
EXPERIENCES WITH THE COMPILER WRITING SYSTEM HLP

Kari-Jouko R~ihg

Department of Computer Science, University of Helsinki
Tukholmankatu 2, SF-00250 Helsinki 25, Finland

ABSTRACT

Compilers for languages of widely varying nature have been constructed using the com-

piler writing system HLP. Characteristics of the language descriptions and of the com-

pilers produced are reported. Opinions of the users are discussed, and various ways

to improve HLP are suggested. The experiences gained are relevant for similar pro-

jects aiming at the construction of compiler writing tools.

I. INTRODUCTION

HLP (Helsinki Language Processor) is a compiler writing system designed and imple-

mented at the University of Helsinki. The development work was begun in 1975, when

funds for four research workers were obtained from the Academy of Finland, The main

parts of the system were frozen in March 1978, when a user manual [27] was published.

After that most of the development work has concentrated on increasing the user-

friendliness, efficiency, and flexibility of the system. The main financial support

for the project stopped in 1978, and since then the work has been carried out as nor-

mal university research and partly as student assignments.

The system runs on the Burroughs B6700 computer. It is written in B6700 Extended

Algol and produces compilers written in the same language. The size of the present

version of HLP is roughly 35.000 program lines, of which about 25% are comments. See

[36] for more details on the project.

The source language is described to the system using two metalanguages: one for the

lexical structure of the source language, and the other for everything else. Further-

more, a specially designed job control language [26] is used for controlling the ex-

ecution of the various parts of HLP.

The lexical metalanguage offers simple set operations for describing character sets,

regular expressions (with simple transformations) for describing token classes, and

action blocks for describing the actual scanning and screening.

The main metalanguage combines features for defining the syntax and semantics of the

source language. Syntax is defined using a version of BNF. Static semantics is de-

scribed by semantic attributes, with complicated semantic actions expressed as pro-

cedures in B6700 Extended Algol. Code generation is defined by a translation scheme,

where translation actions are again expressed as Algol procedures.

351

A detailed description of the metalanguages is given in [27].

The compilers produced by HLP employ the LALR(1) parsing method. The parse tree is

constructed explicitly, and some semantic attributes are evaluated during parsing.

The rest of the attributes are evaluated in several depth-first traversals through

the parse tree made by an alternating semantic evaluator [9,24]. A final pass over

the parse tree performs the code generation on the basis of the translation schemes.

In this paper we discuss the experiences gained in using HLP. In Section 2 we list

various properties of the grammars used to describe different source languages. The

quality of the compilers produced from these grammars is discussed in Section 3. Opiz

ions of the users of HLP are given in Section 4. We conclude in Section 5 by summar-

izing the main implications of the experiences gained.

2. APPLICATIONS OF HLP

HLP is presently being used in student assignments on an introductory course on com-

piler construction. Moreover, a wide variety of real programming languages has been

at least partially implemented with the aid of HLP. Owing to our limited resources,

all these implementation tasks have been carried out by graduate students. For the

same reason it has not always been possible to polish the code generation phase of

the compilers produced. The emphasis has been on areas where HLP has more support to

offer: lexical structure, syntactic analysis, and static semantics.

We have tested HLP with languages of very different nature in order to find out the

suitability of the description tools in various situations. Thus HLP has been used to

produce assemblers, precompilers, compilers for machine-oriented high-level languages,

and compilers for general high-level languages. It has also been applied in imple-

menting parts of its own job control language [21] and in describing a grammatical

data base model [14,17].

Table 1 contains some properties of the language descriptions. The following abbrevi-

ations are used:

INI = number of nonterminals in the grammar

IT[= number of terminals in the grammar

LPI = number of productions in the grammar

IGI = size of the grammar = X IX~f
X ~ E P

IAl = number of attributes in the grammar

ASE = number of evaluation passes in an alternating semantic evaluator

The syntactic information in Table 1 was obtained mainly from [20].

The figures in Table 1 do not always directly reflect properties of the language; in-

stead, they may be strongly influenced by the nature of the implementation project.

For instance, the attribute grammar for Euclid was produced from scratch, whereas in

S
o
u
r
c
e

l
a
n
g
u
a
g
e

N
a
m
e

R
e
f
.

C
o
b
o
l

[3
7]

P
A
L

[4
2]

B
6
7
0
0

[
2]

E
x
t
e
n
d
e
d

A
l
g
o
l

A
d
d

[2
3]

A
g
r
a
r
m
n
a
t
i
e
a
l

[1
4]

d
a
t
a

b
a
s
e

m
o
d
e
l

S
i
m
u
l
a

[
5
]

E
u
c
l
i
d

[1
5]

M
I
X
A
n

[I
0]

PL
36

0
[4
0]

P
L
/
M
i
k
k
o
3

[1
9]

S
-
F
o
r
t
r
a
n

[
3]

(t
wo

v
e
r
s
i
o
n
s
)

P
a
s
c
a
l

[4
1]

T
a
r
g
e
t

l
a
n
g
u
a
g
e

(
o
n
l
y

s
y
n
t
a
x
)

(
o
n
l
y

s
y
n
t
a
x
)

G
r
a
m
m
a
r

Re
f.

IN
I

{T
I

JP
J

IG
I

ta
r

AS
E

Li
ne

s

(
o
n
l
y

s
y
n
t
a
x
)

(o
nl

y
s
y
n
t
a
x
)

-
(n

o
c
o
d
e

g
e
n
e
r
a
t
i
o
n
)

-
(n

o
c
o
d
e

g
e
n
e
r
a
t
i
o
n
)

-
(n

o
c
o
d
e

g
e
n
e
r
a
t
i
o
n
)

M
I
X

1
0
0
9

m
a
c
h
i
n
e

l
a
n
g
u
a
g
e

I
B
M

3
6
0

a
s
s
e
m
b
l
y

c
o
d
e

I
n
t
e
r
m
e
d
i
a
t
e

c
o
d
e

a)

F
o
r
t
r
a
n

b
)

F
o
r
t
r
a
n

B
6
7
0
0

E
x
t
e
n
d
e
d

A
l
g
o
l

[1
8]

[4
2]

[3
5]

4
1
8

2
9
0

9
3
0

3
1
1
3

-
-

2
2
0
0

3
1

4
7

79

2
5
9

-
-

i
0
0

2
6
8

1
4
5

7
1
5

2
3
5
0

-
1
7
0
0

1
7
0

9
4

3
5
3

1
0
6
5

-
5
0
0

1
6

i
0

2
2

72

1
2

2
2
0
0

1
4
7

7
7

2
8
3

7
9
5

3
6

4
3
2
0
0

1
5
8

9
6

3
4
2

1
0
6
1

4
7

1
9
4
0
0

2
7

1
7

5
2

1
3
2

1
7

2
1
3
0
0

6
0

6
5

1
5
1

4
9
0

4
9

2
3
3
0
0

1
0
2

1
3
5

3
5
3

1
1
1
9

39

3
3
5
0
0

2
2
3

1
0
6

4
4
9

1
3
1
7

4
9

2
4
2
0
0

7
4

4
6

1
3
0

4
0
7

4
8

2
2
5
0
0

1
3
8

6
8

2
5
4

7
2
1

7
2

5
6
0
0
0

[
4]

[1
7]

[3
9]

[3

1]

[1
2]

[3
o]

[
6]

[

s]

[1
6]

[2
8]

[2

8]

[
l]

[1
3]

L
A
L
R
(
1
)

p
a
r
s
i
n
g

a
u
t
o
m
a
t
o
n

S
t
a
t
e
s

T
r
a
n
s
i
t
i
o
n
s

1
8
3
9

8
5
2
5

1
5
5

1
2
3
5

1
3
8
9

1
0
8
4
0

6
1
9

3
6
4
9

4
8

8
7

4
2
3

3
5
3
3

6
2
8

3
6
6
4

75

2
4
7

2
5
5

8
8
3

5
9
5

4
2
1
0

7
8
1

2
3
4
0

2
5
3

5
9
3

4
1
0

2
2
9
0

C
O

O
1

~
O

T
a
b
l
e

1.

353

the implementation of Pascal we took a "quick and dirty"-approaeh by trying to make

use of an already existing Pascal compiler [7]. It turned out that this decision

greatly obscured the attribute grammar, which partly explains the large number of at-

tributes for Pascal. Another reason is that the Pascal compiler contains code gener-

ation, which is presently missing from the Euclid compiler. The addition of code gen-

eration typically causes an increase in the number of inherited attributes in the

grammar.

The grammars for Simula and PL360 were originally produced elsewhere. They were fair-

ly easily adapted to the form required by HLP. Moreover, grarmnars developed for HLP

have been used in another system [22]. This shows one of the advantages of using a

compiler writing system for producing a compiler: although the compilers generated by

HLP are not portable, the grammars are. The set of languages which have been described

by an attribute grammar is gradually growing. For instance, if we were to begin the

implementation of a Pascal compiler today without our own grammar, we would undoubted-

ly adapt the grammar in [38] for HLP.

S-Fortran extends standard Fortran mainly with some new control structures. Two gram-

mars have been written for S-Fortran: version (a) contains the complete syntax, where-

as version (b) only checks the correctness of those parts of the program which contain

features not in standard Fortran, leaving the rest to the Fortran compilation which

follows the preprocessing phase. As a consequence, the size of the syntax in version

(b) is less than a third of version (a). This is achieved by an increase in the size

of the lexical description, which is about 80 lines for version (a) and 175 lines for

version (b). Still, the savings in manual work are considerable. The description of

the preprocessor would not be possible if the lexical metalanguage did not allow the

use of several action blocks, Now the 'mode' of scanning can be changed so that stan-

dard Fortran is effectively skipped, and more detailed scanning is resumed when some

catchword is encountered.

3. QUALITY OF THE PRODUCED COMPILERS

The emphasis in the implementation projects has been in describing the source lan-

guage, not in producing an efficient compiler. The testing of the generated compilers

has not been very comprehensive. However, some information on the processor time re-

quired by various compilers has been collected in Figure i. The size of the test pro-

gram is measured in lexical tokens. This is a more accurate measure of program size

than the number of program lines, which can vary a lot depending on programming style

and on the programming language. For the test programs used in Figure i the average

number of lexical tokens per program line ranged from 3.4 (for MIXAL) to 8.2 (for

PL360).

The times in Figure I are enormous and far from production quality; perhaps only the

time required by the S-Fortran preprocessor could be tolerated in a production

354

Processor
time in
seconds

20

15

1,0.

/ / /

160 200 360 460 500 Number of
lexical tokens

Figure i.

environment. What is the reason for this excessive usage of time? A comparison of the

various compilers shows that almost independently of the source language, the time re-

quired for lexical analysis, parsing, and construction of the parse tree (with space

allocation for attributes) is about 40% of the entire time, while attribute evaluation

takes 40-45% and code generation the rest 15-20%.

Lexical analysis [29] is certainly very fast. A comparison of the original lexical

analyzer in the hand-written Pascal compiler [7] to the one produced by HLP showed

that the latter was considerably faster, resulting in a reprogramming of the hand-

written analyzer! This emphasizes one of the advantages of using a compiler writing

system: it is possible to analyze the efficiency of various solutions and language

features in more detail than in a normal compiler project. When the compiler is gen-

erated automatically, the best solutions found are made available to users having

little or no idea of the characteristics of the specific computer.

In spite of the speed of the lexical analyzer, a further analysis of the Pascal com-

pilers showed that the first phase (lexical analysis, parsing, construction of the

parse tree, linking of attributes) of the compiler produced by HLP alone took much

more time than the entire compilation with the hand-written compiler. We can see two

reasons for this situation. First, the other parts of the compilers produced by HLP

have not been tuned as carefully as the lexical analyzer; a wise choice between sev-

eral possible statement structures reduced the time for lexical analysis by a factor

of ten. And secondly, HLP generates multi-pass compilers, whereas the hand-written

355

Pascal compiler is a one-pass compiler. Although we use one of the simplest techniques

for attribute evaluation in a multi-pass compiler, the construction of the parse tree

and the linking of attributes take a lot of time which is not required in a hand-

written compiler. It seems that the price for ease of language and compiler descrip-

tion (i.e. the allowance of multi-pass evaluation) is that the resulting compiler will

be slower than a hand-written one.

Although the time requirements are large, the usage of memory is the real hindrance

for testing the compilers with large programs. For instance, the largest Euclid pro-

gram shown in Figure 1 consists of 165 lexical tokens (42 program lines), and yet its

average core usage is more than 90K words of B6700 memory. We are presently imple-

menting a new dynamic storage management scheme for semantic attributes [25]. This was

anticipated in the attribute grammar for Euclid, where the emphasis was on elegance of

language description rather than efficient evaluation of attributes. Consequently,

under the present static space allocation scheme the Euclid compiler has symbol tables

hanging all over the parse tree, which accounts for the large space requirement.

In other grammars, the users have been to some extent responsible for the space allo-

cation themselves: critical attributes have been implemented as global attributes,

which have fewer (yet more than one) instances than the attributes in a pure attribute

grammar. Even then the space requirements are considerable; for instance, the average

core usage for the data structures required in the compilation of a Pascal program

with 500 lexical tokens is almost 20K words. The space requirement seems to grow lin-

early with the size of the program, making the compilation of very large programs im-

possible.

The main reason for the vast amount of storage required is the number of attribute

instances, which tends to explode with the size of the program: the attributed parse

tree which corresponds to a PL360 program with 134 lines has more than 15.000 attri-

bute instances! Although we hope that the new strategy for memory management will

somewhat diminish the usage of space, it seems again obvious that the space require-

ments of the compilers produced automatically using the present techniques are much

larger than those of hand-written compilers.

Besides the data structures, the code of the generated compilers takes a lot of space,

too. One reason for this may be that all parts of the compiler (lexical analyzer,

parser, error recovery procedure, semantic analyzer, code generator) are generated

individually for each source language, instead of being table-driven. In the case of

the lexical analyzer its speed justifies this decision, especially as the lexical ana-

lyzers are reasonably short (around I000 program lines). However, for the other parts

the wiseness of the technique can be questioned. Although the encoding of the tables

into program form makes the text of the compiler fairly readable, it is still probable

that in further revisions of HLP we will at least offer the generation of table-driven

compilers as an alternative to the present approach.

356

We have seen that the compilers produced by HLP are inefficient. However, although

easiest to measure, efficiency is not the only factor to be considered in estimating

the quality of a compiler. In other respects the compilers produced by HLP do better,

because they are described using high-level metalanguages. Thus such properties as

portability, reliability and modifiability are properties of the description rather

than properties of the compiler. Moreover, in most cases the students in charge of

the implementations had only little knowledge of HLP and of the source language before

the implementation, and yet the time required for completing the assignments varied

from three to twelve man months; note however that usually the result was not a com-

plete compiler with code generation.

4. OPINIONS OF THE USERS

The users quite understandably like best those parts of the system which are most

automatic. In particular, the error recovery part [32] requires no input from the

user besides the context-free syntax. Consequently, the first automatically generated

error messages encountered in test runs are often considered by students as small mir-

acles. The compactness of the lexical metalanguage has been quite appealing, too. The

only major complaint has come from users describing languages with a fixed-column for-

mat (MIXAL, Cobol, S-Fortran); the description of column dependencies with regular ex-

pressions is, although possible, rather awkward°

The syntactic and semantic metalanguages were generally considered reasonably easy to

read. However, the creation of syntactic and semantic descriptions which satisfy the

requirements of the system was more problematic. In the syntactic part, the main prob-

lem was the LALR(1) condition (or more exactly, the LR(1) condition: all of the con-

flicts in the initial attempt at an Euclid grammar were typically LR(1) conflicts, not

specifically LALR(1) conflicts). In particular, the structure of expressions of vari-

ous type is often severely distorted when the syntax is forced into unambiguous

LALR(1) form. Another source of conflicts is formed by optional features in the source

language. In Cobol, even some declarations and statements are optional, not to mention

a whole bunch of optional keywords° In Euclid, semicolons are often optional. Such

options are generally described by g-productions, possibly causing LALR(1) conflicts

which are difficult to solve. Figure 2 (taken from [ii]) shows how the number of

LALR(1) conflicts for the Euclid grammar developed in conseeutive runs.

The Euclid syntax was written by a person who was thoroughly familiar with LALR

parsing, so that the initial grammar (with almost 30 conflicts) was not just 'any'

grammar: it was written with LALR parsing in mind. For a typical user (with less

knowledge of LALR parsing) and for a grammar of the same size, both the nnmber of

conflicts in the initial grammar and the number of runs required to remove the con-

flicts were roughly five times larger. One reason for this is that the conflicts are

reported in terms of the automaton, not in terms of the syntax; this may sometimes

357

number of
conflicting
states

30-

20

lOw!

1 2 3 4 5 6 7 8 number of
runs

Figure 2.

lead to hasty and unsuccessful correction attempts. A modification of HLP to remedy

this situation is in preparation [33]. Many conflicts could be resolved by the use of

semantic information; such extensions to HLP are presently being planned [34]. This

feature seems to become more and more important with new languages which apply the

principle of "uniform reference", i.e. where semantically different constructs have

the same syntactic outlook.

Semantic attributes have been generally well received. The parse tree gives a nice

underlying structure for semantic processing. The compilation of control structures

is particularly easy; this made the writing of the S-Fortran preprocessor very con-

venient. Moreover, the description can be built both in small syntactic units (produc-

tion after production) and in small semantic units (groups of attributes), making the

description easily manageable. Quoting from [31], "how else could you manage to de-

velop a 3000-1ine program without any algorithms, flowcharts, or other documents?"

Perhaps the most annoying feature with the semantic metalanguage has been the necess-

ity to be aware of the space constraints, i.e. the necessity to use global attributes.

Global attributes are dangerous because they make the meaning of the semantic descrip-

tion depend on the order of attribute evaluation. We tried to impose a discipline on

the use of global attributes by dividing them into inherited and synthesized on the

basis of some experiments with symbol tables. However, it turned out that this classi-

fication did not suit equally well for other situations where global attributes were

necessary. Consequently, to meet the restrictions imposed by HLP and to achieve ef-

ficiency, users were tempted to resort to the semantic procedures for using global

attributes in a way that would otherwise have been prevented by HLP (the system does

not check how semantic procedures use their parameters). This is clearly undesirable.

Even though some users have in the long run grown to like global attributes (for the

same reasons why global variables are sometimes more convenient than local variables

or parameters), we are still planning to abandon global attributes altogether if the

358

~ew memory management strategy meets our expectations.

Users have also disliked the fact that a great deal of the semantic processing is per-

formed in semantic procedures instead of semantic rules. Such scattering of semantic

information is a consequence of the design principle of the semantic metalanguage: we

tried to keep the metalanguage small and resort to Extended Algol for any complicated

processing. In fact, the semantic rules are actually compiled into Extended Algol in

a preprocessing fashion. The decision was motivated by ease of implementation, but it

had several undesirable consequences: scattering of semantic information into places

wide apart from each other; unsatisfactory data types (those of Algol) for semantic

attributes; and unsafe procedures, highlighted by the tricks used to access global

attributes illegally. It would have been better to design a completely new and more

powerful metalanguage for the semantic rules. Another way to diminish the user's pro-

gramming work would be to offer some built-in semantic actions for frequently

occurring tasks, e.g. symbol table management.

None of the users complained of the restrictions imposed by the alternating semantic

evaluator as being very difficult to satisfy. On the contrary, in the grammar for

PL360 the checking of the grammar at metacompile time revealed circularities in the

original grammar [6]. This supports our belief that contrary to what has sometimes

been claimed, the problem of circular definitions is not merely academic. The well-

formedness of every attribute grammar should be checked at metacompile time, be it

with a full circularity test or some more restrictive algorithm.

The satisfaction with the tool for code generation, i.e. tree-walking translation

schemes, seems to depend on how closely the target language is related to the source

language. In the case of S-Fortran the translations were quite adequate, but for

Pascal (with Extended Algol as target language) a more powerful tool would have been

useful. The compiler for Simula does not contain code generation, but the author of

the grammar expected that writing the code generation part with the translation

schemes would be difficult.

Although the conceptual tools have their flaws, the main reasons for frustration among

the users have been of a pragmatic nature and often typical for large software pro-

jects in general. Many of the student assignments were begun when the system was still

under development, so that many users were faced with a malfunctioning of HLP. Of

course, debugging the system was one of the main goals in the test implementations,

but it is understandable that students were not pleased with delays caused by system

corrections, not to mention the time they had in vain used in trying to find an error

in their own work.

The job control language for HLP was not released before the system had been used for

quite a while. Before it, the users were forced to handle the management of a large

number of files used and produced by HLP themselves, an annoying and error-prone task.

The satisfaction with the job control language has convinced us that every similar

359

system with several interacting modules should have a high-level control language of

its own, even when the general job control language of the computer is as pleasent as

that of B6700. Such a control language could also be used for tying together tools de-

signed originally for independent use. One of the short-comings of HLP is that it is

too monolithic: it is somewhat difficult to apply only some part of the system, since

it has been anticipated that all parts of the compiler are produced by HLP; then the

couplings between different modules in the compiler are unnecessarily strong. Moreover,

the compilers produced by HLP have a too fixed form: they do not offer options for

users as hand-written compilers do.

Some of the early users also complained about the lack of adequate documentation. This

need has been somewhat removed by the publication of the user manual [27], but even

now the wish of a presentation more in a textbook style with examples of varying dif-

ficulty comes up every now and then. In particular, more information has been required

by persons whose background has not been in compiler writing, but who have used HLP to

implement small application-oriented languages; this is exactly the area where HLP and

other compiler writing systems should be most useful. This indicates that for appli-

cation-oriented users the metalanguages should be kept simple.

HLP produces a lot of useful listings and statistical information of the language de-

scriptions. Yet many users have expressed the wish for one further listing: a cross-

reference list of the semantic rules arranged by semantic attributes, not by produc-

tions. Although the grammar is easiest to develop when it is arranged by productions,

the cross-reference list would be useful for documentation purposes.

5. CONCLUSIONS

HLP has been extensively used in student assignments. Various languages of different

nature have been more or less completely implemented with the help of HLP. The com-

pilers produced by the present system are inefficient. Several revisions are planned,

but it seems obvious that the compilers generated by HLP will never reach the ef-

ficiency of hand-written compilers. However, the compiler descriptions have been fair-

ly easy to write, easy to read, and easy to maintain.

The users have been reasonably satisfied with the description tools, the main diffi-

culties being concerned with the LALR(1) condition and the excessive usage of space in

the implementation of attribute grammars, which has forced the users to deviate from

using pure attribute grammars. Yet the main complaints have been pragmatic: diffi-

culties with the use of the system at the program level, lack of documentation, lack

of personal assistance for uninitiated users, behaviour of the produced compilers. Al-

though users can adapt themselves rather easily to short-comings in the metalanguages,

they soon get frustrated if the system has bugs, if it is difficult to use, or if the

product has to be manually modified. The amount of work required for such practical

issues should not be underestimated in similar projects.

360

ACKNOWLEDGEMENTS

The HLP project is headed by Professor Martti Tienari. Additional members in the de-

sign and implementation team included Kai Koskimies, Paula M~kel~, Mikko Saarinen,

Seppo Sippu and Eljas Soisalon-Soininen. This particular paper could never have been

written without the efforts of numerous students, who participated in the implementa-

tion and use of the system. The time spent by several persons for discussions on the

topic and for reading a draft of the manuscript is also gratefully acknowledged.

This work was supported by the Academy of Finland.

REFERENCES

Unless otherwise stated, the reports listed below have appeared in the publication

series of the Department of Computer Science, University of Helsinki.

I. Asp,J.: A description of the syntax and static semantics of Pascal using HLP (in
Finnish). In preparation.

2. Burroughs Corp.: Burroughs B6700/B7700 Algol language reference manual. Burroughs
Corporation, May 1974.

3. Caine, Farber, Gordon, Inc.: S-Fortran language reference guide. Caine, Farber,
Gordon, Inc., 1974.

4. CII Honeywell Bull: LALR(1) grammar for Ada. Unpublished computer listing, CII
Honeywell Bull, 1979.

5. Dahl,O.-J., Myhrhaug,B. & Nygaard,K.: Simula 67 Common Base Language. Norwegian
Computing Center, Oslo, 1968.

6. Dreisbach,T.A.: A declarative semantic definition of PL360. Technical Report
UCLA-ENG-7289, Computer Science Department, University of California, Los Angeles,
California, October 1972.

7. ErkiS,H., Sajaniemi,J. & Salava,A.: An implementation of Pascal on the Burroughs
B6700. Report A-1977-I, May 1977.

8. Ikonen, M.: An attribute grammar for PL360 (in Finnish). Internal Report C-1979-24,
January 1979.

9. Jazayeri,M. & Walter,K.G.: Alternating semantic evaluator. Proceedings of the ACM
1975 Annual Conference, October 1975, 230-234.

i0, Knuth,D.E.: The Art of Computer Programming, Vol. i: Fundamental Algorithms.
Addison-Wesley, Reading, Mass., 1967.

ii. Koskimies,K.: LALR(1) syntax analysis for the programming language Euclid (in
Finnish). Internal Report C-1978-41, April 1978.

12. Koskimies,K. & Juutinen,L.: An attribute grammar for the compile-time semantics of
a subset of the programming language Euclid. Internal Report C-1979-130, December
1979.

13. Laaksonen,H.: Code generation in the Pascal compiler produced by HLP (in Finnish).
Internal Report C-1978-65, July 1978.

14. Laine,H., Maanavilja,O. & Peltola,E.: Grammatical data base model. Information
Systems 4, 4 (1979), 257-267.

15. Lampson,B.W., Horning,J.J., London,R.L., Mitchell,J.G. & Popek,G.J.: Report on the
programming language Euclid. SIGPLAN Notices 12, 2 (February 1977).

361

16. Luikku,M. & Riekkola,E.: Construction of a PL/Mikko compiler (in Finnish). Inter-
nal Report C-1979-73, April 1979.

17. Maanavilja,O.: The query language in a grammatical data base model (in Finnish).
Internal Report C-1979-45, March 1979.

18. Niittyranta,T.: An LALR(1) syntax for CODASYL Cobol (in Finnish). Internal Report
C-1978-62, May 1978.

19. Nokia Electronics: MIKKO3 RTX II PL programming language user's guide. Nokia
Electronics, Helsinki, 1978.

20. Nurmi,O.: Testing the LR(k) and SLR(k) conditions in the compiler writing system
HLP (in Finnish). Internal Report C-1979-82, June 1979.

21. Pietarinen,P.: Implementation of the job control language for HLP (in Finnish).
Internal Report C-1978-49, April 1978.

22. Pozefsky,D.: Building efficient pass-orlented attribute grammar evaluators. Report
TR 79-006, Department of Computer Science, University of North Carolina, Chapel
Hill, N.C., 1979.

23. Preliminary Ada reference manual. SIGPLAN Notices 14, 6 (June 1979), Part A.

24. Rgih~,K.-J.: On attribute grammars and their use in a compiler writing system.
Report A-1977-4, August 1977.

25. R~ih~,K.-J.: Dynamic allocation of space for attribute instances in multi-pass
evaluators of attribute grammars. Proceedings of the SIGPLAN Symposium on Compiler
Construction, SIGPLAN Notices 14, 8 (August 1979), 26-38.

26. Rgih~,K.-J. & Saarinen,M.: Operating instructions for HLP. Internal Report
C-1979-68, May 1979.

27. Rgihg,K.-J., Saarinen,M., Soisalon-Soininen,E. & Tienari,M.: The compiler writing
system HLP (Helsinki Language Processor). Report A-1978-2, March 1978.

28. Rikkilg,J.: A precompiler for B6700 S-Fortran (in Finnish). Internal Report
C-1978-61, 1978.

29. Saarinen,M.: The lexical part of the compiler writing system HLP (in Finnish).
Internal Report C-1978-55, October 1978.

30. Siitari,H.: Application of HLP in the construction of a MI~_AL compiler (in
Finnish). Internal Report C-1978-I13, October 1978.

31. Siitari,H.: An attribute grammar for the programming language Simula (in Finnish).
Internal Report C-1979-90, May 1979.

32. Sippu,S. & Soisalon-Soininen,E.: On defining error recovery in context-free
parsing. Automata, Languages and Programming, Fourth Colloquium, A. Salomaa &
M.Steinby (eds.), Springer-Veriag, Berlin -Heidelberg-New York, July 1977, 492-
503.

33. Suikkanen,J.: Conflicts in the LALR(1) parsing automaton (in Finnish). Internal
Report C-1980-5, November 1979.

34. Tarhio,J.: Parsing ambiguous grammars in the compiler writing system HLP (in
Finnish). Internal Report C-1979-93, May 1979.

35. Tarhio,J.: An LALR(1) syntax for Extended Algol (in Finnish). Internal Report (to
appear).

36. Tienari,M.: Research on programming languages and compilers. Data ii/ -78 (1978),
75-78.

37. USASI: USA Standard Cobol. USAS X3.23-1968, USA Standards Institute, 1968.

38. Watt,D.: An extended attribute grammar for Pascal. SIGPLAN Notices 14, 2 (February
1979), 60-74.

39. Wilner,W.T.: Declarative semantic definition as illustrated by a definition of
Simula 67. Ph.D. Thesis, Computer Science Department, Stanford University,
Stanford, California, June 1971.

362

40. Wirth,N.: PL360, a programming language for the 360 computers. JACM 15, I (January
1968), 37-74.

41. Wirth,N.: The programming language Pascal (revised report). Bericht 5, Institut
fNr Informatik, EidgenSssische Technische Hochschule, Z~rich, 1972.

42. Wozencraft,J.M. & Evans,A. Jr.: Notes on programming linguistics. Department of
Electrical Engineering, MIT, Cambridge, Mass., July 1979.

