
USING CATEGORY THEORY TO DESIGN i~LICiT CONVERSIONS AND GENERIC OPERATORS T

John G. Reynolds

Syracuse University

Syracuse, New York

ABSTRACT A generalization of many-sorted algebras, called category-

sorted algebras, is defined and applied to the language-design problem

of avoiding anomalies in the interaction of implicit conversions

and generic operators. The definition of a simple imperative language

(without any binding mechanisms) is used as an example.

Introduction

A significant problem in the design of programming languages is the

treatment of implicit conversions, sometimes called coercions, between types.

A failure to provide implicit conversions can degrade the conciseness and

readability of a language. On the other hand, unless great care is taken

in the design of such conversions, and their interaction with operators

which can be applied to operands of several types, the resulting language

will exhibit anomalies that will be a rich source of programming errors.

(In the author's opinion, PL/I and Algol 68 exemplify this danger.)

As a simple illustration, consider assigning the sum of two integer

variables to a real variable. In the absence of an implicit conversion

from integer to real, one would have to write either

x := integer-to-real(m) + integer-to-real(n)

or

x := integer-to-real(m ÷ n) .

Clearly, one would prefer to write x := m + n. If the language permits this,

however, one can ask whether the implicit conversion precedes or follows the

addition, i.e., which of the above statements is equivalent tox := m + n.

#Work supported by National Science Foundation Grant MCS 75-22002.

212

It is generally believed that a precise language definition must

answer this question unambiguously. However, if one were to ask the

question of a mathematician (at least one who didn't know too much about

programming), he would probably reply that it doesn't matter, since both

of the above statements have the same meaning, and that indeed the whole

point of permitting tile same operator + to be applied to arguments of

different type which are connected by an implicit conversion is that the

resulting ambiguity should not affect the meaning.

In a sense, of course, the mathematician is wrong: some computers

provide a floating-point representation with such limited precision that

the a~niguity in question does affect meaning. But in a deeper sense the

mathematician is right. One intuitively expects that the above statements

should have nearly the same meaning, and in analogous cases where numerical

approximation or overflow is not involved, one expects exactly the same

meaning.

To see this, replace real by character string in the above example,

and suppose that integers are implicitly converted into character strings

giving their decimal representation, and that + denotes both addition of

integers and concatenation of strings. Then the two possible meanings of

x := m + n are radically different. This case is clearly a mistake in

language design which would be likely to cause programming errors.

In this paper we will describe a method for avoiding such errors. The

underlying mathematical tool will be a generalization of ~mny~sorted

algebras called category-sorted algebras, which are closely related to the

order-sorted algebras invented by Goguen. (I)

Beyond the specific goal of treating implicit conversions, our

presentation is intended to illustrate the potential of category theory in

the area of language definition and to suggest that the "standard" denotationa

semantics developed by Scott and Strachey may not be the final solution to the

language-definition problem. There is nothing incorrect about the Scott-

Strachey methodology, and it has provided fundamental insights into many

aspects of programming languages such as recursion. But it has not been so

helpful in other areas of language design such as type structure. We suspect

that clearer insights into these areas will require quite different

applications of mathematics.

213

Conyentional Many-Sorted Algebras

Our use of algebras is based on the ideas of Goguen, Thatcher, Wagner,

and Wright, (2) which have roots as far back as Burstall and Landin. (3) In

(2) a language is viewed as an initial algebra and its semantic function as

the unique homomorphism from this initial algebra into some target algebra,

so that defining the target algebra is tantamount to defining semantics.

Here we will adopt the slightly more elaborate view that (roughly speaking)

a language is the free algebra generated by some set of identifiers, that

an environment is a mapping of these identifiers into the carrier of the

target algebra, and that the semantic function is the function which maps

each environment into its unique extension as a homomorphism from the free

algebra to the target algebra.

We propose to treat implicit conversions in this framework by generali-

zing the concept of an algebra appropriately. To motivate this proposal we

will proceed through a sequence of increasingly general definitions of

"algebra".

The standard concept of a many-sorted algebra used in algebraic semantics

is due to Birkhoff and Lipson, (4) who called it an "heterogeneous" algebra.

According to Birkhoff and Lipson, but with changes of notation and terminology

to reveal the similarity to later definitions:

(i) A signature consists of:

(la) A set ~ of sorts. (Informally, the sorts correspond to

types in a programming language.)

(ib) A family, indexed by nonnegative integers, of disjoint

sets A of operators of rank n.
n

a n
(Ic) For each n ~ 0 and 5 e An, a specification F 6 g × ~.

= .. ~> then the operator 6 (Informally, if r 6 <<~I' " ' ~n >'

accepts operands of sorts ~I' ''" ' ~n and yields a result

of sort ~.)

214

(2) An mAP-algebra consists of:

(2a) A carrier B, which is an ~-indexed family of sets.

(Informally B(m) is the set of meanings appropriate for phrases

of type ~.)

(3)

(2b) For each n _> 0 and 6 e An, an interpretation 76 e

B(~I) x x B(~n) + B(~) where <<~i' ~n >'

If B, 7 and B', 7' are ~AF-algebras, then a homomorphism from

B, y to B t , ¥' is an ~-indexed family of functions e(~)

B(~) ÷ B'(~) such that, for all n ~ 0 and 6 e An, the diagram

Y6
B(~I) x .o. x B(Wn) --> B(~)

1 e(~1) × ... x 0(~n) [0(~)
t

Y6
B'(ml) x .o. x B'(mn)--)B'(~)

commutes. Here <<ml' "°" m >" ~> = P6 and fl x ... x f
' n n

denotes the function such that (fl × "'" × fn)(Xl ' "'' ' Xn)

= <fl(Xl), ... fn(Xn)>.

Unfortunately, it is difficult to pose the implicit-conversion problem

within this concept of algebra since there is no mechanism for grouping

operators which are represented by the same symbol. For example, integer

addition and real addition would be distinct members of A 2 (with specifications

<<integer, integer>, integer> and <<real, real>, real>), and there is no

mechanism for relating their interpretations more closely than, say, integer

addition and multiplication.

215

Many-Sqrted Algebras with Generic Operators

To solve this problem, we will employ an alternative concept of many-

sorted algebras due to Higgins. (5) In this approach, the operators are

(in programming jargon) generic. The specification of an operator of rank n

is a partial function from ~n to ~, which is defined for the combinations of

sorts of operands to which the operator is applicable, and which maps each

such combination into the sort of the result yielded by the operand. (Notice

that this captures the idea of bottom-up type determination.) Then the

interpretation of the operator is a family of n-ary functions indexed by the

domain of its specification.

In our own development we will insist that the specification be a total

function from ~n to ~. At first sight, this simplification might appear to

be untenable since it implies that every operator can be applied to operands

of arbitrary sorts. Formally, however, the situation can be saved by

type-lncorrect" introducing a "nonsense" sort ns, which is the sort of "

phrases. (If a phrase is type-incorrect whenever any of its subphrases are

type-incorrect, then every specification will yield n s whenever any of the

sorts to which it is applied is n__!s. However, one can conceive of contexts,

such as the application of a constant function, where this assumption might

be relaxed.)

With this simplification, and a few changes of notation and terminology,

Higgins' concept of a many-sorted algebra is:

(i) A signature consists of:

(la) (as before) A set N of sorts.

(ib) (as before) A family, indexed by nonnegative integers,

of o erators of rank n. of disjoint sets A n , .p,,

_ ~n
(ic) For each n > 0 and 6 ~ A n , a specification F 6 s ÷ ~.

(Informally, F6(~ 1 ~n) is the sort of result yielded by

the generic operator 6 when applied to operands of sorts

~i ~n ")

218

(2) An ~AF-algebra consists of:

(2a) (as before) A carrier B, which is an ~-indexed family

of sets.

(3)

(2b) For each n _> 0 and 6 e An, an interpretation Y6' which

is an ~n-indexed family of functions ~6(oal , ... , oan)

B(oal) x ... x B(oan) ÷ B(r6(oal, ... , oan)). (Informally,

y6(ml, ... , mn) is the interpretation of the version of the

generic operator 6 which is applicable to sorts oal' "'" ' oan ")

If B,y and B',y' are ~AF-algebras, then an homomorphism from B,~

to B',y' is an ~-indexed family of functions 0(~) s B(oa) ÷ BT(~)

such that, for all n ~ O, 6 e An, and oaf' "'" ' oan e ~' the

diagram

~6(~i ' ~n)
B(oal) x ... x B(en) > B(F6(~I' "'" ' oan))

10(oal) × ,.. x 0(oan) I@(F6(oal oan))

I

• , • 0D R) " , Y6(oa 1 ,
t,

t~'(co I) × . . . × S ' (%) > B ' (r ¢ (c o 1, . . . ,COn))

(1)

commutes.

Algebras with Ordered Sorts

We can now introduce the notion of implicit conversion. When there is

an implicit conversion from sort oa to sort oa', we write oa ~ m' and say that

oa is a subsort (or subtype.) of oa'. Syntactically, this means that a phrase

of sort m can occur in any context which permits a phrase of sort ~'.

It is reasonable to expect that e ~ oa and that oa ! oa' and oa' ~ ~" implies

oa < J'. Thus the relation < is a preordering (sometimes called a quasiordering)

of the set ~. Actually, in all of the examples in this paper ~ will be a

partial ordering, i.e., w ~ oa' and ~' ~ oa will only hold when oa = oa'. However,

our general theory will not impose this additional requirement upon ~.

217

Now suppose 6 is an operator of rank n, and ml' "'" ' ~ and ~i' "'" '
n

~' are sorts such that ~. < ~! for each i from one to n. Then a context
i -- 1

which permits a phrase of sort F~(~ i, "" ~')n will permit an application of

6 to operands of sorts ~i' "'" ' J' But the context of the ith operand
n

will also permit an operand of sort ~., so that the overall context must

also permit an application of 6 to operands of sort ~i' "'" ' mn' which has

sort r~(Wl, ... , ~n). Thus we expect that F6(~ 1 ~n) ! F6(~ I ml)

or, more abstractly, that the specification F 6 will be a monotone function.

If ~ ~ ~' then an algebra must specify a conversion function from the

set B(w) of meanings appropriate to m to the set B(m')of meanings appropriate

to ~'. At first sight, one might expect that this can only occur when B(~)

is a subset of B(~'), and that the conversion function must be the corresponding

identity injection. For example, integer can be taken as a subsort of real

because the integers are a subset of the reals.

However there are other situations in which this is too limited a view

of implicit conversion. For example, we would like to say that integer

variable is a subsort of integer expression, so that integer variables can

occur in any context which permits an integer expression. But it is difficult

to regard the meanings of integer variables as a subset of the meanings of

integer expressions. In fact, we will regard the meaning of an integer

variable as a pair of functions: an acceptor function, which maps integers

into state transformations, and an evaluator function, which maps states into

integers. Then the meaning of an expression will just be an evaluator

function, and the implicit conversion function from variables to expressions

will be a function on pairs which forgets their first components.

In general, we will permit implicit conversion functions which forget

information and are therefore not injective. To paraphrase Jim Morris, (6)

subtypes are not subsets. This is the main difference between our approach

and that of Goguen. (I) (There are some more technical differences,

particularly in the definition of signatures, whose implications are not

completely clear to this author.)

218

However, there are still some restrictions that should be imposed

upon implicit conversion functions. The conversion function from any

type to itself should be an identity function. Moreover, if ~ ~ ~' and

~' < ~'~ then the conversion function from B(~) to B(~") should be the

composition of the functions from B(~) to B(~') and from B(~') to B(~").

This will insure that a conversion from one sort to another will not depend

upon the choice of a particular path in the preordering of sorts.

These restrictions can be stated more succinctly by invoking category

theory. A preordered set such as ~ can be viewed as a category with the

members of ~ as objects, in which there is a single morphism from ~ to ~'

if ~ < ~' and no such morphism otherwise. Suppose we write ~ < ~' to stand

for the unique morphism from ~ to ~' (as well as for the condition that this

morphism exists), and require the carrier B to map each ~ ! ~' into the

conversion function from B(~) to B(~'). Then we have

(i) B(~') ~ B(~) ÷ ~(~') .

(ii) B(~ ! ~) = I~(~) .

(iii) If ~ < m' and ~' < ~" then

(Throughout this paper we will use semicolons to indicate composition in

diagrammatic order, i.e., (f;g)(x) = g(f(x)).) These requirements are

equivalent to saying that B must be a functor from 2 to the category SET,

in which the objects are sets and the morphisms from S to S' are the

functions from S to S'

This leads to the following definition:

(i) A signature consists of:

(la) A preordered set ~ of sorts.

(ib) (as before) A family, indexed by nonnegative integers,

of disjoint sets A of operators of rank n.
n

(ic) For each n ~ 0 and 6 g A n , a specification P~, which

is a monotone function from 2n to 2.

219

(2) An ~AF-algebra consists of:

(2a) A carrier B, which is a functor from ~ to SET.

(2b) For each n ! 0 and 5 s An, an interpretation y6 , which

is an an-indexed family of functions y6(ml, ... , mn) E

B(~I) x ... x B(~n) + B(F6(ml, ... ,mn)) such that, whenever

~i -- < ~' "'" ' ~n --< m'n, the diagram

~6(~i mn)
B(~i) x ... x B(~n)

~(~li~ i) × ... × S(~n~ ~)

y6,ml, 0J')n
B(~ i) × ... ×B(~ n)

> B(r6(m I ~n))

B (r 6 (w 1 , . . . , ~ n)

ir~(~ i, .~5)
T

> B(r6 (~ 1 ,~'))
n

(li)

commutes.

The above diagram asserts the relationship between generic operators

and implicit conversions which originally motivated our development. To

recapture our original example, suppose integer, real s ~, integer !real,

+ ~ A2, F+(integer, integer) = integer, and F+(real, real) = real. Then

a particular instance of the above diagram is

y+(integer,integer)
B(integer) × B(integer)
I

jB(integer~ i real) x B(integer ! real)

y+(real, real)
B(real) x B(real)

) B(integer)

B(integer ~ real)

> B(real)

In other words, the result of adding two integers and converting their sum

to a real number must be the same as the result of converting the integers

and adding the converted operands.

220

In essence, the key to insuring that implicit conversions and generic

operators mesh nicely is to require a commutative relationship between

these entities. An analogous relationship must also be required between

implicit conversions and homomorphisms:

(3) If B,y and B',y' are ~AF-algebras, then an homom0rphism from B,y

to BT,y ' is an ~-indexed family of functions e(m) g B(m) + B'(~)

such that, whenever m < ~', the diagram

e (~)
B(~)) B' (~)

C°!~° ') e (~ ') . -

B (m ') -) B ' (m ')

(iii)

commutes, and (as before) for all n ~ 0, 6 ~ A n ,

e ~, t h e d i a g r a m (I) commutes .
n

and ml' "'"

Category-Sorted Algebras

By viewing the preordered set of sorts as a category, we have been able

to use the category-theoretic concept of a functor to express appropriate

restrictions on implicit conversion functions. In a similar vein, we can

use the concept of a natural transformation to express ~he relationship

between implicit conversion functions and interpretations given by diagram

(II) and the relationship between implicit conversion functions and

homomorphisms given by diagram (III).

In fact, diagram (III) is simply an assertion that the homomorphism e

is a natural transformation from the functor B to the functor B ~ . Diagram

(II), however, is more complex. To express this diagram as a natural

transformation, we must first define some notation for the exponentiation

of categories and functors, and for the Cartesian product functor on SET:

221

(i)

(a)

(b)

(c)

(d)

For any category K, we write:

IKI for the set (or collection) of objects of K.

X ~ X' for the set of morphisms from X to X' in K.

K for the identity morphism of X in K. I X

;K for composition in K.

(2) For any categ@ry K, we write K n to denote the category such that:

(a) IKnl = IKI n, i.e. the n-fold Cartesian product of IKI.

(b) <XI, ... , Xn > ÷K n <Xi' "'" ' X1>n

<x l) ×...

(C) I Kn X > = <IK ' "" • , I>
<XI' "'" ' n X1 n

(d) <%, pn> Kn<P i . . . • ' . ,o "'" ' ' ' PI'KPl ' "" n ~ n

(Notice that when K is a preorder (e.g. O) this definition is

consistent with the usual notion (e.g. O n) of exponentiation of a

preorder.)

(3) For any functor F from K to K', we write F n to denote the functor

from K n to K 'n such that:

(a) Fn(x I Xn) = <F(XI) F(Xn)> .

(b) Fn(p I , pn) = <F(Pl) , F(Pn)>

(4) We write x (n) to denote the functor from SET n to SET such that:

(a) x (n)(S ! St) = S 1 x S n

(b) x(n)(fl' "'" ' fn) = fl x ... x fn

Next, we note that when gn and ~ are viewed as categories, the monotone

function F 6 can be viewed as a functor from ~n to ~ by defining its action

on morphisms to be F6(~I~ i ~n~) = F6(~I, ... , ~n)~F6(~ { ~)
'n

222

Then

and

a n Bn ×(n)
> SET n ~ SET

an F 6 B
> ~) SET

are compositions of functors which can be used to rewrite diagram (II) as:

Y6(~I, ... ,~n)
(Bn;×(n))(~l' "'" 'mn)) (F6;B)(ml 'mn)

ilBn ; x (n)) (o~i <o~ ~ ' ~°rri~n) I(P B) (LOl_<O~ L ~On5_O~ n)

I

6;

n (n) , ~' "'" '~') (S ;x)(~1 ~) Y~(1' n ~(r~;B)(wl , . . . ,~n)

In this form, the diagram is clearly an assertion that Y6 is a natural

transformation from the functor Bn;× (n) to the functor Fs;B.

At this stage we have come to regard a entirely as a category. Indeed,

we can justify the term "category-sorted algebra" by extending our definition

to the case where ~ is an arbitrary category:

(i) A signature consists of:

(la) A category ~ of sorts.

(ib) A family, indexed by nonnegative integers, of disjoint

of operators of rank n. sets A n

(le) For each n ~ 0 and 6 ~ A n, aspecification r 6, which

is a functor from ~n to ~.

(2) An ~AF-algebra consists of:

(2a) A carrier B, which is a functor from ~ to SET.

(3)

, an interpretation Y6' which (2b) For each n ~ 0 and 6 e A n

is a natural transformation from Bn;× (n) to P6;B.

If B,y and B',y' are ~AF-algebras, then an h0mom0rphism from B~y

to B',y' is a natural transformation from B to B' such that, for

all n~ O, 6 E An, and ~i' "'" ' ~n E ~, the diagram (I) commutes.

223

This is a clear illustration of what we mean by applying category theory

to language definition. Our intention is not to use any deep theorems of

category theory, but merely to employ the basic concepts of this field as

organizing principles. This might appear as a desire to be concise at the

expense of being esoteric. But in designing a programming language, the

central problem is to organize a variety of concepts in a way which exhibits

uniformity and generality. Substantial leverage can be gained in attacking

this problem if these concepts can be defined concisely within a framework

which has already proven its ability to impose uniformity and generality

upon a wide variety of mathematics.

It is easy to verify that ~AP-algebras and their homomorphisms form a

category, which we will call ALG~A F. It is also evident that these category-

sorted algebras reduce to the Higgins algebras (with total specifications)

discussed earlier when ~ is a discrete category (i.e., a partially ordered

set in which ~ < m' only holds when ~ = ~'.)

Algebraic Semantics

We can now explicate our claim that defining semantics is tantamount

to defining a target algebra. Suppose the target algebra is a category-

sorted ~AF-algebra B,y. Then B(m) is the set of meanings of type ~. Thus

we can define the set M of all meanings to be the disjoint union of B(m)

over m e I~l, i.e.,

M = {~,x ! ~ ~ Igl and x ~ B(~)}

We can also define the function T M s M ÷ l~I such that

T M (~ , x) = m ,

which gives the type of each meaning in M.

Now let I be a set of identifiers and T I e I + I~I be an assignment of

types to each identifier in I. Then an environment e for I,T I is a function

from I to M which maps each identifier into a meaning of the appropriate

type, i.e., which makes the diagram

224

e

i. ~M

TI X TM

of functions commute.

To describe this situation in category-theoretic terms,we define the

SET$1~ I of sets with type assignments. This is the category such category

that

(a) The objects of SET$1g I are pairs S,T, where S is a set and

• ES÷la I ,

(b) S,T SET$1~I S ,~' is the set of functions f from S to S' such
1 i

that the diagram

f
S ,,.> S'

commutes,

(c) Composition and identities in SET$1~ 1 are the same as in SET,

Then an environment for I,T I is a morphism in I,T I SET$1~ 1 M,T M. We call

this set Env(I,Ti).

Next we define U to be the functor from ALG~A P to SET$1~ I whose action

on an ~AP-algebra B,y is given by

U(B,y) = S,T where

s = and x

T e S * I~I is the function such that T(~,X) = ~ ,

and whose action on an homomorphism e from B,y to B',y' is given by

U(O) g U(B,y) SET~I~ I U(B',y') is the function such that

u(e)(~,x) = ~,e(~)(x) .

225

Then M,~ M is the result of applying U to the target algebra B,y, so that

Env(l,Tl) = I,T I SETTI~ I U(B,y). More generally, U is the "forgetful"

functor which forgets both interpretations and implicit conversions, and

maps a category-sorted algebra into the disjoint union of its carrier,

along with an appropriate assignment of types to this disjoint union.

In the appendix, we will show that for any object I,T I of SET$1~ I

there is an algebra F(I,TI) , called the free ~Ar-algebra generated by I,~i,

and a morphism N(I,~I) ~ I,T I SET~I~ I U(F(I,TI)), called the embedding of

I,T I into its free algebra, such that:

For any B,y E IALG~AFI and e e I,T I SET$1~ I U(B,y), there is

exactly one homomorphism e ~ F(I,TI) ÷ B,y such that the
ALG~A F

diagram

n(I,T I)
I,~ > u(r(I,T~))

in SET$1a I commutes.

Suppose F61,T I) = B0,Y0. Then each B0(~) is the set of phrases of type

which can be constructed from identifiers in I whose types are given by T I.

Each $(9) maps the phrases of type ~ into their meanings in B(~]. Moreover,

suppose R,T R = U(B0,Y0) = U(F(I,TI)). Then R is the set of phrases of all

types, r R maps these phrases into their types, and U($) maps these phrases

into their meanings in a way which preserves types.

The embedding n(I,Ti) maps each identifier into the phrase which

consists of that identifier. Thus the above diagram shows that the meaning

U(e)(n (l,Ti)(i)) of the phrase consisting of i is the meaning e(i) given to

i by the environment e.

For a given I,TI, one can define the I~I-indexed family of semantic

functions

U(a) s BO(~) ÷ (Env(l,Ti) + B(~))

such that

~(~) (r) (e) = g(w) (r) .

226

Then each ~(~) maps phrases of type ~ into functions from environments to

meanings of type ~. Alternatively, one can define the single semantic

function

~ R ÷ (Env(l,T I) + M)

such that

~(r)(e) = U($)(r) .

This function maps phrases of all types into functions from environments

to meanings.

It is evident that the linguistic application of category-sorted

algebras depends crucially upon the existence of free algebras or, more

abstractly, upon the existence of a left adjoint to the forgetful functor

U. In general, if U is any functor from a category K' to a category K~

F is a functor from K to K', and N is a natural transformation from I K

to F;U such that:

For all X s IKI, X' s IK'I, and p s X ~ U(X'), there is exactly

one morphism $ a F(X) ~, X' such that

x n(x) , ,>u(F(x))

u (x ')

commutes in K,

then F is said to be a left adjoint of U, with associated natural transfor-

mation q. The triple F, U, q is called an adjunction from K to K'.

In the appendix, we show the existence of free category-sorted algebras

by constructing a left adjoint and associated natural transformation for the

forgetful functor U from ALGa& F to SET$1~ I.

227

Data Algebras

To illustrate the application of category-sorted algebras, we will

consider several variations of Algol 60. However, since we do not yet

know how to treat binding mechanisms elegantly in an algebraic framework,

we will limit ourselves to the subset of Algol which excludes the binding

of identifiers, i.e., to the simple imperative language which underlies

Algol. Although this is a substantial limitation, we will still be able

to show the potential of our methodology for disciplining the design of

implicit conversions and generic operators.

As discussed in (7) and (8), we believe that a fundamental characteristic

of Algol-like languages is the presence of two kinds of type: data types,

which describe variables (or expressions) and their ranges of values, and

phrase types (called program types in (7)) which describe identifiers (or

phrases which can be bound to identifiers) and their sets of meanings.

Algebraically, ~ should be a set of data types in order to define the

values of expressions. In this case, the carrier of the free algebra is

a data-type-indexed family of sets of expressions, and the carrier of the

target algebra, which we will call a data algebra, is a data-type-indexed

family of sets of values.

In Algol 60 itself there are three data types: integer, real, and

hoolean, to which we must add the nonsense type ns. To avoid implicit

conversions, we would take ~ to be

ns

integer real boolean

Notice that n__ss is the greatest element in this partial ordering, reflecting

the notion that any sensible expression can occur in a context which

permits nonsense.

On the other hand, to introduce an implicit conversion from integer

to real, we would take integer to be a subtype of real:

228

ns

reY an
r

integer .

A more interesting situation arises when long real is introduced. One

might expect real to be a subtype of long real, but an implicit conversion

from real to long real would be dangerous from the vie~oint of numerical

analysis, since a real value does not provide enough info~ation to completely

determine a long real value. In fact, it is the opposite implicit conversion

which is numerically safe, so that long real should be a subtype of real:

ns

 eY eao
I

l ong r e a l

1
intege. . r .

I n a l a n g u a g e d e f i n i t i o n which was s u f f i c i e n t l y c o n c r e t e t o make s e n s e

of t h e d i s t i n c t i o n b e t w e e n r e a l and l o n g r e a l , one m i g h t t a k e g (r e a l) and

B (l o n g r e a l) t o be s e t s o f r e a l numbers w i t h s i n g l e and d o u b l e p r e c i s i o n

r e p r e s e n t a t i o n s , r e s p e c t i v e l y , and B (l o n g r e a l < r e a l) t o be t h e t r u n c a t i o n

or r o u n d o f f f u n c t i o n f rom g (l o n g r e a l) t o B (r e a l) . N o t i c e t h a t t h i s f u n c t i o n

i s n o t an i n j e c t i o n , r e f l e c t i n g t h e f a c t t h a t a c o n v e r s i o n f rom l o n g r e a l to

real loses information.

However, although this is suggestive, our methodology is not really

adequate for dealing with the problems of roundoff or overflow. For this

reason, we will omit the type long real and define our language at the

level of abstraction where roundoff and overflow are ignored.

229

In the rest of this paper we will take ~ to be:

ns

/ \
complex boolean

r e a l

integer

I

d~git string

It should be emphasized that this choice of ~ - particularly the use of digit

string - is purely for illustrative purposes, and is not put forth as

desirable for a real programming language.

In the carrier of our target algebra we will have:

B(digit string) = the set of strings of digits,

B(integer) = the set of integers,

B(real) = the set of real numbers,

B(complex) = the set of complex numbers,

B(boolean) = {true, false} ,

with the conversion functions

B(digit string ~ integer) = the function which maps each digit

string into the integer of which it is a decimal representation.

B(integer < real) = the identity injection from integers to

real numbers.

B(real < complex) = the identity injection from real numbers to

complex numbers.

Notice that, because of the possible presence of leading zeros, the function

B(digit string ~ integer) is not an injection.

230

We must also specify B(ns_) and the conversion functions into this set.

For these conversion functions to exist, B(ns) must be nonempty, i.e., we

must give some kind of meaning to nonsense expressions. The closest we can

come to saying that they do not make sense is to give them all the same

meaning by taking B(ns) to be a singleton set. This insures (since a

singleton set is a terminal element in the category SET), that there will

be exactly one possible conversion function from any data type to n s:

B(ns) = {<>},

B(~ < ns) = the unique function from B(m) to {<>}.

As an example of an operator, let + be a member of g2' with the

specification

P+(Wl,~ 2) = if~ 1 ~ integer and ~2 j integer then integer

else if ~i < real and ~2 < real then real

else if ~i ~ complex and m2 ~ complex then complex

else ns

and the interpretation

~+(~i,~2) = if ~i

~(x,y). __

in

else if ~i <

(x,y).

in

else if ~i -!<

~(x,y).

integer and ~2 j integer then

let x' = B(~lJinteger) (x) add . y' = B(m2~ integer) (y)

integer-addition(x',y')

real and ~2 < real then

let x' = B(ml<real)(x) and y' = B(~2Jreal)(y)

real-addition(x',y T)

complex and m2 ~ complex then

let x' = B(~lJcomplex)(x) and y' = B(~2~complex)(y)

in complex-addition(x',y')

else %(x,y). <> .

Although the above definition makes + a purely numerical operator, it

can be extended to encompass nonnumerical"addition":

231

F+(ml,W2) = if m I < boolean and m2 < boolean then boolean

else if ml ~ digit string and m2 ~ digit string then di.git string_

else ... (as before)

y+(~l,m2) = if m I < boolean and ~2 j boolean then

X(x,y). let x' = B(~I> boolean)(x) and y' = B(m2< boolean)(y)

i nboolean-addition(x',y')

else if ml ~ digit strin_n_i and m2 ~ digit string then

X(x,y). let x' = B(ml~ digit string)(x)

~d Y' = B(m2~ digit string)(y)

in digit-string-addition(x',y')

else ... (as before) .

Since there are no implicit conversions between boolean and any other type

than n s, we are free to choose "boolean addition" to be any function from

pairs of truth values to truth values. On the other hand~ "digit-string

addition" is tightly constrained by the implicit conversion from digit string

to integer, which gives rise to the requirement that

B(digit string) x B(digit string__)

B(digit string ! integer)

~ B(digit string ~ integer)

B(integer) x B(integer)

digit-string addition B(digit string)

integer addition

B(digit string

<_ intege r)

) B(integer)

commute. In other words, the sum of two digit strings must be a decimal

representation of the sum of the integers which are represented by those

two strings. The only freedom we have in defining digit-string addition

is in the treatment of leading zeros in the result.

The definition of + suggests that a typical operator will have a

significant specification and interpretation for certain "key" sorts of

operands, and that its specification and interpretation for other sorts of

operands can be obtained by implicitly converting the operands to

key sorts. To formalize this idea, let

232

(1) A 6

(2) ~6

(3) T 6

(4) ~

be a category of keys.

be a functor from A to ~n

be a functor from A to a.

be a natural transformation from Q6;Bn;x (n) to 6T ;B.

Intuitively, for each key I EIA61 , ¢6(%) is the n-tnple of sorts to which the

"l-version" of 6 is applicable, T~(1) is the sort of the result of the
-- x(n) ~n + --

X-version of 6, and y6(1) ~ (B (~6(I))) B(F6(1)) is the interpretation

of the X-version of 6.

These entities can be extended to all sorts of operands if the functor

~6 possesses a left adjoint ~6' which will be a functor from ~n to A, and an

associated natural transformation q6, which will be a natural transformation

from l~n to ~6;~6. Then we can define the specification

= ~6;~ 6 ~n F 6 c ÷ ~ ,

and the interpretation

x (n) (Bn(q 6
Y6(~I ' ''" ' ~n) = (~i' "'' ' Wn));Y6(P6(ml ' ~n) '

which can easily be shown to be a natural transformation from Bn;x (n) to F6;B.

Intuitively,~6(~l, ... , ~n) can be thought of as the key determining the

version of 6 to be used for operands of sorts ~i' "'" ' ~n' and

q6(~l ' "'" 'n~) as the implicit conversion to be applied to these operands.

In the special case where A 6 and ~ are partially ordered sets, it can

be shown (9, p. 93) that ~6 will be a left adjoint of ~6 if and only if

-_ ~6(~6 - an ~6(~(l)) A 6 < (~)) for all ~ c and ! % for all X E . In this case

q6(~) will be the unique morphism ~ ! ~6(~6 (~)) , and Y6 will be

Y6 (~)- = x(n)(Bn(m--< Q6(P6(~))));~6(~6(~))

Moreover, as shown by the following proposition, ~6 will be uniquely determined

by ~6:

233

Proposition Suppose ~ is a monotone function from A to ~n, where

A and ~n are partially ordered sets, such that

-- ~n
(i) For all ~ ~ , the set {~ I k s A and ~ ~ ~(~)}

has a greatest lower bound in A.

(2) For all m e ~ ~ ~A {% 1% ~ A and m < ~(%)}) is the

greatest lower bound in ~n of {~(%) 1% s A and ~ j ~(%)}.

Then ~(~) = ~A {% 1% ~ A and ~ ~ ~(%)} is the unique monotone function

from ~n to A such that ~ is a left adjoint of ~.

Proof: ~ is obviously monotone. For any k e A, P(~(%)) is the greatesl

lower bound of {%' I k' s A and ~(%) ~ ~(%')} and, since % belongs to this

-- ~n ~(~(~)) = ~(~A {% 1% e A and w ~ ~(k)}) set, ~(~(%)) ~ %. For any m s ,

is the greatest lower bound of {~(%) I % E A and ~! ~%)} and~ since ~ is a

lower bound of this set, ~ j ~(~(])).

Suppose ~ is a left adjoint of ~. If ~ < ~(%) then ~(~) < ~(~(%)) < %.

Thus ~(~) is a lower bound of {k 1% s A and ~ J ~(~)}. Moreover, this set

contains P(~) since ~ < ~(~(~)). Thus any lower bound of this set must be

less than ~(~), so that ~(~) is the greatest lower bound.

The conditions in this proposition will hold if A contains greatest

lower bounds of all of its subsets, i.e., if A is a complete lattice, and

preserves all greatest lower bounds. However, we will sometimes use A's

which are not complete lattices.

As an example, the purely numeric definition of + given earlier can be

recast more concisely by using the set of keys

A+ = {integer, real , complex , n s}

with the same partial ordering as ~. Then the specification P+

by the functions ~+ and ~+ such that

is determined

234

X ~+(X) T+(X)

integer integer,integer

real real,real

complex complex,complex

ns ns~ns

and the interpretation y+ is determined by

~+(integer) = integer addition

~+(real) = real addition

~+(complex) = complex addition

~+(ns) = ~(x,y). <> .

To extend

strin$ to

integer

real

complex

ns

this definition to nonnumeric types, one adds ,boplea n and di$it

A+, with

~+(X) T+(X)

and

boolean boolean,boolean boolean

digit string digit string,digit string digit string

• + (b o o l e a n) = boolean addition

~+(digit strin$) = digit-string addition .

(Notice that in this case A+ is not a complete lattice, but the necessary

conditions for the existence of a left adjoint to ~+ are still met.)

In the remainder of this section we will illustrate our approach by

defining a few other binary operators. In each case A+ is the listed

subset of ~, with the same partial ordering as ~.

235

and

For the division operators / and + we can define

~I(%) 71(%)

real real,real real

complex complex,complex complex

ms ns,ns ns

~/(real) = real division

~/(complex) = complex division

~/(ns) = %<x,y). <>

% ~ (~) T.(%)
÷ 7

integer integer,integer integer

ns ns,ns ns

~÷(integer) = %(x,y), the unique integer q such that

x = q x y + r where

if x > 0 then 0 < r < IYl else -lyl < r < 0

~÷(n_~ = %(x,y). <> ,

These operations cannot be combined into a single operator since~ for example,

3/2 = 1.5 but 3 ÷ 2 = i. On the other hand, since the definition of y÷(integer)

extends sensibly to the case where x and y are real, one could generalize

÷ by taking ~+(inteser) = real,real.

Since nonnegative integers have not been introduced as a data type and,

for example, 3 -2 is not an integer, exponent÷at÷on cannot be defined to yield

an integer result for any sort of operands. If exponents are limited to

integers, one can define

236

~t ~t (~) T~(~)

real real,integer real

complex complex,integer complex

ns ns,ns ns

~f(real)= X(x,n). x n

~t(complex) = X(x, n). x n

~t(ns) = ~(x,y), <> .

This can be extended to noninteger exponents by taking ~t(qomplex) =

comp!ex,complex, but the multi-valued nature of complex exponentiation

(as well as the time required to compute the necessary logarithms and

exponentials) would probably make this unwise.

Finally, we define an equality operation:

=

boolean boolean,boolean boolean

integer integer,integer boolean

real real,real boolean

complex complex,complex boolean

~S ns~ns ns

~=(X) = if X # ns then the equality relation for B(X)

else X(x,y). <> •

One might be tempted to add digit string to A=, with ~=(digit string) =

digit string,digit string, T=(di~it string) = boolean., and ~=(digit string)

= the equality relation for B(digit string). However, the diagram

B(digit string) x B(digit string)

I B(diEit string < integer)
x B(di$it s~ring ~ integer)

B(intee$_er) × B(integer)

=digit string_~B(hoglean)

iB(boolean)

=integer
......... >B (boolean)

237

does not commute, since B(digit string ~ integer) is not an injection.

(For example, 6 and 06 are unequal digit strings which convert to equal

integers.) Indeed, one can never use the same operator for the equality

relation on different data types when the data types are connected by an

implicit conversion function which is not an injection. (At the more

concrete level where roundoff error is taken into account, this suggests,

quite correctly, that there are special perils surrounding an equality

operation for real numbers.)

Algebras for Simple Imperative Languages

Now we move from data algebras, which describe languages of expressions,

to algebras which describe simple imperative programming languages, i.e.,

languages with variables, expressions, and commands, but without binding

operations. The sorts of our algebras will change from data types to

phrase types, which can be thought of as phrase class names of the abstract

syntax for the language being defined. For example, in place of the set of

data types {integer , real, boolean}, ~ might be the following partially

ordered set of phrase types:

ns

r e a l exp b o o l e a n exp command

real var 1

integer var

It is evident that for each data type T there will be two phrase types

T exp(ression) and T var(iable), and that T exp will be a subtype of T ~ exp

whenever the data type T is a subtype of T'. Moreover, T var will be a

subtype of T e~ since a variable can be used in any context which permits

an expression of the same data type. On the other hand, the s~type relation

will never hold between variables of distinct data types. For example, an

integer variable cannot be used as a real variable since it cannot accept a

noninteger value, and a real variable cannot be used as an integer variable

since it might produce a noninteger value.

238

This kind of phrase-type structure, which describes many programming

languages, is unpleasantly asymmetric. For each data type, there are

variables, which can accept or produce values, and expressions, which can

only produce values. Thus one might expect another kind of phrase, called

an acceptor, which can only accept values. If acceptors for each data type

are added to ~, we have:

intege-~aqc

r e a i ~ r exp
real var integer var

ns

real exp boolean acc boo ean exp

boolean var

command

Notice that the subtype relation among acceptors is the dual of that for

data types or expressions. For example, a real acceptor can be used as an

integer acceptor since an integer value can be converted into a real value.

The above partial ordering has the peculiarity that there is a pair

of phrase types, real var and integer var, which have no least upper bound.

In general this might not be a problem, but we will find that there is one

language construct, the general conditional phrase, which requires the

existence of binary least upper bounds. To see the problem, suppose n is

an integer variable and x is a real variable, and consider the conditional

variable

if p then n else x o

In a context which calls for an expression, this phrase must be considered

a real expression, since when p is false it can produce a noninteger value.

But in a context which calls for an acceptor, the phrase must be considered

an integer acceptor, since when p is true it cannot accept a noninteger

value° The phrase type which describes this situation must be a subtype

of both integer acc and real exp which in turn has real var and integer var

as its subtypes. In other words, it must be the least upper bound of

real vat and integer var.

239

The way out of this difficuity is to characterize variables by both

the data type which they accept and the data type which they produce.

For example, a real var is actually a "real-accepting, real-producing"

variable, an integer var is actually an "integer-accepting, integer-producing"

variable, and the above conditional variable is an "integer-accepting,

real-producing" variable. If we write T 1 T 2 var to abbreviate "Tl-accepting,

T2-producing" variable, then we have the ordering

integer acc real exp

real acc integer real var integer exp

real real var integer integer var

l~;plicit in this discuasion is the idea that pi~rase types are constructed

from data types. More generally, since the meaning of expressions can be

described by a data algebra, and expressions are a major constituent of an

imperative programming language, it should be possible to define the algebra

describing the programming language in terms of the data algebra describing

its expressions. To emphasize this possibility we will construct a

programming-language algebra for an arbitrary data algebra, with signature
D

~D, ~D FD carrier B D, and interpretation y . The ~.in restrictions we will

place upon this data algebra are that n_~s must be the greatest sort in ~D,

FD(~I , = is ns. and that ... , ~n) ns must hold when any mi --

The set of phrase types is

~D ~D
= {T exp I T s - {ns}} u {Tacc I T s - {n__s_s}}

u {TIT 2 vat I r I, T 2 s f~D {n_S_S}} u {comm, n_!s} ,

with the least partial ordering such that

if T <_D T' then T exp ~ r' exp

if T' <D • then Tacc < r' acc
>

if r i Z 1 and T 2 <DT~ then TIT 2 yam < TIT ~ var

• ir2 var < T 1 acc

• IT2 var < T 2 exp

~ < ns

240

Our target algebra describes direct semantics. (Continuation semantics

can be treated in much the same way, but it leads to more complex definitions

without providing any additional insights into the concerns of this paper.)

The carrier of this target algebra will map each sort into a domain (a

partially ordered set containing a least element ± and least upper bounds

of its directed subsets), with implicit conversion functions which are strict

and continuous (i.e., which preserve ± and least upper bounds of directed

sets). Specifically, the following carrier is appropriate for direct

semantics:

= S ÷ [B D (~)] ± B(~ eK e)

B(comm) = S ÷ [S] i

B(~ acc) = BD(T) ÷ B(comm)

B(TIT 2 var) = B(T 1 acc) x B(T 2 exp)

B(ns) = {±)

B(r exp ! ~' exp) = lv. v;[BD(~ ! T')]±

B(T acc< T' acc) = ha. BD(T ' ~ ~); a

B(TI~ 2 var < T 1 acc)= %(a, v). a

B(~IT 2 var < r2 e__x~) = %(a, v). v

_ ' acc) x B(T 2 exp < ' exp) B(TIT 2 var < TIT 2' ' var) = B(T 1 acc < r I _ ~2

B(~ < ns) = %x. ±B(ns) "

Here S is an unspecified set of store states. For any set X, [X]± denotes

the flat domain obtained by adding i to X. For any function f s X ÷ X',

[f]± denotes the strict extension of f to [X]± ÷ IX']±.

Basically, the meaning of a command is a state transition function

(with result i for nontermination), the meaning of an acceptor is a function

from data values to state transition functions, and the meaning of a variable

is a pair giving both the meaning of an acceptor and of an expression. Notice

that this way of defining variables avoids the mention of any entities such as

Strachey's L-values. (As a consequence, our definition permits strangely

behaved variables akin to the implicit references in GEDANKEN~I0))r

241

Next we consider operators. Each operator of the data algebra becomes

an expression-producing operator of the imperative-language algebra. If

6 g AD then 6 ~ A with the specification given by:
n' n'

A6 = (2D)n

¢6 = ~n , where ~ a ~D + 2 is the function such that

~(T) = i_~ r = ns then ns else r exp ,

T~ D
= r6;¢

To define the interpretation of 6 we must give a natural transformation ~6
n (n) n n (n) - D

from ¢6;B ;x = ~ ;B ;x to F6;B = F6;~;B. Thus ~6(TI~ ... , T n) must

be a function from B(~(TI)) × ... x B(~(Tn)) to B(#(r~(TI, , rn))).
D

If F6(TI, ... , Tn) is ns, then y6(Tl, ... , Tn) will be the unique function

from B(~(TI)) x ... x B(~(Tn)) to B(ns). Otherwise, none of the T i will be

n s, and ~6(TI, ... , T n) will be the function from B(T 1 exp) x ... x B(T n e>p)
D

= (S + [BD(TI)] ±) x . . . x (S * [BD(Tn)]±) to B(F6(TI, . . . , T n) exp)

S + [BD(p~(~I , ... , Tn))] ± such that

Y6(TI, --- , Tn)(V I, ... , v n)

D Vn(~)) , = iO e S. [y6(Tl Tn)]±±(Vl(O), ... ,

D D
where [T6(TI, ... ,Tn)]l± denotes the extension of y6(TI, ... , Tn) such that

[y~(Tl, ... , Tn)]ll(Xl, ... , Xn) = ± if any X.l = ±"

Assignment is an operator := E A 2. This is the one case which we cannot

define by using an adjunction from a set of keys. The specification is

__ flD
F:=(~l,~2) = if (~T 8 - {ns}) ~i < T acc and ~2 ~ ~ 9x--~

then comm else ns

If a data type T meeting the above condition exists, then the interpretation

is

y:=(Wl,~ 2) = l(a,v), let a' = B(m I < T acc)(a) and v' = B(~ 2 ~ T e__x~)(v)

i_qn Dcomm(V';[a'] ®) ;

242

otherwise

~:=(~i,~2) = %(a,v). ±B(n_s)

, D Here [a']. is the l-preserving extension of a from B (T) + B(comm) to

[BD(~)]± ~ B(comm), and Dcomm s (S ÷ B(comm)) ÷ B(comm) is the diagonalizing

function such that

Dcomm(h)(a) = h(o)(o).

A subtlety in this definition is that the data type T may not be unique.

For example, if ~i is real acc and m2 is integer exp then T can be either

integer or real. However, the definition still gives a unique meaning to

y:=. Basically, this is because the structure of ~ insures that, if

T acc T' acc T exp T' exp

~\ ~/ and ,~\ />/ ,

~i ~2

then there are data types T 1 and T 2 such that

Tacc T' ace T exp T' exp

T 1 acc and T 2 exp

vl vl

~i m2

Then the definition of B for the implicit conversion of acceptors and

expressions implies that the diagram

B(Tlacc) x B(T2exp)

IB(Tlacc < T'acc) × B(~2e__~ ~ % v exp)

i(a',v'). Dcomm(V';[a'] ~)
B(~'acq) x B(T'ex~)

B(~ I) × B(m 2)

~B(~ 1 ~ Ti~cc) B(~ 2 ~ ~2exP) x

B(tlacc < T acc) x B(T2ex p ! r exp)
B(~ acc)× B(T exp)

X(a,v).

Dcomm(V;[a] @)

)B(eomm)

of functions commutes. A slight extension of this argument shows that ~:=

is a natural transformation.

243

Next we consider conditional phrases. It is trivial to define a

particular type of conditional phrase such as a conditional command, but

the definition of a generic conditional, applicable to arbitrary phrase

types, is more challenging. Obviously, boolean must be a data type, with

BD(bo£1ean) = {true,false}. Less obviously, ~ must possess all binary

least upper bounds. (Note that this imposes a restriction upon ~D)

Under these conditions, we can define if ~ A3' with the specification

Aif =

~if s ~ + ~3 is the function such that

%if(m) = if m = ns then <ns,ns,n_~s> else <boolean exp,~,m>

Fif = I n .

~3
Then the left adjoint of ~if is the function ~if s + ~ such that

~if(~l,W2,~3) = if ~ 1 < boolean exp then ~2 U w 3 else ns .

(From the proposition in the previous section, it can be shown that if there

are ~2' ~3 in ~ which do not possess a least upper bound then % has no left

adjoint.)

To determine the interpretation of if, we must give a natural transfor-

mation ~if from ¢;B3;x (3) to T;B = B. When ~ = n s, y--if(u) is the unique

function from B(ns) x B(ns) x B(n__~s) to B(ns). Otherwise it is the function

from B(boolean exp) x B(~) x B(~) to B(~) such that

yif(m)(v,f,g) = D (v;[lb s {true,false}. if b then f else g]~) ,

where D is the ~-indexed family of diagonalizing functions, D E

(S * B(m)) * B(~) such that

= [BD(T)]±) DT exp lh s S + (S * . lo e S. h(o)(o)

D = %h s S + (S ÷ IS]i). ~o s S. h(a)(o)
c o m m

D = lh e S + (BD(T) ÷ (S ÷ IS]i)). lx E BD(T). lo e S. h(o)(x)(o)
T acc

DrlT 2 var = %h s S ÷ B(T 1 acc) x B(T 2 exp).

<DTI acc(h;(%(a,v)'a)), DT2 exp (h;(%(a,v)'v))>

D = %h c S ÷ B(ns). ±B(ns)
ns - - _ _

244

(Notice that D also occurred in the definition of assignment.) This
comm

family has the property that, for all e,~' ~ ~ such that ~ j ~' and all

h s S + B(m),

B(~!~')(D (h)) = D,(h~B(~i~')) •

It is this property that insures that %if is a natural transformation.

Finally, for completeness, we define operators for statement sequencing

and a while statement. Since these operators are not generic, their

definition is straightforward:

; e A 2 , while ~ g2

A; = Awhil e = {comm, n s} with the same partial ordering as ~.

~ (comm) = <comm, con~> , ~while(COmm) = <boolean exp,comm>

~ (ns) = ~while(nS) = <ns,ns>

. (comm) = Fwhile(COmm) = comm

(ns) = Fwhile(nS) = ns

~.(ns) = Y--while(nS) is the unique function from B(ns___) x B(n_~s) to B(ns).

~.(comm) = %(c I ~ S + [S]±, c 2 e S + [S]±). ci;[c2] ~

Ywhile(COmm) = %(v e S + [{true,false}If, c I £ S ÷ IS]i).

Y(%c 2 e S + IS]±. Dcomm(V;[%b. if b then (ci;[c2]~) else J]@)

Here J is the identity injection from S to [S]± and Y is the least-fixed-point

operator for the domain S + IS]±.

Future Directions

The approach described in this paper is still far from being able to

encompass a full-blown programming language. In particular, the following

areas need investigation:

(i) Binding mechanisms, i.e. declarations and procedures.

(2) Products of types, i.e. records or class elements.

(3) Sums of types, i.e. disjoint unions.

(4) Type definitions, including recursive type definitions.

(5) Syntactic control of interference. (7)

245

In the first three of these areas, our ideas have progressed far enough

to suggest the form of the partially ordered set of phrase types. One wants

a set ~ satisfying

= aprimitive + ~procedure + ~product + ~sum

Here + denotes some kind of sum of partially ordered sets. (At present, it

is not clear how this sum should treat the greatest type n__ss or a possible

least type.) The partially ordered set ~primitive is similar to the

described in the previous section, and

~proeedure = {~i + ~2] ~i' ~2 s ~}

= .. , .. s ~} eproduc t {pr°duct(~ I, • w n) I n Z 0 and ~i' " '~n

= {sum(~ I, , I n 0 and ... ,~n } sum ~ "'" mn) ~ ~i'

The main novelty is the partial ordering of g . One wants
procedure

procedure types to satisfy

~' ~) if and only if ~i -- -- ' (~i ÷ ~2) ~ (1 ÷ ' < ~i and ~2 < ~2 '

so that the type operator + is antimonotone in its first argument. For

example, suppose inteser exp < real exp. Then a procedure of type

real exp ÷ boolean exp, which can accept any real expression as argument,

can also accept any integer expression as argument, and should therefore be

permissible in any context which permits a procedure of type i nteser exp +

boolean exp. Thus (real exP + boolean exp) ~ (integer exp + boolean exp).

It follows that ~procedure will be isomorphic to ~op × Q, where ~op

denotes the dual of ~. This raises the question of how one solves the

recursive equation describing ~. The simplest answer is to impose an

appropriate ordering on the least set satisfying this equation. The

resulting ~, however, will not contain certain limits which will be needed

to deal with recursive type definitions. One would like to use Scott's

methods to treat recursive definitions, but these methods do not encompass

the operation of dualizing a partial ordering.

246

This difficulty does not arise for products or sums, where conventional

pointwise ordering seems natural. However, a richer ordering becomes

attractive when named, rather than numbered, products and sums are considered

Suppose we redefine

~product = {pr°duqt(]) I] s N ÷ ~ for some finite set N of names} ,

and similarly for ~sum" Then the following ordering can be used:

pr£duct(7) J produqt(]') whenever

domain(~) m domain(]') and (V n s domain(]')) 7(n) < 7'(n),

sum(7) ! sum(]') whenever

domain(i) ! domain(]') and (V n ~ domain(u)) ~(n) !]'(n).

The first ordering permits implicit record conversions which forget fields.

The second ordering permits implicit conversions of disjoint unions which

broaden the number of alternatives in a union.

In particular, the second ordering solves a long-standing problem in

the type-checking of disjoint union expressions. Suppose p is a phrase of

type ~, and make-n denotes the injection into a disjoint union corresponding

to the alternative named n. Using bottom-up type analysis, how does one

determine the type of make-n(p)? The answer is that the type is sum(n:m),

which is a subtype of any sum of the form sum(... , n:~).

247

APPENDIX

In this appendix we will demonstrate the existence of free category-

sorted algebras by constructing an appropriate adjunction. Our basic

approach will be to connect category-sorted algebras with ordinary one-sortec

algebras in order to use the known existence of free ordinary algebras.

We begin by stating several general properties of adjunctions which will be

used in our development.

Propositio n Suppose U is a functor from K' to K, F is a function

from [K[to [K'I, and ~ is a !K[-ind~xed family of morphisms

q(X) s X ~ U(F(X)) such that:

For all X c IKI, X' s IK' , and p e X ~ U(X') there is

exactly one morphism p ¢ F(X) ~, X ~ such that

n (x)
x • > U (F (X))

commutes in K.

Then there is exactly one way of extending F to be a functor from

K to K' such that F is the left adjoint of U with q as the associated

natural transformation. Namely, for each 9 s X ~ X', F(e) must be

the unique morphism such that

n(x) x > u(F(x))

~ n(X') IU(F(O))
X' ~U(F(X'))

commutes in K.

We omit the proof (ll,p. 116), the main point of which is to show that the

extension of F preserves composition and identities, The utility of this

proposition is that, in specifying adjunctions it is only necessary to

specify the object part of the left adjoint.

248

Next, we consider the composition of adjunctions:

Proposition Suppose U is a functor from K T to K with left adjoint F

and associated natural transformation q, and U' is a functor from K"

to K' with left adjoint F' and associated natural transformation qT

Let

U" = U' ;U

F" = F;F'

n" (X) = q(X) ;KU(q' (F(X)))

Then U" is a functor from K" to K with left adjoint F" and associated

natural transformation q".

Again we omit the proof (9, p. i01),

Finally, we introduce the construction of categories over distinguished

objects, and show that an adjunction between such categories can be built

out of an adjunction between the categories from which they have been

constructed.

Let K be a category and T e IKI. Then KST, called the category of

objects over T, is the category such that

(a) tK~rf = {X, T I X~ IK{ andT ~X~T} ,

(b) X,Y K~T X',T' is the set of morphisms p e X ~ X' such that

X ~-- P >X'

</'
T

commutes in K.

(c) Composition and identities are the same as in K.

249

Then:

Propositi0n ' Suppose U is a functor from K' to K with left adjoint

F and associated natural transformation q. Suppose T' s IK'land

T = U(T'). Let U be the functor from K'$T' to KST such that

U(X',T') = U(X'),U(T') and U(p) = U(p). Then U has a left adjoint

and an associated natural transformation ~ such that

F(X,~) = F(X),~

~(x,T) = n(x) ,

where T s F(X) ~, T' is the unique morphism such that

x ~(x) ~u(F(X))

U(T') = T

co~utes in K.

Proof: We leave it to the reader to verify that ~ is a functor from

K'$T' to KST, that F is (the object part of) a functor from ~T to K'$T ~,

and that ~(X,T) g X,T ~ U(F(X,T)). To show the adjunction property,

suppose X,TslKSTI, X',T'g IK'$T'l,and p e X,T ~ U(X',T'). ~en we must

show that there is exactly one p ~ ~(X,T) ÷ X',T' such that
K'$T'

x,T~ ~(x,T) = n(X)___> u(F(x,~)) = U(F(X)),U($)

p ~ ' - ~ ~(~) =U(~)

~(x',T') = u(x'),u(~')

co~utes in KST.

Since composition is the same in ~T as in K, p can only be the unique

morphism in F(X) ~, X' such that

x n(x) ~U(F(X))

U(X')

250

commutes in K.

However, we must show that p actually belongs to the more restricted

set of morphisms F(X,~) ÷ X' ' K'$T' ,T . To establish this, we note that

p s X,T K~T ~(X',~') = X,T KST U(X~)'U(T') implies that

x - - - - ¢ - - ~ u (x ')

T

commutes in K, which in conjunction with the previous diagram implies that

x _ n (_ ! ! ~ _ _ _ + u (F (x))

(~); u(~') = u(0;T)

T

commutes in K. Then the uniqueness of $ gives p;~' = ~, so that p s

r (x) , - t ÷ X' ' Y (X , T) + X ' . K'$T' ,T = K'$T' ,T'

Now we can apply these general results to the specific case of interest.

Let ~AF be a fixed but arbitrary category-sorted signature, let CALG (called

ALGflA F in the main text) be the category of ~AF-algebras and their homo-

morphisms, and let ALG be the category of A-algebras and their homomorphisms:

(i) A A-algebra consists of:

(2)

(la) A carrier R, which is a set.

(ib) For each n > 0 and 6 ¢ A , an interpretation ~6 ¢ Rn ÷ R.
-- n

If R,o and R',o' are A-algebras, then a homomorphism from R,o

to R' o' is a function h s R ÷ R' such that, for all n > 0

and 6 g A n, the diagram

Rn °5

i hn

R,n ~d

>R

>R'

of functions commutes.

25t

The known existence of ordinary free algebras can be stated in the

language of adjunctions by:

Let U A be the functor from ~LG to SET which maps algebras into

their carriers and homomorphisms into themselves. Then U A

possesses a left adjoint F A with an associated natural

transformation qA°

Here FA(S) is the free A-algebra generated by S, and qA(S) is the embedding

of S into the carrier of FA(S).

Of particular importance is the A-algebra, which we will call T, in which

the carrier members are sorts and the interpretation of each operator is its

category-sorted specification. More precisely, T is the A-algebra I~], Fob ,

where each rob,6 is the object part of the functor F 6.

We now introduce the categories ALGST and SET$1~ I. An object of ~,~T

can be thought of as a A-algebra equipped with an assignment of sorts to the

members of its carrier. Similarly, an object of SET$1~ I can be thought of

as a set equipped with an assignment of sorts to its members. Since l~I =

UA(T), our last general proposition gives:

Let U T be the functor from AL~T to SET$1~ I such that UT(<R,o>,~)

= UA(R,o),UA(T) = R,T, and UT(h) = UA(h) = h. Then U T has a left

adjoint F T and an associated natnral transformation qT such that

^

FT(S,T) = FA(S),T

qT(S,T) = qA(S) ,
^

where T e FA(S)A~GT is the unique morphism such that

hA(S)
S >UA(FA(S))

" ") T

commutes in SET.

Informally, a type assignment to a set can be extended to the free A-algebra

generated by that set by using the specification F to interpret the operators

in A.

252

Our final (and most complicated) task is to construct an adjunction

from AL~T to CALG. Let U C be a functor from CALG to AL~T whose action

on objects is given by:

Uc(B',y') = <R',o'>,T' where

R' = { ~ , x ' [~ ~ I~l and x ' ~ B'(~)} ,

' s R 'n + R' is the function such that 0 6
(1)

O6(<~l'Xl >' " ' " ' <~n'X'>)n =

T

r6(~l, ... ~n) , V5(ml ~n)(Xl, ... x')

• ' e R' ÷ l~i is the function such that T'(~,x') = ~ .

(The variables in this definition have been primed to facilitate its applica-

tion to later developments.) The reader may verify that T' is an homomorphism

from R',a' to T, so that <R',~'>,T' is an object of ALGST. Intuitively, the

action of U C on objects is to forget the morphism part of B' (i.e., the

implicit conversion functions) and to collapse the object part of B' into a

disjoint union R' of its components, with a type assignment T' which remembers

which component of B' was the source of each member of R'.

To specify the action of U C on morphisms, suppose ~ e B,y CALG÷ B',y',

and let <R,o>,T = Uc(B, Y) and <R',g'>,T' = Uc(B',y'). Then

UC(0) ~ R ÷ R' is the function such that

u c (0) (~ , x) = ~ , e (~) (x) .

The r e a d e r may v e r i f y t h a t UC(O) i s anhomomorphism from R,a t o R',a' (which

depends upon the fact that 0 is an homomorphism from B,y to B',y'), that

Uc(9)
R,o-- > R',o'

T

commutes in ALG, so that UC(0) ~ <R,~>,T ALG$÷ T <R',~'>,T', and that U C

preserves composition and identities.

253

Next, let F C be the functor from ALGST to CALG such that

Fc(<R,o>,~) = B,y where

B(m) = {r,l I r s R and ! E T(r) ~ ~} ,

B(p e ~ ~ m') e B(~) ÷ B(~') is the function such that

B(~)(r,1) = r,(1;c~) ,
(2)

y6(~l, ... , mn) ¢ B(ml) x ... x B(~n) ÷ B(Fs(ml, "'" 'nm))

is the function such that

yS(~l, ... , ~n)(<rl,ll >, ..o , <rn, ln >) =

o6(rl, .o. , r n),F6(11, ... , In) "

To see that y6(~l, ... , Wn) is a function of the correct type, suppose that,

for 1 < i < n, <ri,~i> s B(~i). Then each i i c T(r i) ~ ~. Thus

r6(ii, ... , i n) ~ r6(T(rl) , ... , T(rn)) ~ FS(~I, ... , ~n) . But since

is an homomorphism from R,o to T = I~I,rob, this set is also

r(o6(rl, ... , rn)) ~ r~(~ I ~n)). Thus <o6(rl rn) ,

F6(\I, ... , In)> e B(F6(~ I, ... , ~n)). The reader may also verify that B

is a functor from ~ to SET and %6 is a natural transformation from Bn;× (n)

to F;B.

Intuitively, one can think of T as assigning a "minimal" type to each

member of R, and of a member of B(m) as a member of R paired with an implicit

conversion from its minimal type to ~.

For any object <R,o>,T of ALGST,

Uc(Fc(<R,o>,~)) = <R,o>,T where

= {m,<r,~> I ~ ~ I~I and r ~ R and ~ ¢ T(r) ~ ~} ,

~6 ~ ~n ÷ ~ is the function such that

o~(<~l,<rl,ll >>, In~>) = • .. , <~n,<rn ,

r6(w I, ... , ~n), <o6(r I rn),F6(I 1 In)> ,

s R ÷ I~] is the function such that 7(~,<r,~>) = ~ .

254

Let

qc(<R,o>,T) ~ R + R be the function such that

qc(<R,o>,T)(r) = T(r),<r,l~(r)> .

The reader may verify that ~c(<R,~>,~) is anhomomorphism from R,o to R,o

(which depends upon the fact that T is an homomorphism from R,o to T = If~ I ,Fob),

and that

nc(<R,o>,~) _ _

R,o > R,o"

. +

qc(<R , ÷ <R,o>,T = <R,~>,~ ALGST Thus O>,I) ~ <R,o>,T ALGST commutes in ALG.

Uc(Fc(<R,o>,~)).

Now we will show that F C is a left adjoint of UC, with associated

natural transformation qC" Let <R,o>,T be an object of ALC~T, let B',y' be

an object of CALG, and let h be a morphism in ALGST from <R,~>,T to Uc(B',y'),

where UC(B',y') = <R',O'>,T' is described by (i).

Since h is a function from R to R', the definition of R' implies that

h(r) will be a pair ~,x', where x' ¢ B'(m). Moreover, since h is a morphism

in ALG$ T,

h R,O ~RI~o v

k/ '
T

m u s t commute i n ALG, s o t h a t T (r) = T ' (h (r)) = T ' (e , x ') = ~ . T h u s

[h (r)] 1 = ~ (r) and [h (r)] 2 ¢ B ' (r (r)) .

Now suppose ~ is any morphism in Fc(<R,o>,T) ÷ B' , CALG ,y' where

Fc(<R,o>,T) = B,y is described by (2), and consider the diagram

255

nC(<R,o>,T)
<R,o>,T--) UC (Fc(<R,o>, r))

~ IUc(h) (D)

Uc(B' ,~')

in ALG$ T.

From the definitions of ~C and of the action of U C on morphisms,

we have

= T (r) ,h(~ (r)) (r, l~(r)) U C (f a) (D C (< R , o > , T) (r)) = U C (I ~) (T (r) , < r , I T (r) >) °

Thus the diagram (D) will commute if and only if, for all r E R,

h(T(r))(r,l~(r)) = [h(r)] 2 .

Moreover, since h is a category-sorted homomorphism from B,y to B ~T'~

it is a natural transformation from B to B' Thus for all r ~ R, ~ ~ I~I,

and I e T(r) ~ m,

B (T (r))

B(1)

h(T(r)) >B' (T(r))

i B' (1)
B(~) ~(w) ~ B' (~)

commutes in SET. In conjunction with the action of B on morphisms, this gives

h(~)(<r,1>) = h(~)(B(1)(r,I$ r)) = B'(~)(h(T(r))(r~I~(r)))
6)

Thus diagram (D) will commute if and only if

~(~)(<r,~>) = B'(~)([h(r)] 2)

holds for all r ~ R, ~ ~ I~I, and ~ ~ ~(r) ~ ~.

Since this equation completely determines h, the adjunction property will

hold if the resulting h is actually a category-sorted homomorphism from B,y

to B',y'. We leave it to the reader to verify that h(w) c B(w) ÷ B'(~), and

that, because of the action of B on morphisms, h is a natural transformation

from B to B'. The one nontrivial property to be shown is that h satisfies

the homomorphic relationship with the interpretations y and ~v, i.e., that

for all n ! 0, 6 s An, and ~i ' ~n ~ I~i'

256

~6(~i ' ~n)
B(el) x ... x B(~n) >B(F6(~I' "'" ' ~n))

[G(~ I) .. G(%) I~(r6(~l %))

|

x x

\ Y~(L° 1 , ~n)
$

B'(~I) x ... x B'(~n) >B'(F6(m I , ~n))

commutes in SET.

To see this, suppose <r l,tl>, ... , <rn,ln> ~ B(~I) x ... x B(~n)"

Then

h(r6(~ I , mn))(Y6(~ I , mn)(<rl,ll > <rn,tn>))

= h(r6(~ I ~n))(o6(r I, ... , rn), r6(I I In))

= B'(P6(t 1 , tn))([h(o6(rl rn))] 2)

= B'(F6(tl, ... , tn))([o~(h(r I) , h(rn))] 2)

since h is an homomorphism from R,~ to R',~'

= B'(F6(tl, ... , in))(Y~(T(rl) , T(rn))([h(rl)]2' "'" ' [h(rn)]2))

' given in (I) by the definition of ~6

= Y6(~I ' ~n)(B'(tl)([h(rl)]2) B'(tn)([h(rn)]2))

' is a natural transformation from B 'n (n) since Y6 ;x to F~;B'

= y6(~l, • ~n)(h(~l)(rl,ll) ... h(~n)(rn, ln))

in summary, we have constructed the adjunctions

F T F C

-- > - - > CALG SETS I~I < ALGST

U T U C

with associated natural transformations qT and qC' The adjunction used in

the main text is the composition of these adjunctions;

U = Uc;U T

F = FT;F C

q(S'Ts) = qT(S'Ts);SETSI~IUT(qC(FT(S'TS)))

257

The free ~AF-algebra F(S,Ts) generated by S,~ S is given explicitly

by (~, where R,o is the free A-algebra generated by S and T g R + l~I

is the unique homomorphism such that qA(S);T = ~S"

In the special case where ~ is a preordered set, there is at most

one I e T(r) ~ 9, so that (2) is isomorphic to the much simpler definition:

B(~) = {r I r s R and T(r) ~ ~}

B(m ~ m') is the identity inclusion from B(~) to B(~'),

y6(~l, ... , ~n)(r I, °oo , r n) = o6(rl, ... , rn)"

In this case, B(~) is simply the subset of the terms of the ordinary free

A-algebra whose minimal sort is a subsort of ~, the implicit conversion

functions are all identity inclusions, and the operators are interpreted

the same way as in the ordinary free algebra.

258

REFERENCES

i. Goguen, J. A., "Order Sorted Algebras: Exceptions and Error Sorts,
Coercions and Overloaded Operators", Semantics and Theory of
Computation Report #14, Computer Science Department, U.C.L.A.,
(December 1978). To appear in Journal of Computer and Systems Science.

Goguen, J. A., Thatcher, J. W., Wagner, E. G., and Wright, J. B.,
"Initial Algebra Semantics and Continuous Algebras", Journal ACM 24
(i) pp. 68-95 (January 1977).

3. Burstall, R. M., and Landin, P. J., "Programs and Their Proofs: An
Algebraic Approach", in Machine Intelligenqe 4, B. Meltzer and D.
Michie, Eds., Edinburgh University Press, pp. 17-43 (1969).

Birkhoff, G., and Lipson, J. D., "Heterogeneous Algebras", Journal
of Combinatorial Theory 8, pp. 115-133 (1970).

Higgins, P. J., "Algebras with a Schema of Operators", Math. Nachr.
27, pp. 115-132 (1963).

Morris, J. H., "Types are not Sets", Proc. ACM Symposium on Principles
of Programming Languages, pp~ 120-124, Boston (1973).

Reynolds, J. C., "Syntactic Control of Interference", Proc. Fifth ACM
Symposium on Principles of Programming Languages, pp. 39-46, Tucson
(1978).

Reynolds, J. C., The Craft of Programming, in preparation.

MacLane, S., Categories for the Working Mathematician, Springer-Verlag,
New York (1971).

i0. Reynolds, J. C., "GEDANKEN - A Simple Typeless Language Based on the
Principle of Completeness and the Reference Concept", Comm. ACM 13
(5), pp. 308-319 (May 1970).

ii. Arbib, M. A., and Manes, E. G., Arrows~ Structures~ and Fun ctors -
The Categorical Imperatiy e, Academic Press, New York (1975).

2.

4.

5.

6.

7.

8,

9.

