f r For distinguished morphisms, 

A 
(S1) x? = t i :A-~Ax[n] ,  

A ,  
where ~'i Is defined in Section 4 ( a ~  <a, i>) .  

Note that  we have taken stacks to be infinite to make the definitions simpler. For example we will write 

Vl.V2....oVn-p where v i e Z  and peStk to denote the stack whose first n elements are vt,...,Vn, and whose 

"rest" is #. The usual functions are associated with stacks: push :Stkx~-~Stk ;  and, pop:Stk-~Stkx2L 
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($2) <p ,v>push  = v-p 

(S3) (v.p)pop = <p,v>.  

With the identification of A with A x [ 1 ], the interpretation, I:£-~ Sum A (A = Stk x Env), is given in II-19 

below; it assigns the expected partial function to every operation and test that can occur in a To-flow chart. 

As we mentioned above this uniquely determines the interpretation of every flow chart (Section 7). 

(I1) <p, e>(loadxI ) = <(x)e .p ,  e> For x~X 

(I2) <v-p ,  e>(storexI) = <p, e [x /v]>  

(13) <vl .v2op,  e>(switchI) = <v2ovlop, e> 

(14) <p, e>(cI)  = <CsOP, e>  For eE~int, h 

(I5) <vop, e>(aop l I )  = <(v)aopls*P,  e>  For aopl  • ~int, int 

(I6) <V2.V 1 op, e>(aop2I)  = <(vl,v2)aOp2s.P, e >  For aop2E ~int, int int 

(I7) <p, e>(beI)  - < < p ,  e> ,  bcs> For bceEBool, X 

(18) <v .p ,  e>(propI) = < < p ,  e>,  (v)prOPs> For prop~Boot ,  int 

(I9) <v l °v2 .P ,  e>(relI) -- < < p ,  e> ,  (Vl,V2)rels> For relE~Bool, int int 

6. THE TARGET ALGEBRA OF FLOW CHARTS, T, AND THE COMPILER 

Now we 'extract'  a G-algebra T from T O as outlined in the introduction. Take T<ae>=T<st>=Flo~±(1,1) 

and T<be>=Flo£±(1,2), where £ is the ranked alphabet introduced at the end of the last section. We make T 

into a G-algebra where G is the context-free grammar of Section 3, and we do that by defining operations on 

£±-flow charts corresponding to each of the seventeen productions of G. This is the construction of the 

compiler because initiality of L gives the compile function (homomorphism) 7:L-~T. In the definitions of T's 

operations below, F, F1, F 2 range over T<ae>=T<st>=Flo£ (1,1) and P, PI '  P2 range over 

T<be>--Flo£±(1,2). Thus, for example, in T l l ,  the operation result T, is just the serial composition of two 

arbitrary single entry, single exit flowcharts F 1 and F 2. If F 1 and F 2 are the flow charts compiled from a 

statement and an arithmetic expression, respectively, then F 1 will leave the stack as it found it and F 2 will add 

a single value to the stack. This last statement is a fact that one could conclude from compiler correctness, 

but  there is nothing like this presumed or asserted in the specification of the compiler itself. 

(T1) Cont inue T = 11 

(T2) (F)x := T = F°store x 

(T3)  (P,F1,F2)ifthenelseT = po(Fz,F 2) 

(T4)  (F1,F2); T = F I = F  2 

(T5)  (P,F)whi ledo T = (P ° ( F ®  11)) ? 

(T6) e T = c 

(T7) x T = load x 

(T8) (F)aopl  T = F o a o p l  

(T9) (F1,F2)aop2 T = FIOF2oaop2 

(TI0)  (P,F1,F2)cond T = P°(FI ,F  2) 
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(T1 t )  (F1,F2)resultT = F 1 oF 2 

(T12) (F1,F2)letx T = loadxoFIostorexoF2oswitch°storex 

(T13) be T = be 

(T14) (F)proPT = Foprop 

(T15) (F1,F2)rel T = F 1 oF2orel 
2 2 

(T16) (P)~T = P°(x2,xl) 

(T17a) (PI,P2)^ T = PIO(P2,x~) 
2 

(T17b) (P1,P2) VT = P1 o (Xl,P2) 

7. SEMANTICS FOR FLOW CHARTS, THE TARGET THEORY U 0 

We already have defined the target theory, U 0, to be the algebraic theory SumStkxEnv; we need the 

interpretation functor. Rather than going directly from Flea±to SnmStkxEn v it is convenient to factor that 

interpretation through the continuous algebraic theory freely generated by 9, CT~ (c.f. ADJ 1975, 1976b, 

1976e, 1977). Recall that CTg(n,p) consists of all n-tuples of countable partial trees on the ranked alphabet 

9 and variables, Xl,...,Xp; the composition operation is simultaneous substitution. The following is a variation 

of an important theorem first proved by Elgot (1973). 

Theorem 7.1. There is a unique functor Un (for unfolding) from Flof~x to CT a that preserves maps, 

pairing, iteration, x, and the primitives fL fq 

Theorem 7.2. (ADJ 1977) For any u-continuous algebraic theory T and any interpretation I:9-~T there 

exists a unique ~-continuous functor I#:CTa-~T that preserves maps, pairing, iteration, z and the interpreta- 

tion (I) of the primitives fL f'l 

The combination of Un from Theorem 7.1 and I # from Theorem 7.2 (with the interpretation t of Section 

5) gives us an interpretation (unique subject to certain conditions) of all 9-flow charts; the composite UnoI # 

goes from Floai to SnmstkxEn v. It is now a simple matter to describe the algebra U for the interpretation of 

the algebra of flow charts because each of the operations of T (Section 6) is defined in terms of operations 

preserved by the composite Un o I #. 

8. THE SEMANTIC ALGEBRA FOR FLOW CHARTS, U 

Take U<ae>=U<st>----SamStk×Env(1,1 ) and U<be>=SumStk×Env(1,2). We make U into a G-algebra (one 

operation of appropriate arity for each production of G) by translating the definition of T in Section 6. This 

translation is possible because each of the operations used in the definitions in Section 6 (on right-hand sides) 

is preserved by the composite UnoI  #, In the displayed equations defining U, the variables ~, ffl, and ~2 range 

over U<ae>=U<st> while p, PI and P2 range over U<be>. 

(U1) Con t i nue  U = 11 : lStkxEn v 

(U2) (¢)X:= U = ~,o (storexI) 

(U3)  (p ,~ l , ~2 ) i f t hene l seu  = po(~l,ep2) 

(U4) (~b1'¢~2) ;U : dPl o ¢~2 
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(U5) (p,6)whiledo U = (p o (~+ 11)) t 

(U6) C u = cI 

(UT) x U = toadxI 

(U8) (~)aopl U = ~ o (aoplI) 

(U9) ((~l,e~z)a°P2u = ~1 ° ~b2 o (aop2I) 

(U10) (p,d?l,~2)cond U = p o(q~l,O2 ) 

(U11) (¢l,¢2)resultu = ¢1 ° ¢2 

(Ut2)  (¢l,¢2)letx U = (loadxl)O¢lO(storexI).o¢2o(switchI)o(storexI) 

(U13) be U = bcI 

(U14) (if) prOPu = ~ o (propI) 

(U15) (~l,eP2)retu = ~lo~2o(relI) 
2 2 

(U16) (P)~U = #°(x2,xl) 

(U17a) (Ol'Pz)^C = Pl o(P2 'x2) 
2 

(U17b) (pl,P2)Vu = plO(Xl,P2) 

Let ~ be the restriction of the composite UnoI # to the carriers of T. Then ~ is a G-homomorphism 

because of the way U was defined (and the preservation properties of UnoI #) which gives algebraic semantics 

to the algebra T of flow charts. 

9. THE ENCODING FROM PROGRAM MEANINGS TO FLOW CHART MEANINGS 

As the final step before the proof of the correctness of the compiler (commuting of -k) we must define 

the function e from M to U. In particular we must define e s for s¢{<ae>,  <s t> ,  <be>}. The proof that ~r 

commutes then amounts to proving that e is in fact a homomorphism. This is accomplished in the next section. 

We recall the types of e: 

e<st>: M<st> = [Env---o-)Env] 

e<ae>: M<ae> = [Env---o~Envx2Z] 

e<be>: M<be> = [Env-o---Envx[2]] 

-~ U<st> = [StkxEnv-c-*StkxEnv] 

-~ U<ae> = [StkxEnv--o-*StkxEnv] 

-- U<be> = [StkxEnv--~-StkxEnvx[2]]  

The definition of the bottom line is now given by the following. 

(B1) 

(B2) 

(B3) 

('r)e<st> = 1stkx~" 

(a)e<ae> = (tstkXa) o [~rl,Cr3,rr2] o (pushx 1En v) 

(~)8<be> = 1stkX ft. 

10. T H E  C O R R E C T N E S S  PROOF:  e IS  A H O M O M O R P H I S M  

To emphasize again the main point made by Morris in 1973 and, we believe, carried to fruition here, the 

correctness proof for the compiler (~r commutes) now reduces to seventeen little proofs or lemmas; one 

lemma for each operation ~ of G (Section 3). We must prove that e is a homomorphism, i.e., that 
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( (vv . . . ,~ , ) fM)e  = ( (v l )e , . . . , (v . ) e ) f  U 

for each of the seventeen instances of ~ as given in M1-M17. 

This proof process has some very intriguing aspects. The proofs of the lemmas are all equational, each 

line being justified by some previous line, some definition (M1-M17, U1-U17, and B1-B3) or some fact about 

the operations involved in those definitions. We divide these latter facts into three groups. 

(E) Properties of the underlying data type. 

(F) Properties of the "storage" operations (push, fetch x, etc). 

(G) Properties of the set-theoretic operators like composition, identities, tupling, sum and product. 

Even though we make the advice that all properties of the underlying data type(s) be included in the 

specification of the language (El-E27),  we will have no need for these facts in connection with the proof of 

compiler correctness. Presumably program correctness and program transformation in the proposed style 

would use properties of this first kind. 

The second kind of justification will depend on the particular kind of mathematical semantics given for 

the languages (source and target). In our case we must relate functions like those associated with loadx, 

store x, switch, with those used in the semantics of M like fetch x and assign x. Each of the assertions in this 

group has a simple set-theoretic proof, depending, in part, on properties of the third kind (G). The first nine 

(F1-F9) are reformulations of the definition of the interpretation function I (11-19). In the latter case we 

chose to give "argument - value" presentations of the meanings of the flow chart primitives because such are 

much simpler and clearer than the alternative "closed form" presentations below. However, we Call 

equationally manipulate these closed form characterizations, something we could not do with I1-I9. And it is 

the equational (algebraic) proof method that we are aiming for in the details of the correctness argument. 

(F1) loadxI = 

(F2) storexI = 

(F3) switchI = 

(F4) cI = 

(F5) aoplI  = 

(F6) aop2I = 

(F7) bcI = 

(F8) propI = 

(F9) rell = 

(FX) 

(FXa) 

(1Stk x fetChx) o [,r 1,~r3,~r2] o (push x 1Env ) 

(pop x 1Env ) o ['ffl'~r3"~'2 ] o ( 1Stk x assignx) 

(popx 1Env) o (popx 17/×Env ) o [~r 1,,n.3,~-2,,n-4] o (pushx 17/xEnv ) o (push x 1Env) 

(1Stk x C s x 1Env ) o (push x 1Env ) 

(pop x 1Env) o (1Stk x aop 1S x 1Env) o (push x 1Env) 

(pop X 1Env) o (pop X 17, / X 1Env) o (1Stk X aop2 S x 1Env) o (push x 1Env ) 

lstk x Env × bcs 

(pop x 1Env) o [*r 1,*r3,~r2] o (1Stkx Env X prOPs) 

(pop x 1Env) ° (pop X 17/× Env ) o [~r l'*r3'*r2'*r4] ° ( 1Stk x Env X rels) 

pushopop = lstkx W 

[,rl,~r3,~2 ] o (pushx 1Env) o (pop x 1Env) o [*r 1,~r3,1r2] = 1Stkx xEnvx 7/ 

The last are the most interesting properties for they are general and, in effect, category theoretic. 

Presumably the set of these equations is pretty small and will not keep changing with different languages or 

styles. This suggests the plausibility of Mosses' approach to "making denotational semantics less concrete," 

(Mosses (1977, 1978)). 
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(GO) 1Aof 

(G1) (fog) oh 

(G2) ( fxg)  xh  

(G3) lAX 1B 

(G4) lAX(fog) 

(G5) (fxg) ~ (hxk) 

(G6) (fx 1C) O(1Bxg) 

B 
(C1) 1AXL j 

(C2) lAX (f,g) 

(C3) 1A x (f+g) 

(C4) t A x f  t 

(C5) (f,g) oh 

The following identities are 

projection functions. 

(P1) 

Let q,r:[n]-~ [n] be permutations of [n]. 

= f = f o  1 B 

= fo(goh) 

= fx (gxh)  

= lAx B 

= (1AXf)*(1AXg) 

= ( foh)x(gok)  

= fxg  = (1Axg)*(fXlD) 

AxB 
= tj 

= (1AXf, lAXg) 

= (1Axf)+(1Axg)  

= (IAXf) t 

= ( f o h ,  goh) 

necessary for permuting arguments for functions, i.e., manipulating tuples of 

[,n'l,,n'2,...,,n'n] = 1 

(P2) [~rlq,~r2q,..,~raq]°[~rlr,~r2r,...,Irnr] = [~lrq,~2rq,...,~rarq] 

(P3) IAX['n'lq,~2q,...,Vrnq] = [~rt,~lq+t,~r2q+i,---,~nq+l] 

For monadic functions fi:Ai~Bi there is a convenient general rule for permuting arguments: 

(P4) (fl × '" x fn ) o [~rlq,...,qrnq ] = [,/r lq,..,,,/rnq ] o (flqX ... x fnq ). 

But when the functions involved have cartesian products for sources and/or  targets, then the corresponding 

scheme has a very complicated statement. Below we list the special cases of that general scheme which we 

will need in proofs to follow. Assume fi:Ai-~Bi, c:-~C, g:CIXC2-~D and h:C-~DlXD 2. 

(P4a) (flxf2xc)o[~rl,~r3,~r 2] = f l x c x f 2  

(P4b) (gxfl×f2)°[~l ,~3,~2 ] = [~l,¢r2,~4,cr3]°(gxf2×fl ) 

(P4c) (flxgxf2)°[~rl,~3,qr2] = [~l,~r4,~r2,~r3]°(flxf2xg) 

(P4d) (flxf2xg)*[~rl,~r3,~ 2] -- [~rl,~r3,~r4,~2]°(flxgxf2) 

(P4e) [~rl,~r3,~r2 ] o (hx f  1 ×f2) = (h×f2×fl )  o [~rl,~r2,~r4,~3] 

(P4f) [~r 1,~r 3,~r2] o (fl x h x f2) = (fl x f2 x h) * [~r 1,~r3,~r4,~r 2] 

(P4g) [~rl,~r3,tr2] ° (fl xf2xh)  = (fl xhxf2)  ° [~rl'Ct4'~r2'~'a] 

To save space in displaying the proofs we will abbreviate the isomorphism [~rlq,...,~rnq] with the sequence 

[lq...nq] which will not need commas since n<10 (thank goodness). In addition we will abbreviate Stk, Env 

and 77 by S, E and Z respectively. Use of associativRy of o (G1) and of x (G2) will not be mentioned 

explicitly in the proofs. 

Now we proceed with the 17 (actually 18 because ^ and v are treated separately) proofs. Each proof 

will be a line-by-line proof with justifications (on the right) coming from previous facts and definitions. 
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Observe the form; they begin with the definition in M, the definition of e (B1,2,3), and then the various facts. 

In the middle we are justifying what at times seem to be tediously manipulative steps; this is particularly true 

in proofs (9), (12) and (15), and in them, in applications of (FX),  (FXa) and (P4a-P4g). The proofs 

conclude with the definition (again) of e and of operations in U. 

(1) ( c o n t i n u e M ) e < s t >  = (IE)e<st> 

= l s x l  E 

= 1Sx E 

= c o n t i n u e  U 

(2) ((a)X:=M)8<st> = (aoassignx)e<st> 

= I s x (a o assign x) 

= ( l s x a ) * [ 1 3 2 ]  o [132] o ( lsxassignx) 

-- ( l s x  a) * [I32] o (push x 1E) o (popx 1E) o [132] * ( l s x  assignx) 

---- ( l s x  a) o [132] o (pushx 1E) * (stOrexI) 

= (a)e<ae>* (storexI) 

= ((a)e<ae>)X:= U 

(3) ((fl ,Tl:2)ifthenolseM)e<st> = (flo('rl,¢2))e<st> 

= l s×  (/~o (1-i0-2)) 

= (1S×fl) o (1S×(~-1,r2)) 

= (lsXfl) o ( l s x ¢ l , l s x z 2 )  

= (f l)e<be>o((T1)e<st>,(~2)e<st>) 

= ( ( f l )e<be>,( 'Cl)e<st>,(r2)e<st>)i f thenelse  U 

(4) ((rl,.r2);M)e<st> = (,rlO,r2)e<st> 

= lSX ('rio'r2) 

= (IsX¢I)O(lsX~2) 

-- ( 'rl)e<st> * (,r2)e<st> 

= (('rl)e<st>, ('r2)e<st>); U 

(5) ((fl,~-)whiledOM)e<st> = ((flo(Z+lE))*)e<st> 

---- 1sX(f lo( r+ lE))  ? 

= (IsX(/~o(r+IE)))* 

= ( ( l sxf l )  o ( l s x  ( , +  1E)))* 

= ((Isx/3) o ( ( l s x , ) + ( l s x  1E))) ? 

= ( ( l sxf l )  o ( ( l s x , ) +  tSxE)) ? 

= ((fl)e<be> o (( 'r)e<st>+ 1E×S)) t 

---- ((fl)e<be> o ((r)e<st> + 11)) * 

= ((/3)e<be>,(~)e <st>)whiledo U 

(M1) 

(B1) 

(03)  

(u1) 

(M2) 

(B1) 

(G4) 

(FXa) 

(F2) 

(B2) 

(U2) 

(M3) 

(B1) 

(G4) 

(C2) 

(B1,B3) 

(u3) 

(M4) 

(BI) 

(G4) 

(B1) 

(u4) 

(M5) 

(B1) 

( C 4 )  

(04)  

(c3) 

(63)  

(B1,3) 

(u1) 

(us) 

(6) (CM)e<ae>  = ( 1 E x C s ) e < a e >  

= ( l s x  1EXes)*[132] o (pushx IE) 

= (IsXCsX IE) o (push× 1E) 

(M6) 

(B2) 

(P4a) 
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= cI  ( F 3 )  

= c u ( U 6 )  

(7) (XM)e<ae> = (fetchx)e<ae> (M7) 

= (1S x fetch x) * [ 13 21 o (push x 1 E) (B2) 

= loadxI (F1) 

= x M ( U 7 )  

(8) ((a)aOplM)e<ae> = (aO(1E×aopls))e<ae> (M8) 

= ( l s x  (ao (1EX aopls) ) )  0[132] o (pushx 1E) (B2) 

= ( l s × a )  o ( l s x  1Exaopls)  o[132] * (push× IE) (G4) 

= ( l s x a )  o[132]o( lsxaoplSX 1E)o(pushx 1 E) (P4) 

= ( l s x a )  * [132] o (push x 1E) o (popx 1 E) o (1sXaOplsx 1E) o (pushx 1 E) (F2) 

= (a)e<ae> o (pop x 1E) o ( l s  x aoplSx IE) o (pushx 1E) (B2) 

= (c0e<ae> o (aoplI)  (F6) 

= ( (a)e<ae>)aopl  U (US) 

(9) ((%,a2)aop2M)e<ae>= (alo(a2xlz)o[132]o(1ExaOp2s))e<ae> (M9) 

= ( l s x  (% o (a2x lz)  o [132] o (1Ex aOp2S))) o[132] o (pushx 1E) (B2) 

= ( l s x  (% o (a2x lz ) ) )  o ( l s ×  [132]) * ( l s x  1Ex aop2 s) o [132] o (push x 1 E) (G4) 

= ( l s x  (% o (a2x tz ) ) )  o[1243]o( ls× 1Ex aOp2S) o[1321o (push x 1E) (P3) 

- - ( l sX (a I o (azx lz ) ) )  o [1243] o[1342] o ( 1 s x aop2 s x 1 E) o (pushx 1E ) (P4d) 

= ( l s x  ( a l .  (a2 x lz)) )  o[1432] o ( l s  x aop2sX 1E) o (pushx 1E) (P2) 

_-( lsx (al  ° (a2 x lZ))) o[1432] o (pushx lzX 1E) o (popx lzX 1E) * ( lsX aOp2sX 1E) o (pushx 1E) (FX) 

= ( l s X  (a 1 o (a2x lZ))) o[1432] o (push x l z x  1 E) o (push x 1 E) o (popx 1 E) o 

(popx l z x  1E) o ( lsxaOp2sX 1E)* (pushx 1E) (FX) 

=(1 s x (% o (a 2 x lZ))) o [1432] * (push x l z x  1 E) o (push x 1E) o (aop2I) (F6) 

---(lsx %)  o (I  s x ~2x 1 z) o[1432] o (push x 1Z x 1 E) o (pushx 1E) o (aop2l) (G4) 

_-.(lsx %)  o (1S xct2x Iz)  o[1423] o[1243] o (pushx l zx  1 E) o (pushx IE) o (aop2I) (P2) 

= ( l sX  al )  o [132] o ( l s x  lzX a 2) *[1243] o (push x l z x  1 E) o (push x 1 E) o (aop2I) (P4g) 

= ( l s x  %)  o [132] o (I  s x l z x a  2) o (push x 1E× lZ) o [132] o (push x 1 E) o (aop2I) (P4b) 

= ( l s x  a t )  o[t32] o (pushx IE) o ( l sxa2 )  o [132] o (pushx 1E) o (aop2I) (G6) 

= ((a l)e<ae>) ° ((a2)e<ae>) o (aop2I) (B2) 

=( (al)e <ae>,(a2)e <ae>)aop2 U (U9) 

(10) (([~,al,a2)cOndM)e<ae> = (flo(Otl,Ot2))e<ae> (M10) 

= ( l s x  (/3° (~pa2)))  o [132] o (push x 1E) (B2) 

= ( l sx f l )  o ( l s x  (al,a2)) o[132]o (pushx t E) (G4) 

= ( lsx/3)  o ( l s  x a l , l s x  a2)o [132] o (pushx 1E) (C2) 

= ( lsx/3)  o ((lsXCtl) o[132] o (pushx 1E),( lsxa2)  o[132] o (pushx 1E)) (C5) 

= (/3) e<be> o ((C~l)e<ae>,(a2)e<ae>) (B2,B3) 

= ((~)e<be>,(al)e<ae>,(a2)e<ae>)cond U (U10) 

(11) (r,a)rosultM = (roa)e<ae > ( M l l )  

= (1 s x ('r o a))  o [132] o (pushx tE) (B2) 
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(12) 

-- ( l s x ~ ' ) o ( l s x a ) o [ 1 3 2 ] o ( p u s h x 1  E) (G4)  

= (¢)e<st> o (a)e<ae> (B1,B2) 

= (('c)e<st>,(ct)e<ae>)resultu (U11) 

( (a l ,a2) le txM)e<ae> 

= (fetch x o ( (a  1 o assign x o a2) x l z )  o [ 132] o (assign x x l z ) )e<ae>  (M12)  

= 1S x (fetChxO ( (a l  o assignxO a2) x 1z) o [ 132] o (assignx x l z ) )  o [ 132] o (push  x 1E ) (B2) 

= ( l s x  fetChx) * ( l s  x (c~l oassignxO a2) x l z )  o [ t243]  o ( l s x  assignxX l z ) )  o [132] o ( p u s h x  1E) (G4,P3)  

-- ( l s x  fetChx) o ( l s x  ( a l  o assignxo c~2) x t z )  o [1243] o [1423] o ( l s x z X  assignx) o ( p u s h x  1E ) (P4c ,G3)  

= ( l s x  fetehx) o ( I s x  (a 1 o assignx o c~2) x lz )o  [1324] o ( l s x z X  assignx) o ( p u s h x  tE) (P2) 

= ( l s x  fetchx) o ( l s x  (c~ 1 o assignxO c~2) x l z )  o [1324] o ( p u s h x  1ExZ) o ( l s  xass ignx)  (G6) 

-- ( l s  x fetchx) o ( l s x  (a 1 o assignx o a2) x Iz)  o [1324] o 

(push  x 1ExZ) o [132] o (push x 1E) o (p o p x  1E) o [132] ° ( l sX  assignx) (G0 ,FXa)  

= ( I  s x fetehx) o ( I s x (a  1 o assignx o a2) x 1 z) o [1324] o (push  x 1ExZ) o [132] o 

(push  x 1 E) o (stOrexI) (F2)  

= ( l s x  fetchx) o ( l s  x ( a l  o assignx o a2) x lZ) o [1324] o [1243] o ( p u s h x  1ZxE) o 

(push x 1 E) o (stOrexI) (G3 ,P4b) 

= ( l s  x fe tch  x) o ( l s x  (a  1 o assignx o c~ 2) x 1 z) o [13421o (push x lZ×E) o (push x 1 E) o (storexI) (P2) 

-- (1 s x fetchx) o [132] ° ( p u s h x  1E) o (pop x 1E) o [132] o (I  s x (a 1 o assign x o a2) x l z )  

o [1342] o (push x lZ×E) o (pushx  I E) o (stOrexI) (G0 ,FXa)  

= (loadxI) o (popx  1E) o [132] o ( l s ×  (aj  o assignx o a2) x l z )  o [1342] o 

( p u s h x  lZxE)  o (push x 1 E) o (storexI) (F1) 

- (loadxI) o ( p o p x  I E ) ° ( l s × z X ( a  1 ° a s s i g n x ° a 2 ) ) ° [ 1 3 4 2 ] ° [ 1 3 4 2 ] o  

(push  x 1Z x E ) ° (push  x 1E) ° (st°rexI)  (P4f) 

= (loadxI) o ( p o p x  1E) o (1 sxzX (a 1 o assignx o ct2) ) o[1423] o 

( p u s h x  lZxE)  o (push  x IE) o (stOrexI) (P2,P1) 

= (loadxI) o (1 s x (a 1 o assign x o a2) ) o (pop x 1E×Z) o [1423] o 

(push x lZ×E) o (push  x 1E) ° (stOrexI) (G6)  

= (loadxI) ° (1 s x a l )  o (1 s x assignx) o (1 s x a2) o (pop x 1E×Z) o [1423] o 

( p u s h x  IZ×E) o (push x 1E) o (storexl)  (G4)  

= (loadxI) o ( l s x  a l )  o [132] o ( p u s h x  1E) o ( p o p x  1E) o[132] o 

( l s x a s s i g n  x) o ( t s X  a 2) o (pop x 1ExZ) * [1423] o 

(push x 1ZxE) o ( p u s h x  1E) o (stOrex I ) (FXa)  

_.. (loadxI) o ( a l ) e<ae>  * (storexI) o ( l s  x a 2) o (pop x 1ExZ) * 

[1423] o (push×  lZ×E) o (push  x 1E) o (storexI) (B2,F2)  

= (loadxI) o (a 1)e <ae> o (stOrexI) o ( 1S x a2) ° 

[132] o ( p u s h x  1E)o ( p o p x  1E) o[132] ° (pop X 1ExZ) o 

[1423] ° (push  x lZxE)  o ( p u s h x  1E) o (stOrex I ) (FXa)  

= (loadxI) o ( a l ) e<ae>  ° (stOrexI) o (a2)e<ae> o (pop× 1E) o[1321o 

( p o p x  1Ex Z) o [14231o (push  x lZxE)  o ( p u s h x  tE) o (storexI) (B2) 

= (loadxI) o ( a l ) e<ae>  o (storexI) o (a2)e<ae > o ( p o p x  1E) o 

( p o p x  IZ×E)o [1243] o [1423] o (push x lZ×E) o ( p u s h x  1E) o (stOrexI) (P4e) 
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= (loadxI)O(al)e<ae>O(storexI)o(a2)e<ae>O(popxlE)* 

(pop x l z  x E) ° [ 1324] o (push x lZ × E ) ° (push x 1 E) ° (st°rexI) (P2) 

= (loadxI) o (al)e<ae> o (storexI) o (a2)e<ae> o (switchI) o (storexI) (F3) 

-_ ((al)e <ae>,(a2)e <ae>)letxu (UI2)  

(13) (bCM)e<be> _-- (1EXbCs)e<be> (M13) 

= l sXlEXbCs  (B3) 

_..lSxEXbe s (G3) 

-- bcI (FT) 

= b e  U ( U 1 3 )  

(14) ((a)proPM)e<be > = (aO(1EoproPs))e<be> (M14) 

= l s x  ( a .  (1ExproPs)) (B3) 

= ( l s ×  l a ) o ( l s x  1ExproPs ) (G4) 

= ( l s x  la )  o[132] o[132] o ( l s ×  1ExproPs ) (P2,P1) 

= ( l s x  la )  o [132]* (push x 1E) o (popx 1E) o [132] o (1sX 1E× prop s) (FXa) 

= (a)e<ae> o (popx 1 E) o [132] o ( l s ×  1Exprop s) (B2) 

= (a)e<ae> o (propI) (F8) 

= ((a)e<ae>)orop U (U14) 

(15) ((al,a2)ralM)e<be> = (a l* (a2x lz )* [132]° (1Exre l s ) )e<be>  (M15) 

= l s x ( a  t* (a2x lz)*[132]  o (IE×rels))  (B2) 

= ( l s x  (al  o (a2x lz)) )  o ( lsX [132]) o (1s×Exrels)  (G4) 

= ( lsX (al  o (a2x lz)) )  o [1243].  ( lsxEXrels)  (P3) 

= ( l s X a l )  o ( l s x a 2 x  lz )  o[1243] ° ( lsxEXrels)  (G4) 

= ( l s x a l )  o [132]o (push× 1E). (popx 1E) o[132]o ( l s × a 2 x  lZ) °[1243] o ( l s×Exre ls )  (FXa) 

= (al)e<ae> ° (popx 1 E) ° [132] o ( l s x  a2× 1 z) *[1243] o ( l s×Ex rel s) (B2) 

= (al)e<ae> o (popx 1 E) * ( Is×zX a 2) ° [1342] ° [1243] ° ( l sxEXrel  s) (P4f) 

= (al)e<ae>O(popxlE)O(ls×zXa2)o[1324]o( ls×Exrels)  (P2) 

= (al)e<ae> o ( lsX a2) o (popx 1E× z) *[1324] * ( ls×EX rels) (G6) 

_. (a l )e<ae>o( l sXa2)o[132]o(pushx lE) . (popx lE)O[132]°(popx lE×z)O[1324]o( l s×Exre ls )  (FXa) 

-... (al)e<ae> o (a2) e<ae> ° (popx 1 E) o [ 132] o (pop x 1E× z) o [1324] o (1 s ×EX rel s ) (B2) 

= (al )e<ae>O(a2)e<ae>.(popxlE)o(popxlzxE) , , [1243]o[1324] . ( l s×Exrels )  (P4e) 

= (al)e<ae>O(a2)e<ae>O(popXlE)O(pOpxlZxE)O[1423]o(ls×Exrels) (P2) 

= (al)e<ae> o (a2)e<ae>* (relI) (F9) 

= ((al)e<ae>,(a2)e<ae>)rel U (U15) 

(16) ((~)~Me<be > = (fl .(t2¢l))e<be > (M16) 

__ l s x  (flo(~2¢1)) (B2) 

= ( l sxf l )  o ls×(t2,L1) (G2) 

__ ~e<be> o (( lsX ~2),(lsX ~1)) (B2,C2) 
2 2 (C1,S1) = /3e<be> o (x2,x ~) 

= (/3e<be>)~ U (U16) 

(17a) ((fll,fl2)^M)e<be> = (fllO(Ll,fl2))e<be > (Ml7a)  
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= l s x  (/~I ° ( 'q'i2)) (B2) 

= ( l s X t l )  o 1sX (~1,i2) (G2) 

= ( t l ) e < b e > O ( I s X ~ l , l s x i 2 )  (B2,C2) 

= ( l l ) e < b e > O ( l s X ~ l , ( t 2 ) e < b e > )  (B2) 

= (t l)e<be>O(X21,(t2)e<be>) (S1,C1) 

= ( ( t l ) e<be>, ( t2 )e<be>)  ^U (U17a) 

((i l , t2)VM)e<be> = (Ell°(t2'~2))e<be> (M17b) 

= 1sX ( t l  * (i2,t2)) (B2) 

= ( l s X i l ) o  l sx( i2 , t2)  (G2) 

= ( i l )e<be> o ( l s  x fl2,1S x ~2) (B2,C2) 

= ( t l )e<be> o ((i2)e<be>,l  S x L2) (B2) 
2 

= (fll)e<be> o ((i2)e<be>,x2) (S1,CI) 

-- ( ( i l )  e<be>,(i2)e<be>) Vu (U17b) 

11. CONCLUSION 

The eighteen proofs, yielding the homomorphism property of e, turned out to be considerable longer and 

more cumbersome than we had expected. But they are equational and we believe that we have isolated the 

properties used for the correctness proof. That  list of properties is itself somewhat of a motley assortment 

and we feel that it can and should be cleaned up. We hope, however, that the reader will recognize that 

something very different is going on in that the compiler correctness is being developed in a machine 

checkable equational framework despite those rough edges. 

Perhaps it is typical of detailed and exhaustive correctness efforts, but  the process of carrying out the 18 

proofs with unflinching detail uncovered several errors in the preceding definitions. This was particularly true 

of the more difficult (more lengthy) proofs involving the more complex definitions: 9, 12, and, 15. These 

proofs pointed to errors in the source definition of binary arithmetic operation evaluation (M9), of the block 

construct (M12), and in the definition of "switehI" in terms of pop and push (F9). 

Note also the important faet that the i8 proofs are independent; that is, each programming feature is 

analyzed independent of the others. So long as the language can be extended within the semantic definition 

of Section 4, that extension can be checked without consideration of the rest of the correctness proof. 

We hope, in the future, to carry out such extensions; even to classify what extensions are possible. Also, 

if the extension requires new semantic domains for the denotational semantics of the language (the carriers of 

M) we hope that there will be a uniform way to carry over the proofs already done. 

Finally, we hope to carry out the same kind of algebraic arguments with alternative semantic definitions; 

alternatives to ~ (compile) and alternatives to 0 (source semantics). One would hope also to find translations 

of the flow chart language so that correctness of a composite translation would be obtained by "pasting" 

commuting squares together. 
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