
RULE SPLITTING and ATTRIBUTE-DIRECTED PARSING

David A. Watt

Computing Science Department

University of Glasgow

Glasgow G12 8QQ

Scotland

Abstract

Rule splitting is a phenomenon, most clearly exhibited by attribute grammars

and affix grammars, in which the syntactic structure of a phrase is

constrained by its attributes. In this paper, rule splitting is illustrated

by examples taken from real programming languages, and two varieties of rule

splitting are identified and formalized. Implementations of rule splitting

(attribute-directed parsing) are demonstrated for top-down and bottom-up

parsers, both one-pass and multi-pass. Finally, the problems of exploiting

rule splitting in a compiler writing system based on attribute grammars are

explored.

364

1. Introduction

Attribute grammars and affix grammars are currently the most promising tools

available in the design of compiler writing systems. This is because these

grammars are clean extensions of context-free grammars~ capable of specifying

the (context-sensitive) syntax and semantics of programming languages, in a

way which allows the existing body of context-free parsing techniques to

continue to be exploited.

In a conventional compiler constructed from an attribute grammar,

(context-free) parsing and attribute propagation are distinct phases, with no

feedback from the second to the first.

A number of papers [Bochmann 76, Watt 74b, Watt & Madsen 79] have observed

that the phrase structure of some programming language contructs is

constrained by certain attributes, a phenomenom known as rule splitting. A

natural consequence of this, in the compiler, is to allow these attributes to

influence the behaviour of the parser, i.e. to allow limited feedback from the

attribute propagation phase, a technique known as attribute-directed parsing.

None of the papers mentioned, however, attempts a systematic study of rule

splitting and attribute-directed parsing. Such is the purpose of this paper.

~. Attribute grammars, notation, terminology and conventions

2.1. Summary of attribute grammars

An attribute grammar [Knuth 68] or affix grammar [Koster 71a] (AG) is a

context-free grammar (CFG) in which each terminal and nonterminal symbol is

augmented by a fixed number of attributes, with fixed domains. Different

instances of the same symbol in a syntax tree may have different attributes.

and the attributes are able to contain information obtained from other nodes

365

of the syntax tree.

A distinction is made between inherited and synthe§ize d attributes.

Consider a symbol S and a phrase p derived from S. Each inherited attribute

of S is supposed to convey information about the context of p. Each

synthesized attribute of S is supposed to convey information about the phrase

p itself in the given context.

The attributes can be used to specify context-sensitive constraints on a

language with a context-free phrase structure. Each AG rule is basically a CF

production rule augmented by

(a) a constraint, or a predicate which must be satisfied by certain attributes

in each application of this rule, and

(D) an evaluation rule, specifying the evaluation of certain attributes in

terms of others.

2.2. Notation and terminology

Let the tuple of inherited attributes of a symbol S be denoted by inh(S), and

let the tuple of synthesized attributes of S be Qenoted by syn(S). It is

convenient also to extend inh and syn to sequences of symbols:

*) = (inh(S I) ,inh(S)) inh (S1..°S n n

syn*(S1...S n) = (syn(S1),...,syn(Sn))

Then the constraint and evaluation rule associated with the production rule

N -~ w are functions as follows:

constraint: inh(N) x syn*(w) -9 Boolean

evaluation rule: inh(N) x syn*(w) -9 inh*(w) x syn(N)

inh(N) and syn*(w) are called defined attributes, inh*(w) and syn(N) are

called applied attributes. Thus the constraint is a predicate on the defined

attributes, and the evaluation rule maps the defined attributes on to the

applied attributes. The evaluation rule may be a partial function, provided

it is defined at all points where the constraint evaluates to true.

366

We write AG rules using a notation based on BNF, e.g.:

<assignment ~ ENV> ::=

<variable ~ ENV1 T TYPEI> ":="

<expression ~ ENV2 ~ TYPE2>

where TYPE1 = TYPE2

evaluate ENVI <- ENV, ENV2 <- ENV (2.1)

Each inherited attribute is prefixed by a downward arrow (~), and each

synthesized attribute is prefixed by an upward arrow (T). ENV, ENVI, ENV2,

TYPEI, TYPE2 are attribute variables and they stand for the various attribute

occurrences in this AG rule. The evaluation rule is introduced by "evaluate"

and the constraint by "where"; both are expressea in terms of the attribute

variables.

When an applied attribute is a simple copy of a defined attribute, we

abbreviate by simply using the same attribute variable for both. In (2.1)

ENV1 and ENV2 are simple copies of ENV, so we abbreviate the AG rule by

replacing each by ENV:

<assignment ~ ENV> ::=

<variable ~ ENV T TYPEI> ":="

<expression ~ ENV T TYPE2>

where TYPEI=TYPE2 (2.2)

2.3. Predicate projection

Definition 2.1. Let P(Xl,...,x n) be a predicate dependent on variables x I,

..., x n. Then we define p'(xi,xj,...) to be the strongest predicate dependent

only on the variables xi, xj, ... but implied by P(Xl,...,Xn).

For example:

i f

then

p(x,yoZ) ~ x=O and y<z

p'(x) " x=O

p'(y) - true

p'(z) - true

p'(y,z) - y<z

367

2.4. Discriminated unions

The d e f i n i t i o n of AGs places no r e s t r i c t i o n s on the domains chosen fo r the

a t t r i b u t e s . In a formal d e f i n i t i o n of the syntax of Pascal by an extended

a t t r i b u t e grammar [Watt 79] , the domains were based on the abs t rac t data

s t ruc tu res of [Hoare 72] : Cartesian produc ts , d i sc r im ina ted unions, se ts , maps

and sequences.

Of these, discriminated unions are particularly useful, indeed they may be

viewed as the most fundamental domain type [Madsen 80]. They are also

particularly important in the context of rule splitting, so a definition here

follows.

Definition 2.2.

anQ gl" "''" gn are distinct names, then

U = (gl(T1) I gn(Tn))

is a discriminated unlon with selectors gl" gn"

we aPbreviate gi(T i) to gi"

For every i=l,...,n, and for every a i in T i. gi(ai) is in U.

the composition functions for the discriminated union U.

For each i=I n, we also define a predicate, is-gi,
-1

inverse function, gi , as follows:

If T 1 T n are domains (or Cartesian products of domains)

If any T i is void, then

These gi are

and a partial

is-gi(x) -

-I
gi (x) -

368

there exists y such that x = gi(y)

if there exists y such that x = gi(y)

then y

else undefined

2.5. Conventions

We use the following conventions throughout:

(a) M and N (possibly subscripted) stand for nonterminals;

(b) u, v, w, x and y (possibly subscripted) stand

nonterminals and terminals;

(c) p and q (possibly subscripted) stand for predicates.

for sequences of

3. Examples of rule splitting

All the examples quoted here are taken from real programming languages, but

simplified to remove unnecessary detail. Nearly all the nonterminals involved

have an inherited attribute (their "environment") which is a map from names to

modes.

Example 1.

<actual parameter ~ ENV ~ PARM> ::=

<expression ~ ENV T TYPE>

where is-value(PARM) and

.... TYPE=value-l(PARM)

I <variable ~ ENV ~ TYPE>

where is-result(PARM) and

TYPE=result-l(PARM)

(3.1a)

(3 .lb)

369

<expression ~ ENV T TYPE> ::=

<variable ~ ENV T TYPE> (3.1c)

Here the second attributes of <expression> and <variable> both Lie in some

domain Type, and the second attribute of <actual parameter> lies in the

discriminated union domain

Parameter = (value(Type) i result(Type))

The latter attribute defines the parameter mechanism and the type of the

corresponding formal parameter; the attribute is therefore inherited. If the

formal parameter is a value-parameter, the actual parameter may be any

expression of the same type; if the formal parameter is a result-parameter,

the actual parameter must be a variable of the same type.

This is perhaps the example pa r excellence of rule splitting; the value of

the attribute constrains the phrase structure of the actual parameter; and the

underlying CFG is actually ambiguous:

<actua l parameter> =~ <express ion>

=~ <va r i ab le>

<actual parameter> =m <variable>

The AG is unambiguous, however, because, for any given value of the second

attribute of <actual parameter>p only one of the constraints in (3.1a) and

(3.1b) can be satisfied, and therefore only one of these alternative

derivations is possible.

Example 2.

<pr imary ~ ENV T TYPE> : :=

< v a r i a b l e ~ ENV T TYPE>

I <constant ~ ENV ~ TYPE>

I sm.~t..m.m.m~,®~.~.j.mo....m

(3.2a)

(3.2b)

370

<variable ~ ENV ~ TYPE> ::=

<identifier ~ ENV ~ MODE>

where is-var(MODE)
-I

evaluate TYPE ~- var (MODE)

I m,.~.m,,,BDow,le~eo.,.m.i.~..~.~.Qo~o,..

(3.2c)

<constant ~ ENV ~ TYPE> ::=

<identifier ~ ENV ~ MODE>

where is-const(MODE)

evaluate TYPE ~- const-l(MODE)

I ,o......Pom.Pp~,u,~ti..~e.oeBo,i. Btl..i

(3.2d)

Here <identifier> has a synthesized attribute in the domain

Mode = (const(Type) I vat(Type) I proc(Plan) I)

which specifies whether the identifier is a constant-identifier, a variable-

identifier, a procedure-identifier, etc. Here again, the underlying CFG is

ambiguous:

<primary> =9 <variable>

--~ <identifier>

<primary> =9 <constant>

=2 <identifier>

The synthesized attribute of <identifier>, however, can be used to eliminate

one or other of these derivations.

Example 3.

<statement ~ ENV> ::=

<variable ~ ENV ~ TYPE> ":="

<source ~ ENV f TYPE>

I <identifier ~ ENV ~ MODE>

"(" <parameter ~ ENV ~ PARAMETER> ")"

where is-proc(MODE)

evaluate PARAMETER ~- proc-l(MODE)

(3.3a)

(3.3b)

371

<parameter ~ ENV ~ PARAMETER> ::=

<source ~ ENV f TYPE>

where is-value(PARAMETER)

evaluate TYPE <- value-I(PARAMETER)

io.~..om~....,,..,~w.°mowl...lll.n.I.

(3.3c)

<variable # ENV

<identi

I <identi

TYPE> ::=

fier ~ ENV T MODE>

where is-scalar(MODE)

evaluate TYPE <- scalar-1(MODE)

fier ~ ENV ~ MODE>

<source ~ ENV # SUBTYPE> ")"

where is-array(MODE)

evaluate TYPE <- array-1(MODE),

SUBTYPE <- int

(3.3d)

(3.3e)

Here the second attribute of <identifier> is in the domain

where

Mode = (scalar(Type) I array(Type) I

proc(Parameter) !)

Parameter = (value(Type) I)

In this more complicated example there is no ambiguity but there are LL and LR

parsing conflicts:

<statement> =2 <variable> := <source>

=2 <identifier> := <source>

<statement> =2 <variable> := <source>

=2 <identifier> (<source>) := <source>

<statement> =2 <identifier> (<parameter>)

=2 <identifier> (<source>)

(A similar example involving function-designators would, however, be

ambiguous.) If known at parse-time, the synthesized attribute of <identifier>

can be used to resolve the conflicts.

372

Example 4.

<factor f ENV ~ TYPE> ::=

<primary ~ ENV ~ TYPEI>

"**" <primary ~ ENV ~ TYPE2>

where is-int(TYPE1) and

is-int(TYPE2)

evaluate TYPE 4- int (3.4a)

I <primary ~ ENV ~ TYPEI>

"**" <primary ~ ENV ~ TYPE2>

where is-real(TYPE1) and

is-int(TYPE2)

evaluate TYPE 4- real (3.4D)

I <primary ~ ENV ~ TYPEI>

"**" <primary ~ ENV ~ TYPE2>

where is-real(TYPE1) and

is-real(TYPE2)

evaluate TYPE 4- real (3.4c)

Here the synthesized attributes of <factor> and <primary> are in the domain

Type = (int I real I)

This example is complicated in a different sense. There are three different

derivations

+
<factor> =~ <primary> ** <primary>

The correct choice is based on examining the synthesized

instances of <primary>.

attributes of both

Example 5.

<factor ~ ENV ~ TYPE> ::=

<primary ~ ENV ~ TYPEI>

"**" <primary ~ ENV ~ TYPE2>

<where compatible ~ TYPEI ~ TYPE2 ~ TYPE> (3.5a)

373

<where compatible ~ TYPEI ~ TYPE2 ~ TYPE> ::=

<empty>

I <empty>

I <empty>

where is-int(TYPE1) and

is-int(TYPE2)

evaluate TYPE ~- int

where is-real(TYPE1) and

is-int(TYPE2)

evaluate TYPE ~- real

where is-real(TYPE1) and

is-real(TYPE2)

evaluate TYPE ~- real

(3.5b)

(3.5c)

(3.5d)

This example enforces the same type compatibility as Example 4, but it is

factored out of (3.5a) By means of a grammatically defined predicate

<where compatible>, which derives only the empty string and which exists only

to enforce certain relationships among its attributes. This it does by rule

splitting (3.5b-d), based on its two inherited attributes.

4. Characterization of rule splitting

The examples in the previous section have certain features in common which

help us to characterize more formally what exactly rule splitting is. The

most salient common feature is that, in each case, it was possible to

eliminate all but one of several alternative derivations by inspection of

either the inherited attributes of the common symbol on the Left side of a

rule group or the synthesized attributes of a common sequence of symbols of

the right sides of several rules. This observation leads us to characterize

two forms of rule splitting.

Since evaluation rules play no part in rule splitting, they are ignored in

the following. The key role is played by the constraints and their

374

projections (Definition 2.1).

Definition 4.1. Inherited rule splitting is exhibited by a group of rules

N -9 w I where Pl(inh(N),syn (Wl))

N -9 w 2 where p2(inh(N)~syn*(w2))

• w m m , n m m . J P D . i I o . o , , m . , w . I o a m .

(being all the rules with N on the left side) if

pi'(inh(N)) implies (not pj'(inh(N))) for all j#i (4.1)

i.eo if p1°(inh(N)), p2'(inh(N)), o.. are all mutually exclusive.

Inherited rule splitting is illustrated by Examples 1 and 5. In Example I

it is exhibited by rules (3.1aob):

N = <actual parameter>

w I = <expression>

w 2 = <variable>

pl'(ENV,PARM) - is-value(PARM)

p2'(ENV,PARM) - is-result(PARM)

is-value(PARM) implies (not is-result(PARM))

In Example 5 inherited rule splitting is exhibited by rules (3.5D-d):

N = <where compatiDle>

w I = <empty>

w 2 = <empty>

w 3 = <empty>

p1~(TYPE1,TYPE2) m is-int(TYPE1) and is-int(TYPE2)

p2'(TYPEI,TYPE2) ~ is-real(TYPE1) and is-int(TYPE2)

p3'(TYPEI,TYPE2) - is-real(TYPE1) and is-real(TYPE2)

Definition 4.2. Synthesized rule splitting is exhibited by the rules

N I -~ VlWX I where

N 2 -~ v2wx 2 ~h~[~

i . w a a m J ~ m l m i , m m n

375

P1(inh(N1).syn*(vlWXl))

P2(inh(N2),syn*(v2wx2))

o , l m ~ t o w . o . e m l . e t o ~ w

(where NI, N2, ... are not necessarily the same nonterminal) if there exist M,

u1" u2" "''' YI" Y2" "'" such that

uivi,= ujvj for all i,j=1,2,...

and M =2 u.N y. =2 uiviwxiY i for all i=Io2

and pi'(syn~(w)~ implies (not pj'(syn*(w))) for all j~i (4.2)

Synthesized rule splitting is illustrated by Examples 2, 3 and 4.

Example 2 it is exhibited by rules (3.2c,d):

In

w = <identifier>

N 1 = <variable>, v I = x I = <empty>

N 2 = <constant>, v 2 = x 2 = <empty>

pI'(MODE) - is-vat(MODE)

p2.(MODE) i is-const(MODE)

M = <primary>

Ul = Yl = <empty>

u2 = Y2 = <empty>

In Example 3 synthesized rule splitting is exhibited by rules (3.3b,d,e):

w = <identifier>

N 1 = <statement>, v I = <empty>,

N 2 = <variable>, v 2 = <empty>,

N 3 = <variable>, v 3 = <empty>,

pI'(MODE) - is-proc(MODE)

P2'(MODE) - is-scalar(MODE)

P3'(MODE) - is-array(MODE)

M = <statement>

u I = <empty>, Yl = <empty>

u 2 = <empty>, Y2 = := <source>

u 3 = <empty>, Y3 = := <source>

x I = (<parameter>)

x 2 = <empty>

x 3 = (<source>)

In Example 4 synthesized rule splitting is exhibited by rules (3.4a-c):

376

w = <primary> ** <primary>

N 1 = <factor>, v I = x I = <empty>

N 2 = <factor>, v 2 = x 2 = <empty>

N 3 = <factor>. v 3 = x 3 = <empty>

pl'(TYPEI,TYPE2) - is-int(TYPE1) and is-int(TYPE2)

p2~(TYPE1,TYPE2) - is-real(TYPE1) and is-int(TYPE2)

p3'(TYPEI,TYPE2) - is-real(TYPE1) and is-real(TYPE2)

M = <factor>

Ul = Yl = <empty>

u2 = Y2 = <empty>

u3 = Y3 = <empty>

5. Attribute-directed parsing

In a compiler constructed from an AG, analysis of an input string classically

proceeds in two distinct phases:

(I) a conventional CF parser is used to construct a syntax tree from the input

string;

(2) the nodes of the syntax tree are "decorated" by attributes in accordance

with the evaluation rules of the AG. and any constraints on the attributes are

tested.

If the AG is L-attributed [Bochmann 76, Lewis et al 74~, phase 2 may be

performed in a single left-to-right pass over the syntax tree. For a larger

class of AGs, phase 2 may be performed in a fixed number of passes over the

syntax tree, the set of attributes to be evaluated during each pass being

determined at compiler-construction-time [Bochmann 76, Jazayeri & Walter 75,

etc.].

{For still larger classes of AGs, a decision on the order of evaluation of

the attributes can be delayed until phase 2 itself. The system DELTA [Lorho

75] handles all AGs containing no circularities in the evaluation rules. The

377

system NEATS [Jespersen et al 79, Nadsen 803 even relaxes this restriction.

These techniques are neglected here since they normally preclude the kind of

attribute-directed parsing we are about to describe. However, some hybrid

system is conceivable in which a subset of the attributes are evaluated during

phase 1.}

For a large subclass of the L-attributed AGs [Watt Z7], phases I and 2 can

be merged in time. A variety of one-pass parsing methods for L-attributed AGs

have been proposed or implemented; these methods include top-down [Bochmann &

Ward 75, Koster 71a~ Koster 71b], bounded-context [Crowe 72], precedence

[Lecarme & Bochmann 743, and LR [Watt 74b3.

All these methods are essentially CF parsing methods augmented by some

mechanism for evaluating, testing and distributing the attributes. The

attributes do not in any way influence the flow of control in the parser.

Rule splitting, however, makes it feasible for the attributes concerned to

influence the behaviour of the parser. A choice among several alternative

parsing actions may be made by testing these attributes, without having to

invoke the usual look-ahead techniques of CF parsing. This can resolve CF

parsing conflicts and even ambiguities. Thus, for example, the underlying CFG

need not necessarily be LL(1) for the recursive-descent parsing method to be

adopted. This enhancement of CF parsing is called attribute-directed parsing.

In this section we first demonstrate the implementation of one-pass

attribute-directed parsing in a recursive-descent parser and in an LR parser,

assuming that the AG is L-attributea. Then we generalize to the multi-pass

case.

5.1. Attribute-directed recursive-descent parsing

A CF recursive-descent parser consists of one parameterless procedure, N, for

each nonterminal N of the CFG. The job of procedure N is to parse a phrase

which can be derived from the nonterminal N. The body of procedure N is

obtained by transcription of the N-rules of the CFG.

In a one-pass recursive-descent parser for an L-attributed AG, each

procedure N is augmented by parameters which convey the attributes of the

378

nonterminal N: an input-parameter for each inherited attribute and an output-

parameter for each synthesized attribute. The body of procedure N is

augmented Dy the evaluation rules and constraints associated with the N-rules

of the AG. [Bochmann & Ward 75, Koster 71a, Koster 71b]

Such a parser can easily be made to exploit inherited rule splitting.

(Refer to Definition 4.1.) The rule group

N -~ w 1

N -~ w 2

where Pl(inh(N),syn (Wl))

where P2(inh(N),syn (w2))

is transcribed to the procedure

procedure N (in inh(N);

out syn(N));

begin

if pl'(inh(N)) then

parse w I

else if p2'(inh(N)) then

parse w 2

m m , . . m u m

else {this escape clause may be unnecessary}

context sensitive error

end

In Example I, rules (3.1a,b) would be transcribed as follows:

379

procedure actual parameter (in ENV : Environment;

in PARM : Parameter);

var TYPE : Type;

begin

if is-value(PARM) then

begin

expression (ENV, TYPE);

ensure (TYPE=value-I(PARM))
end

else if is-result(PARM) then

begin

variable (ENV. TYPE);

ensure (TYPE=result-I(PARM))
end

end

In Example 5. rules (3.5b-d) would be transcribed as follows:

procedure wherecompatible (in TYPE1, TYPE2 : Type;

out TYPE : Type);

begin

if is-int(TYPE1) and is-int(TYPE2) then

TYPE := int

else if is-real(TYPE1) and is-int(TYPE2) then

TYPE := real

else if is-real(TYPE1) and is-real(TYPE2) then

TYPE := real

else

context sensitive error

end

Grammatically defined predicates such as <where compatible> are extremely

useful in language definitions, e.g. [Watt 79]. The latter example

demonstrates that they are easily implemented without any special techniques

other than attribute-directed parsing.

A general implementation of synthesized rule splitting is not possible in a

top-down parser. But consider the special case where all the N-rules are of

the form:

380

N -~ wx I where P1(inh(N),syn (WXl))

N -~ ~x 2 where P2(inh(N),syn (wx2))

a l e . m , . m . e m o , . o m . , I i , m l . m m . . m o . i

such that
pi'(syn*(w)) implies (not pj'(syn*(w))) for all j#i

This rule group can be transcribed as follows:

procedure N (in inh(N);

out syn(N));

begin

parse w, and thereby deduce syn*(w);

if pl'(syn*(w)) then
parse x I

else if p2'(syn*(w)) then

parse x 2

. a o . l . i .

else {this escape clause may be unnecessary}

context sensitive error

end

In Example 4. rules (3.4a-c) would be transcribed as follows:

(5.1)

381

procedure factor (in ENV : Environment;

out TYPE : Type);

var TYPEI, TYPE2 : Type;

begin

primary (ENV, TYPEI);

accept ("**");

primary (ENV, TYPE2);

if is-int(TYPE1) and is-int(TYPE2) then

TYPE := int

else if is-real(TYPE1) and is-int(TYPE2) then

TYPE := real

else if is-real(TYPE1) and is-real(TYPE2) then

TYPE := real

else

context sensitive error

end

5.2. Attribute-directed LR parsing

In a CFG G, if Z =2 vNx =2 vwx (where Z is the distinguished nonterminal of

G, N-~w is a production rule of G, and x is a string of terminals), and if

#(N-~w) is a special symbol uniquely associated with the production rule N-~w,

then vw#(N-~w) is a characteristic string of vwx. The LR parsing machine of G

is the deterministic finite-state machine which accepts only the

characteristic strings of G. The LR parsing machine has terminal-transitions,

nonterminal-transitions, and reduce-transitions (those labelled by the special

#-symbols). The LR parsing machine is used in conjunction with a stack on

which are stored (state, symbol) pairs. [DeRemer 71]

A one-pass LR parser for an L-attributed AG uses a second stack, the

attribute stack. Immediately prior to parsing a symbol, its inherited

attributes are placed at the top of the attribute stack; and parsing the

symbol has the effect of stacking its synthesized attributes immediately above

its inherited attributes. The LR parsing machine is augmented by special

transitions which specify either the copying of attributes to the top of the

attribute stack, or the application of an evaluation rule, or the testing of a

constraint. [Watt 74a, Watt 74b]

382

These special actions in general may introduce parsing conflicts even when

the underlying CFG is LR(k). Such a conflict arises if any special transition

leads out of a state from which there also leads a terminal-transition, a

reduce-transition, or another special transition (unless the conflict can be

resolved by the usual look-ahead).

Rule splitting, however, gives rise to a state from which there lead

several special transitions which specify the testing of mutually exclusive

constraints (and no other special transitions, no terminal-transitions and no

reduce-transitions). This type of state has been called a multi--predicate

state [Watt 74a]. The action taken by the parser in a multi-predicate state

is simply to test each of the constraints (in any order or in parallel), and

traverse the transition corresponding to the one constraint which is

satisfied.

Inherited rule splitting gives rise to the situation illustrated in Figure

1(a), provided the constraints on the inherited attributes of the common

left-side nonterminal, N, are tested before parsing the right side of an N-

rule. Figures l(b) and 1(c) illustrate Examples 1 and 5 respectively.

Synthesized rule splitting gives rise to the situation illustrated in

Figure 2(a), provided the constraints on the synthesized attributes of the

common right-side sequence of symbols, w, are tested immediately after parsing

w. Figures 2(b), 2(c) and 2(d) illustrate Examples 2, 3 and 4 respectively.

When we use an LR parser, we can generalize the definition of synthesized

rule splitting, by changing the first part of (4.2) to read:

uiv i and ujvj access the same state in the LR parsing machine,

for all i,j=1,2,...

In each case, the effect of rule splitting is a multi-predicate state which

directs the parser to one of several different states depending on the values

of the attributes concerned (inh(N), or syn*(w), respectively). The multi-

predicate state in the LR parser performs the same role as the cascade of

tests in the procedure of the recursive-descent parser.

383

~.~. Th_._~e multi-pass case

If the AG is such that all the attributes can be evaluated and tested in n>1

passes over the syntax tree, then the value of n, and the set of attributes

which can be evaluated and tested during each pass, can be determined from the

AG [e.g. Bochmann 763. Only the first-pass attributes can be evaluated and

tested during parsing. Thus attribute-directed parsing can use only these

first-pass attributes.

Let inh (S) and syn.(S) be those inherited and synthesized attributes of a
I]

symbol (or sequence of symbols) S which are determined during the i'th pass.

{Thus inhl(S) , , inhn(S) form a partition of inh(S); and syn1(S) , ,

Synn(S) form a partition of syn(S).}

Then inherited rule splitting can be exploited only if (refer to Definition

4.1):

pi'(inhl(N)) implies (not pj~(inhl(N))) for all j~i (5.2)

This condition is stronger than (4.1).

Synthesized rule splitting can be exploited only if (refer to Definition

4.2):

and

and

ulvl,. = ujvj for all i,j=1,2,...

M =2 u.N~y~ =2 uiviwxiY i for all i=1,2,...
1 t / / . . t

p~'(syn~ (w)) Implles (not p='(syn I (w))) for all j~i
J i j

(5.3)

The third part of (5.3) is stronger than the third part of (4.2).

The implementations of attribute-directed parsing in the multi-pass case

are similar to those for the single-pass case (sections 5.1 and 5.2), except

for the substitutions of inh I and syn I for inh and syn respectively.

384

6. Implications for a compiler writing system

The following problems will be encountered in attempting to detect and exploit

rule splitting in a compiler writing system (CWS):

(1) detecting potential cases of synthesized rule splitting (this should be

trivial for inherited rule splitting);

(2) determining a predicate projection p' (Definition 2.1) from a constraint p

associated with an AG rule;

(3) determining whether given predicates PI" p ' "'" 2 " are mutually exclusive.

These problems are, in general, unsolvable, but we offer partial solutions

which should be satisfactory in practice; at least these solutions are

adequate for handling all the examples of rule splitting in section 3. We

also suggest an interactive CWS which could seek human assistance in

occasional situations where the partial solutions are inadequate.

~.~. Detecting ~otential cases of rule splitting

If a nonterminal N has at least one inherited attribute, and if each of the

N-rules has a constraint which depends on that attribute, then we have a

potential case of inherited rule splitting.

We can similarly detect a potential case of synthesized rule splitting of

the restricted sort (5.1) which can be handled by a top-down parser.

Because the general definition of synthesized rule splitting is more

complicated (4.2), and since it can be handled only by a bottom-up parser

anyway, it is best to detect potential cases by actually constructing an LR

parser and seeing whether multi-predicate states appear. It is necessary to

adopt some consistent strategy as to when constraints are tested. The

simplest strategy is to test each constraint as soon as all the attributes on

which it depends are known.

385

~.~. Determining predicate projections

Suppose we are given a predicate p defined as the conjunction of a set of

simpler predicates:

P(Xl,...,x n) - q1(xls°..,Xn) and and qm(Xl,...,Xn) (6.1)

where each qi actually depends on only some of the variables Xl, ..~, Xn~

Suppose that we wish to determine p'(xi~x j).

Let q(xi,xj,...) be the conjunction of those predicates ql~ ...p qm which

actually depend on the variables xi, xj, ...; then p(x I x n) implies

q(xi,xj,...), q is less strong than p', but otherwise q satisfies the

requirements of Definition 2.1. Thus q may serve as an approximate solution

to p'

Constraints associated with AG rules are quite likely to be presented in

the form (6.1). This is indeed the case in all the examples of section 3, and

this partial solution is in fact accurate in all these examples. In Example

1, rule (3.1a):

p(ENV,PARM,TYPE) - is-value(PARM) and TYPE=value-I(PARM)

q(PARM) - is-value(PARM)

p'(PARM) - is-value(PARM)

~.~. Determining whether given predicates are exclusive

In general, knowledge of the properties of the attribute domains over which

the given predicates are defined is needed to determine whether the predicates

are exclusive.

For example, we know from the properties of the discriminated union

U = (gl(T I) I I gn(Tn))

(Definition 2.2) that the predicates is-g1, is-g n are mutually exclusive.

This is sufficient to establish the mutual exclusiveness of the relevant

386

predicate projections in all the examples of section 3.

6.4. An interactive CWS

If the partial solutions outlined above are found to be inadequate, the CWS

could be made interactive, seeking human assistance in unclear situations.

The compiler writer would supply an AG defining the language to be

implemented; the CWS would look for potential cases of rule splitting, deal

with the clear cases itself as outlined above, and refer unclear cases back to

the compiler writer for a decision as to whether rule splitting is actually

present and whether it should be exploited.

This leads to a point we have ignored up to now. Even where rule splitting

is present, it is unnecessary to exploit it in the absence of any CF parsing

conflict or ambiguity. Indeed. it may then even be undesirable to exploit it

since it may adversely influence syntactic error reporting and recovery. This

is another reason why an interactive CWS may be a good way of dealing with

rule splitting.

7. Conclusions

This paper has attempted a systematic study of the phenomenon of rule

splitting and the associated implementation technique of attribute-directed

parsing. A number of realistic examples of rule splitting were given. Two

kinds of rule splitting, "inherited" and "synthesized". were formalized.

Their implementations in top-down and bottom-up attribute-directed parsers

were demonstrated, for both the single-pass case and the multi-pass case.

Finally, the implications of all this for compiler writing systems were

discussed, pointing out some problems which are, in general, unsolvable and

require either a pragmatic or an interactive approach.

Attribute grammars have been used as a medium for our discussion because

387

they facilitate our definitions of rule splitting and our descriptions of the

corresponding implementation techniques. We conclude by referring readers to

the "extended attribute grammars" of [Watt & Madsen 79], which allow instances

of rule splitting to be exhibited rather clearly. Several examples of rule

splitting in the context of a complete grammar may be found in [Watt 79~.

References

Bochmann 76.

Bochmann & Ward 75.

Crowe 72.

Eriksen et al 79.

Ganzinger et al 77.

Hoare 72.

Bochmann, G.V.: Semantic evaluation from left to

right. Comm. ACM 19. 55-62 (1976)

Bochmann, G.V., Ward, P.: Compiler writing systems for

attribute grammars. D~partement d'Informatique,

Universit~ de Montreal, Publication #199, July 1975

Crowe, D°: Constructing parsers far affix grammars.

Comm. ACM 15, 728-734 (1972)

Eriksen, S.H., Kristensen, B.B.,

BOBS-system. Aarhus University,

(revised version), 1979

Madsen, O.L.: The

Report DAIMI PB-71

Ganzinger, H., Ripken, K., Wilhelm, R.: Automatic

generation of optimizing multipass compilers. In:

Proc. IFIP 77 Congress, pp. 535-540. Amsterdam:

North-Holland 1977

Hoare, C.A.R.: Notes on data structuring. In:

Structured Programming (O.-J° Dahl, E.W. Dijkstra,

C.A.R. Hoare), pp. 83-174. London-New York: Academic

388

Jazayeri & Walter 75.

Jespersen et al 79.

Knuth 68.

Koster 71a.

Koster 71b.

Lecarme & Bochmann 74.

Lewis et al 74.

Lorho 75.

Press 1972

Jazayeri, M., Walter, K.G.: Alternating semantic

evaluation. Proc. ACM Annual Conference, Minneapolis,

1975

Jespersen, P., Madsen, M., Riis, H.: NEATS, New

Extended Attribute Translation System. Aarhus

University, 1979

Knuth, D.E.: Semantics of context-free languages.

Mathematical Systems Theory 2, 127-145 (1968)

Koster, C.H.A.: Affix grammars. In: ALGOL 68

Implementation (J.E. Peck, ed.), pp. 95-109.

Amsterdam: North-Holland 1971

Koster, C.H.A.: A compiler compiler. Mathematisch

Centrum, Amsterdam, Report MR127 (November 1971).

Also: Using the CDL compiler compiLer. In: Compiler

Construction. an Advanced Course (F.L. Bauer, J.

Eickel, eds.), pp. 366-426. Lecture Notes in Computer

Science, Vol. 21. Berlin-Heidelberg-New York: Springer

1974

Lecarme, 0., Bochmann, G.V.: A (truly) usable and

portable compiler writing system. In: Proc. IFIP 74

Congress, pp. 218-221. Amsterdam: North-Holland 1974

Lewis, P.M., Rosenkrantz, D.J., Stearns, R.E.:

Attributed translations. J. Computer and System

Sciences 9, 279-307 (1974)

Lorho, B.: Semantic attributes processing in the

system DELTA. In: Methods of algorithmic language

implementation (C.H.A. Koster, ed.)p pp. 21-40.

Lecture Notes in Computer Science, Vol. 47. Berlin-

389

Madsen 80.

Watt 74a.

Watt 74D.

Watt 77.

Watt 79.

Watt & Madsen 79.

Heidelberg-New York: Springer 1977

Madsen~ O.L.: On defining semantics by means of

extended attribute grammars. Aarhus University,

Report DAIMI PB-109, January 1980

Watt, D.Ao: Analysis-oriented two-level grammars.

University of Glasgow, Ph.D. thesis, January 1974

Watt, D.A.: LR parsing of affix grammars. Computing

Science Department, University of Glasgow, Report 7~

August 1974

Watt, D.A.: The parsing problem for affix grammars.

Acta Informatica 8, 1-20 (1977)

Watt, D.A.: An extended attribute grammar for Pascal.

SIGPLAN Notices 14, 2, 60-74 (1979)

Watt, D.A., Madsen, O.L.: Extended attribute grammars.

Aarhus University, Report DAIMI PB-105, November 1979

390

i~i N _1--i
l/..LI 1 -,__t

i I g

I I i

• m a

m J

I M

O I

I D B l I I D i

B D O I D O I g

Figure 1(a). Effect of inherited rule splitting in an LR parser.
(Refer to Definition 4.1.)
The multi-predicate state is shaded.

iT~I <actual parameter> ~i--I
I/_/ -r i

is-value J--I <expression>~I--I evaluation rule --

| -
<variable> I--I #(3.1c) - I_r

#(3.1a)

Li s-resultU--I <variable> _I--I
-I__I -I I

evaluation rule~l--~._.~ #(3.1b)

Figure l(b). Inherited rule splitting: Example 1.

1771 <where compatible> J--I
I/_/i | - t I

I is-int&is-int ~--I evaluation rule~l--I
__I l__~ ''~"

I is-real&is-int ~I--I evaluation rule_~--I
- I__I "i_r"-"

luis-real&is-real l--I evaluation rule ~l--I

Figure 1(c). Inheritea rule splitting: Example 5.

#(3.5b)

#(3.5c)

#(3.5d)

391

I--I M _ I--I
i 11 -I I
-- I

I iv

L u 2 - - - °l i -i I
- - i v 2 1 - -
. . | | s .

l |

" " ! I " "

. . m . . 4

#(N1-~VlWX I)

#(N2-~v2wx 2)

Figure 2(a). Effect of synthesized rule splitting in an LR parser.
(Refer to Definition 4.2.)
The multi-predicate state is shaded.

1--I
t__t

<primary> _J--J
-I_I

~variable> J-- ~-,.,,-!~ #(3.2a)

<constant> J~ # ~i_~_. ~ ~3.2b)

L<identifier> _1771_ is-vat J--
"q//I l

i s - c o n s t - - J
"q I

evaluation rule ~.I]~#(3.2c)

evaluation rule ~Jj--~#(3.2d)

Figure 2(b). Synthesized rule splitting: Example 3.

392

ill. <statement> ~]I

I <variable> I--I := I-- <source> i--I #(3.3a)
L ~I_I ~,_] ~,_~"-P

1771 is-proc -- (J--I ~l--i) J--i ~ #(3.3b) <identi fi er> ~I//I i -I ~--"~ ~" -- -- -~ ~------~ ~---Ip

I
Lis,scalar , - evaluation rule .I-- _ #(3.3d)
I 7 1 "I I
|is-array ~'--I (J--I J--I) J--I ~#(3.3e)

7 F--"I T---7_r'--~_l "

~igure 2!c). Synthesized rule splitting: Example 3.
(Some details omitted for space reasons.)

-- . <factor> I--I
I I I ~i I

m <primary> ,--, **,--, <primary> 77 i s-int&is-int J--~--~#(3.4a)

i s-real&i s-i nt ~,--~]~.~p # (3.4b)

Figure 2(d). Synthesized rule splitting: Example 4.

