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1. Introduction 

What does it mean to define the semantics of an algo- 

rithmic language? The most straightforward definition will 

be the interpretive one: to construct a machine which upon 

receiving a text (program) written in that language and a 

work object (the set of data the program is to be applied to), 

would execute the program, step by step, according to the al- 

gorithmic intention of its author. Thus, a metalanguage to 

define (semantically) algorithmic languages should formally 

describe machines; i.e., algorithms, which is to say that it 

must again be an algorithmic language. The language Refal was 

designed as such a language, which is both algorithmic and a 

metalanguage to deal with algorithms. An outline of the pur- 

pose and the main features of Refal may be found in [I].* 

*This paper also contains a bibliography list on Refal. 
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A detailed presentation of this language, together with a 

theory of compilation using it, is given in [2]. In the pre- 

sent paper we limit ourselves to the main concepts of the 

theory of compilation, which we introduce using a very simple 

language as an example; then we show how a compiler for a 

language defined in Refal may be produced automatically through 

a double metasystem t~ansition. The formal definition of Refal 

is presented as an Appendix. 

To begin with, let us look into how a programming system 

employing Refal as the means to introduce new algorithmic lan- 

guages might work. 

Let A be an algorithm written in a certain language, 

and E a work object. To define the language we define in Refal 

a recursive function with a determiner i (which identifies the 

language) in such a way that the process of concretizing the 

expression 

(I) 

could be seen as 

k L A IE) i 

(or, will model) the application of the al- 

gorithm A to the object E. In particular, the result of the 

concretization (when it exists) should be the result of the 

use of A on E. In programming terms, the program is inter- 

preted here, thus the function i will be called the interpret- 

ing f~nctio~ of the language. Since Refal allows the use of 

any object signs, there is no restriction on the composition 

of program A and work object E: the algorithmic language to 

be defined is allowed to use any characters different from 

those depicting the specific signs of Refal. We might consider 
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A and E as arbitrary strings of object signs, but nothing pre- 

vents us from introducing Refal parentheses into these strings, 

thus making them generally object expressions. If the object 

language uses parentheses in the way they are usually used (to 

create trees), it is convenient to identify them with the struc 

ture brackets in Refal. 

So, we have a formal description of the algorithmic lan- 

guage L through its interpreting function. How do we use it? 

If we have a computer implementation of the Refal machine 

(an interpreter or a semicompiler), we can use the language L 

in the following manner. Each time that we have to execute an 

algorithm A written in L, the expression to apply this algo- 

rithm to being E, we form the working expression (i) in the 

view-field of the Refal machine and start it into action. We 

will obtain the desired result in this way, but understandably 

this is not an efficient way to use a programming language 

systematically, because this is an interpretation mode. Can 

we improve the efficiency by turning to a compilation mode? 

What is compilation? 

2. Graph of States 

Let us examine it in a very simple example of a language 

with the interpreting function /L/ defined by the following 

sentences: 
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L.1 

L.2 

LI. 1 

LI.2 

L1.3 

k/L/ el; e 2(e a) => k/L/e 2 (k/Li/e l(e a) ~ ) 

k/L/e l(e a) => k/Ll/e I (e a) 

k/LI/CROSS(s I e 2) (s 3 e 4) => SlS 2 k/LI/CROSS(e I) (e 2) 

k/LI/CROSS (el)(e2) => e I e 2 

k/LI/ADD(e I) (e a) => e a e I 

Here the first sentence indicates that a text in the 

language /L/ may be formed as a sequence of instructions sepa- 

rated by semicolons, and the instructions are executed from 

left to right, being applied each time to the result of the 

execution of the preceding instruction. 

the execution of separated instructions. 

kinds of instructions: CROSS and ADD. 

Function /LI/ defines 

There are only two 

Instruction CROSS(P) 

"crosses" the work object with the word P by putting their 

symbols in alternation until one of the words is exhausted (we 

assume that the objects which the language /L/ deals with are 

strings of symbols). Instruction ADD(P) adds the word P at 

the end of the work object ea. Here is an example of a program: 

CROSS (CAT) ; ADD (DOG). 

In order to execute it on the word LION as the work object (in- 

put data), we put into the view-field of the Refal machine: 

k/L/CROSS (CAT) ; ADD (DOG) (LION) i - 

The concretization of this expression gives: 

CLAITONDOG. 

NOW suppose we have some ob jec t  machine M 0 , and we want 

to translate our program into the language of M 0. Let M 0 have 
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two fields, referred to as objec t  and r e s u l t  in which the ob- 

ject and the result of work are stored and gradually transformed, 

and let it be able to perform certain simple operations, which 

we will describe in English. What do we do to translate the 

program on the basis of the interpreting function /L/ defined 

in Refal? We analyze the process of interpretation of this 

program with some general, not exactly specified input data, 

and describe the operation of the Refal machine in the language 

understandable by M 0. We imagine that the following expression 

is put in the view-field of the Refai machine: 

(i) k/L/CROSS (CAT) ; ADD (DOG) (ex) i 

which is, of course, impossible literally because of the free 

variable ex, which represents the set of all expressions and 

not a specific expression. Then we drive, so to say, the set 

(i) through the Refal machine; i.e., trace what is happening 

to its elements when they are put into the view-field, and the 

Refal machine is started. The rules of driving are algorith- 

mically formulated in [2]; in the present paper we perform 

driving informally. 

A set of workable expressions defined by a general (pos- 

sibly containing free variables) expression is called a con- 

figuration (generalized state) of the Refal machine. There 

are two cases of driving a configuration: 

a) The sentence used by the Refal machine does not de- 

pend on the value(s) of free variable(s) (if any) in the con- 

figuration. E.g., at the first step of driving (I) the sen- 
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tence L.I will be used no matter what the value of e is. 
X 

Therefore, we can execute one step of the Refal machine as if 

e x were a specific expression. The result will be the follow- 

ing configuration: 

(2) k/L/ADD (DOG) (k/LI/CROSS (CAT) (ex) ~ ) 

b) With different values of the free variable(s) in the 

configuration, different sentences will be used by the Refal 

machine. In this case it is necessary to split the full set 

corresponding to the configuration into a number of subsets 

such that to all the elements (workable expressions) of a given 

subset the same sentence corresponds. Thus, a branching ap- 

pears, because the history of each of these subsets must be 

traced on. When we continue to drive configuration (2), the 

call of function /LI/ is to be concretized first; if the value 

of e starts with a symbol, sentence LI.I will be used in 
x 

driving; if the value of e x is empty, the sentence used will 

be LI.2. We say that two contractions of the variable e x are 

made at this stage of driving: 

÷ sle ex x (c.l) 

and 

(c.2) e ÷B 
X 

(The symbol 0 represents the empty expression.) 

Actually contracted is, of course, the set of expressions 

represented by e x. But when a value of e x is given, the con- 

traction reads as the predicate which says whether this value 

is found in the contracted set represented by the right side; 

in addition, the values of the variables entering the right 
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side are (re)defined. E.g., if the value of e is 'LION', then x 

as the result of contraction (c.l) s I becomes 'L'r and e x be- 

comes 'ION', while contraction (c.2) is impossible. 

The result of the repeated driving of the initial config- 

uration may be represented as the graph of statzs of the Refal 

machine. The graph of states for the initial configuration (i) 

is shown in Fig. i. 

~ ex-~ Slex ~ ex~S2ex ~. ex-~Ssex 

ex~" [3 n ~  ex-~[3 , ~ ~  ex-~[3 rS-I 

~ig. 1 

The vertices of the graph of states are configurations, 

which are shown as circles if they are active (include at least 

one k-sign) and as squares if they are passive (no k-signs). 

The remaining configurations in Fig. 1 are: 

(3) k/L/ADD(DOG) (Cs I k/LI/CROSS(AT)(ex) i ) i 

(4) CATDOG 

(5) k/L/ADD (DOG) (CSlAS 2 k/LI/CROSS(T) (ex) ~ ) i 

(6) CSlATDOG 

(7) CSlAS2TS3exDOG 

(8) CSlAS2TDOG 
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The arcs in Fig. 1 are of the dynamic type only; they re- 

present one or more steps of the Refal machine, are ordered 

and bear contractions. There may be two more types of arcs 

in a graph of states. Configuration (2) could be represented 

as the composition of configurations 

k/L/ADD (DOG) (ey) I (9) 

and 

(lO) k/LI/CROSS (CAT) (ex) i 

as shown in Fig. 2a by a vertical (wavy) arc which bears the 

computed variable ey. The broken line in Fig. 2a is a repre- 

sentation arc, which does not depict any operation of the 

Refal machine, but only a change in the way we represent the 

current state. 

Q 
e 
Y 

Fig.2a 

CAT ~- e z 

Fig.2b 

Configuration (I0), in its turn, could be represented as 

a special case of the more general configuration. 

(ii) k/LI/CROSS (ez) e x 

as shown in Fig. 2b by a representation arc, which bears the 
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assignment of the expression 'CAT' to the variable e 
z" 

Instead of the usual form of assignment 

e : = E 
z 

where E is any expression, we use the form 

E ÷ e 
z 

which may seem strange at first glance, but in fact is very 

natural and convenient in the analysis of graphs of states 

and permits better understanding of the relationship between 

the contraction and the assignment. This notation is a part 

of a consistent system of notation, based on the following 

principles: 

(i) In writing a substitution we always use an arrow 

which is directed from the variable to be replaced to the sub 

stituting expression. 

(2) Seen another way, a substitution may reflect a re- 

lationship between two groups of variables: those of the 

first group are old variables; i.e., they are already defined 

(have values), those of the second group are new; i.e., they 

get defined by the substitution. We shall always put the old 

variables on the left and the new on the right of the substi- 

tution formula. Thus, two types of substitution emerge, con- 

tractions and assignments, as presented in the following 

scheme: 
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Old Variables 
(already defined) 

Contraction V + 

Assignment E ÷ 

New Variables 
(being defined) 

where L is an L-expression including (possibly) new variables, 

and E is any expression, which may include old variables; V is 

a single variable. 

(3) In the notation of substitution, the variable which 

is to be replaced and the expression in which the replacement 

must be performed make a pair separated by the substitution 

sign //, and the arrow points to the substituted expression. 

One form is: 

E//(V ÷ E'). 

Another form, completely equivalent to the first one, is: 

(E' ÷ U)//E. 

(4) When we construct a graph of states we move from 

left to right defining new variables. Therefore the lists of 

both contractions and assignments will be lengthened (and 

read) from left to right. But because of the different di- 

rections of the substitution arrows, the law of composition 

of substitutions will be different for contractions and as- 

signments, although equally easily suggested by our represen- 

tation: 

(V ÷ L I) (V ÷ L 2) = V ÷ (L// V ÷ L) 

(E 1 ÷ V) (E 2 + V) = (E 1 + V//E 2) ÷ V 

Tracing the graph of states of the Refal machine we 

simultaneously map it onto the object machine M 0, compiling 
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instructions for M 0 so as to keep correspondence between the 

generalized states of the Refal machine and the machine M 0" 

To each configuration in the graph of states of the Refal 

machine a control point in the program for M 0 will correspond, 

while the variables in the graph of states are mapped on the 

information field in M 0. When a self-sufficient graph of 

states is constructed the process of compilation is completed. 

Proceeding in this manner, we compile the following object 

program: 

i. 

2. 

and Cs  1 

Object assumes its input value, r e s u l t  becomes empty. 

If object begins with a symbol s ! , it is deleted, 

is added to result, otherwise result becomes CATDOG, 

and go to End. 

3. If object begins with a symbol s 2 , it is deleted, 

and As 2 is added to result otherwise ATDOG is added to result, 

and go to End. 

4. If object begins with s 3 , and the rest is e4, 

then Ts 3 e 4 DOG is added to result, otherwise T object DOG 

is added to result. 

5. End. 

In the general case of a language L and an algorithm A 

in that language, the expression 

k L A (e x) i 

must be driven through the Refal machine, and the goal of the 

theory of compilation is to examine this process and describe 

the operations performed on the argument e x in the language 
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of the object machine M 0. If this theory were to be elaborated 

bearing in mind one definite language L, that is drawing upon 

its specific features, then the theory would result in an al- 

gorithm of compilation from this language [. But we shall not 

bear in mind any specific language, of course. The theory of 

compilation should be applicable to any texts in Refal, its 

goal being to design one ~niversal algorithm to compile from 

any language, had its interpreting function been defined in 

Refal. 

3: Compilation Strategy. 

When we have finished the construction of a self-sufficient 

graph of states, we have represented the set of all possible 

states (with a given start) as compositions of certain subsets - 

configurations. Thus, constructing a graph of states produces 

a set of configurations. Conversely, if we specify, no matter 

how, a set of configurations which we will call basic, and if 

we agree that only basic configurations may enter the graph of 

states, we will to a considerable extent define the graph of 

states to be constructed. Into the set of basic configurations 

we include, of course, only a c t i v e  configurations: there is no 

point in restricting passive configurations to enter a graph of 

states. The general scheme of constructing a graph of states 

is as follows. Starting with the initial configuration, we 

perform driving, and every time that we receive an active con- 

figuration we take a decision as to whether to continue driving 

or to express the configuration through some explored basic 
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configurations and stop driving. Thus a strategy of compilation 

must be defined to construct a self-sufficient graph of states. 

In particular, a set of basic configurations must be defined 

which is of a paramount importance for the final product of 

compilation. 

The choice of basic configurations determines the depth 

of compilation. The more specific the basic configurations 

are, the deeper the compilation process will go, and when the 

basic configurations are more general, the resulting program 

will retain a higher level of interpretation. Thus, the 

characterization of a program in terms of interpretation versus 

compilation, familiar to every programmer, becomes more com- 

prehensible and receives a formal definition: it is the gen- 

erality of configurations chosen as basic in constructing the 

graph of states. 

The process of compilation may be controlled by including 

some specific configurations into the set of basic configura- 

tions, or, on the contrary stating that configurations of a 

certain kind Should not become basic by any means (and there- 

fore they will never be recipients of dynamic arcs, which means 

that they can be excluded, if necessary, from the final graph 

of states). Changing the compilation strategy, and varying the 

level of compilation thereby, we may receive different programs 

from the same initial definition of the problem in REFAL. For 

an example, the graph of states in Fig. 1 is the result of a 

strategy which declares basic each new configuration appearing 

in the process of driving. The corresponding program for M 0 
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is highly compilative and efficient. But suppose that instead 

of "CAT" in the formulation of the problem we have a word of 

100 letters. Then the graph of states will contain i00 branch- 

ing points, and the resulting object program will be quite 

bulky. We may desire -- as a trade off between space and time 

parameters -- to make the program more compact at the expense of 

retaining a level of interpretation. We declare configuration 

(Ii) basic. Then when configuration (2) first appears it gets 

represented as shown in Fig. 2a and Fig. 2b, and the final graph 

will be as shown in Fig. 3. 

CAT ~- e 

ey 
~ eyDOG 

(e~-sae z) (ex-.-sbe x) ~ SaSbeu 

Fig.3 

We see here an example of mixed strategy: decomposition 

of the text in the language /L/ into statements and execution of 

the first statement are done at compile time, but the second 

statement -- procedure of "crossing", which, of course, could 

have a longer word than "CAT" as the first argument -- is in- 

terpreted. 



455 

4. Perfect Graph s. 

A walk in a graph of states is a sequence of alternate 

vertices and arcs VIAIV2A 2 ... Vk_iAk_iAk which "might be" 

followed (passed) by the Refal machine with some definite 

values of the input variables (exact  i npu t  s t a t e ) .  When we 

say "might be" here, we mean that the actual existence of an 

exact input state which brings the Refa! machine to make this 

walk is not presupposed; a walk exists if certain rules are 

observed in its construction, which ensure that in order to 

define a computed variable we first go down the composition 

arc and on coming to a passive configuration on this function 

call come back up the same arc. In referencing to walks we 

shall list their vertices only, and show downs and ups by left 

and right brackets respectively. 

An i npu t  s e t  is a set of exact input states. In parti- 

cular, an input set may be an i npu t  c lass ;  it is specified 

when contractions (possibly trivial) are specified for each 

input variable. To each walk an input set corresponds which 

comprises all those exact input states starting from which 

the Refal machine will make this walk. A walk is called feas- 

ible if the corresponding input state is not empty, other- 

wise it is un feas ib l e .  A graph of states in which all pos- 

sible walks are feasible is called p e r f e c t .  

The graph in Fig. i is perfect. We can easily find a 

corresponding input set for each possible walk in it, and 

this set will not be empty. E.g., the input set for the walk 
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1,2,4 consists of one element, which is the empty expression. 

For the walk 1,2,3,5,8 the input set is s I s 2 , etc. The graph 

in Fig. 3 is not perfect, however. The walk 

1,2,9[ii,12[ii,i2[ii,12[11,12[ii,13]]]]],14 is, e.go, unfeasible 

because with the value 'CAT' assigned to e the Refal machine 
z 

will never make more than three cycles of the loop. This il- 

lustrates the general point that the more interpretive an al- 

gorithm is, the less perfect is its graph of states. The pro- 

cess of compilation using a strategy compilative enough can 

considerably improve an algorithm with imperfect (in the de- 

fined sense) graph of states. An algorithm whose graph of 

states is perfect cannot be improved by compilation process 

alone. 

As one more example, consider the algorithm which scans 

the argument (supposed to be a string of characters) twice, 

changing every A to B during the first scan, and every B to C 

during the second scan: 

kFe I => kFb kFael i i 

where functions F a and F b are defined by 

kFaAe 1 => B kFael  ~ 

kFasle 2 => s I kFae2 

kF a => 

kpbBe 1 => C kFbel ~ 

kFbsle2 => s I kFbe2 

kF b = > 



457 

The corresponding graph of states is represented in Fig. 4. 

eb-~ Be b 

~ - - - ~eb_.. ~ s3eb ~z 

Fig.4 

It is far from being perfect. For example, the walk 

1,213,0],6,2,0 is unfeasible. Moreover, any walk of the form 

1,213,W3],W 2 , where the numbers of arcs in the walks W 3 and 

W 2 are not equal, is unfeasible. This is the reflection of the 

organization of the procedure as a double passage of the argu- 

ment. 

A simple compilation strategy, formulated and discussed 

in [2] transforms this graph into the algorithm which passes 

the argument once and changes both A's and B's into C's. Its 

graph is shown in Fig. 5. It is perfect. 
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el--- Ae I 

f 

el---Be I 

q._ s2el s 

Ce Z 

~~ Z Cez 

Fig.5 

The following theorem is proved in [2]. 

THEOREM. There exists no algorithm which could transform 

any graph of states into an equivalent perfect graph. 

5. Automatic Production of Compilers by a Supercompiler 

A program which transforms an interpretive Refal program 

into a compilative program for an object machine M 0 is called 

a sup£rcompiler. If the supercompiler is also written in Refa!, 

it allows, for any language L defined in Refal, to produce auto- 

matically compilers which translate from L into the language 

of M 0 and are run on M 0, so that the user of such a compiler 

may never discover that Refal was used in its creation. 

For a greater clarity of presentation, let us represent 

the functioning of M 0 with the help of "concretization sign" 
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k M, like the regular sign k represents the functioning of the 

Refal machine. Thus 

kM(~) (e I ) (e2)''" (en> i 

will signify the work of M 0 with the program pM and n pieces 

of input information el,e2,~..,e n. 

Let us denote the supercompi!er function defined in Refal 

C s, so that the concretization of 

kcSp~ 

where P is some representation of a Refal program, gives an 

equivalent program ~ for M 0. As the basis for the representa- 

tion in question we choose the graph of states corresponding 

to a text in Refal, not the sequence of sentences. The trans- 

formation of a graph of states into the corresponding expres- 

sion P will be called the meta~ode. We do not need here a full 

definition of the metacode, only some major points. 

The first problem we have is to transform free variables 

into expressions. It will be achieved by changing e, s, and t 

into *E, *S, and *T, respectively. E.g., the variable e I will 

become *El in metacoder s b will become *SB etc. Because of 

this agreement the asterisk * becomes a special symbol, and it 

will turn into *V in metacode, to avoid ambiguity. Other sym- 

bols and parentheses will remain themselves. 

Arcs in the graph of states will be represented as con- 

catenations of parenthesized contractions and assignments- 

branchings being rendered by parallel parentheses structures. 

E.g., if there is a triple branching at the start, the meta- 

code will have the structure 
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(GIG2G3). 

Syntactically, a graph is always represented by a term, so 

that if G v represents the graph for a vertex v, then to add 

an assignment or contraction S v leading to v, we just write 

SG. 
vv 

The graph of state for a function F, which has, say, two 

arguments e a and e b will be denoted as 

~F(*EA,*EB). 

By the definition of the supercompiler 

kF(e a) (eb) ~ E kM(kcSyF(*EA,*EB)~) (e a) (e b) 

Suppose now that we have a language defined in Refal by 

its interpreting function L, so that concretizing 

(I) k L P (D) i 

is applying program P in L to input data D. Let us examine 

different ways of using language L. 

First of all, we can just run the Refal machine (imple- 

mented interpretively on a computer) with the initial view-field 

(I). This will be a pure interpretation. 

The most straightforward way to use the supercompiler and 

the object machine is to translate the Refal program for L into 

language of the object machine with the supercompiler and turn 

over the result to the target machine for execution. Symbolical 

ly, we must perform the following actions: 

(CI.I) kC s yL(*EP,*ED) i result denoted pL 

(CI.2) kM(p L) (P)(9) i 
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Program pL is an interpreter of L compiled for M 0. To 

produce pL we use the Refal interpreter only once (step CI.!). 

Then for each pair P,~ we use M 0. Although this is much more 

efficient than using the Refal interpreter each time accord- 

ing to (I), it is not yet efficient enough, because step CI.2 

remains interpretive. 

To produce a compiled (efficient) equivalent of P we must 

use supercompiler with program P specified. The argument of 

C s will be the graph of state for the initial configuration 

k L P (e d) i 

with the first argument given and the second arbitrary (free 

variable). This graph of states in metacode is: 

(P + *EP)yL(*EP,*ED). 

Thus, the first step will be 

(C.I) kcS(p + *EP)~L(*EP,*ED) 

result denoted pLP. 

Program pLP is an efficient program for M 0, which is the 

translation of program P in L. Since the variable *EP in (C.i) 

has been assigned a value, pLP demands only one argument ed, 

and the second step is 

(C.2) kM(pLP) (D) 

Although the execution of the algorithm P is now compila- 

tive and efficient, the compilation process defined by (C.l) 

is still in the interpretation mode and uses the Refal inter- 

preter. Can we execute it on M 0 and in the compilation mode? 
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The process of compilation (C.!) depends on P. Let us 

introduce and define in Refal the function C L which is com- 

piler for L and may have any program e as argument: 
P 

kcL(ep) => kCS(ep ÷ *EP)yL(*EP,*ED) 

Now, instead of just concretizing kcL(p) i , as in (C.I) 

we first compile this function using C s and run it on the 

machine M 0. The graph of states for configuration kcL(ep) is 

shown in Fig. 6. 

(D 
kC L ep i 

( (_%- *EP) L(*EP,*Em -- e ) 
_g_ _ 

kC s e gl 

Fig.6 

The metacode of this graph is: 

ycL(*EP) ~ ((*EP ÷ *VEP)yL*(*VEP,*VED) + *EG)ycs(*EG) 

where the asterisk at YL* shows that the whole of the metacode 

7L should be subject to the (second) metacode transformation, 

not only its input variables (*EP,*ED), which are shown trans- 

formed: (*EVP,*EVD). 

Thus the use of the language L will include now (CC case: 

Compiled Compiler) three steps: 
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(CC.I) kcS((*EP ÷ *VEP)yL*(*VEP,*VED) ÷ *EG)~{cs(~EG) 

result denoted C LM 

(CC.2) kM(cLM) (P) i 

result denoted pLP 

(CC.3) kM(p LP) (D) i • 

The result of the last step will be, of course, the same as 

that of (I): application of P to D. 

In the CC case only the first step, production of the 

compiler C LM, is executed on the Refal interpreter, and only 

once for each language L. But even this step can be moved to 

the M0-machine by one more ~'metasystem transition", which will 

give us a compiler compiler. One can see that step CC.1 de- 

pends only on the definition of L in double metacode: 

yL*(*VEP,*VED). Thus, we define the function which produces 

compilers, having the definition of a language e£ as input: 

kcC(e l) => kcS((*EP ÷ *VEP)e/ ÷ *EG)ycs(*EG) ~ . 

The use of a compiler compiler (case CCC: compiler of 

compiled compilers) includes four steps, the first one being: 

(CCC.I) kcS(((*VEP + *VVEP)*EL ÷ *VEG) 

ycS*(*VEG) ÷ *EG)~cs(*EG) 

result denoted C CL. 

In the second step we use the definition L of the language L 

and produce a compiler for L: 
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(CCC.2) kM(c CL) (L) 

result denoted C LM. 

The last two steps are the same as in case CC. 

One can see that in (CC.I) the supercompiler C s is applied 

to its own definition. The derivation of this formula was 

referred to in A. Ershov's work [3] as "Turchin's theorem of 

double driving." Formula (CCC.I) involves triple driving: use 

of C S on the application of C S to C S. 

Let us sum up the main features of the supercompiler sys- 

tem. 

(i) Refal is used both as the algorithmic language and as 

the metalanguage of the system. Formally, all algorithms are 

written in Refal, but in fact one can define any language 

through its interpreting function, and then write in that lan- 

guage. One can construct hierarchies of languages, defining 

one language through others. 

(2) The system includes a Refal- interpreter,  so as to 

debug programs in the interpretation mode. This makes the de- 

bugging process closest to the terms in which the program is 

written. 

(3) The system includes a supercompiler, which transforms 

a Refal program into an efficient program for an object machine. 

Counting on the supercompiler, we can program in a much freer 

style than if the program is expected to be interpreted. We 

can use very general algorithms, which are not efficient when 

executed literally; i.e., interpreted, but with the arguments 
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partially specified, may be turned into efficient algorithms 

by the supercompiler. The use of a language defined through 

its interpreting function is only one special case of this 

style. 

(4) Operations and algorithms not defined in Refai can 

be used as e x t e r n a l  f u n c t i o n s ,  provided that t r a n s l a t i o n  s t a t e -  

men t s ,  which show how these operations should be performed in 

the target machine, are available to the supercompiler. 

(5) One part of the supercompiler's job is the compila- 

tion pro6ess, which is one of the basic optimization tools. 

The user may control this process by choosing a compilation 

strategy and modifying it depending on the results of compila- 

tion. Making a number of trials, an optimal point on the in- 

terpretation-compilation axis may be chosen; i.e., the desired 

trade-off between the size and the speed of the program achieved. 

(6) The second part of the supercompiler's job is the 

mapping of the Refal-machine on the target machine. When the 

user programs in Refal, he defines his formal objects (data 

structures) as Refal-expressions, in a mathematical style. 

After debugging, which, as we mentioned above, should be done 

with the Refal-interpreter and in terms of Refal-expressions, 

the user may partially or completely specify the mapping of the 

Refal-configurations on the object machine. Different mappings 

may be tried to achieve better performance. Those configura- 

tions for which no mapping was indicated will be mapped auto- 

matically by the supercompiler. Since the mapping is made when 

the algorithm has already been formally defined, it is possible 
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to adjust automatic mapping to the algorithm to achieve high 

efficiency. On this way it is possible to free the user com- 

pletely of so tedious a job as organizing and describing data 

for a real computer system. He will be dealing only with a 

mathematical model. 

(7) If an algorithmic language L defined in Refal is 

expected to be used for a class of problems, an e f f i c i e n t  

compiler f r o m  L c a n  b e  produced automatically. I t  w i l l  b e  r u n  

on the object machine and will translate programs in L into 

the language of the target machine. The user of the language 

L may or may not know anything about Refal and the way the 

complier from L was made. 
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APPENDIX 

Formal Definition of Basic Refa! 

I. Syntax 

A considerable part of the syntax will be described in 

the Backus Normal form. 

I.l Signs. 

<sign> ::= <specific sign> I <object sign> 

<specific sign> ::= #1/I<bracket>l<variable type sign> 

<bracket> ::= <structure bracket>l<concretization bracket> 

<structure bracket> ::= (I) 

<concretization bracket> ::= k I ~ I => 

<variable type sign> ::= sltle 

Object signs are capital Latin letters and other signs 

which are different from specific signs. The set of all ob- 

ject signs is assumed to be finite. 

1.2 Symbols and Expressions. 

<symbol> ::= <object sign>I<compound symbol> 

<compound symbol> ::= /<object string>/ 

<object string> ::= <object sign>l<object string><object sign> 

<expression> ::= <empty>l<expression><term> 

<empty> ::= 

<term> ::= <symbol>l<variable>I (<expression>) Ik<expression> i 

<variable> ::= <simple variable>l<specified variable> 
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<simple variable> ::= <variable type sign><index> 

<index> ::= <object sign> 

<specified variable> ::= s <specifier><index> 

<specifier> ::= (<object string>)I<compound symbol> 

A patte~ expAession is an expression, which does not con- 

tain concretization signs (but generally contains variables). 

A workabZe £xpressio~ is an expression, which does not contain 

variables (but generally contains concretization signs). An 

object expression is an expression, which contains neither con- 

cretization signs nor variables. 

1.3 Sentences and Programs. 

<sentence> ::= #<comment><reversion indicator><left side> 

<right side> 

<comment> ::= <object string>I<empty> 

<reversion indicator> ::= <empty>I (R) 

<left side> ::= k<pattern expression> => 

<right side> ::= <expression> 

<program> ::= <empty>I<program><sentence> 

No sentence can contain variables with identical indexes 

but different type signs. The right side of a sentence can 

contain only those variables appearing on its left side. 

Specifiers in right sides are omitted. 

By the range of a concretization sign k in an expression 

we mean the subexpression bounded by this sign and the con- 

cretization point ~ paired with it. We call the Zeadin@ sign 

k in a given expression the leftmost sign k wihh no other 

signs k in its range. 
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2. Syntactical Recognition 

2.1 We say that an object expression E 0 can be syntactically 

recognized as a pattern expression E , if the variables in E 
P P 

can be replaced -- observing the rules listed below -- by such 

expressions, called their values, that E becomes identical to 
P 

E 0. The rules are as follows. 

2.1.1 A variable of the form sX, tX or eX, where X is an 

index, can take as a value any symbol, term and expression, re- 

spectively. 

2.1.2 A variable of the form s(P)X, where P is an object 

string, can take as a value any symbol, which enters P. Vari- 

ables s/SIGN/X and s/COMP/X take as values object signs and com 

pound symbols, respectively. A variable of the form sDX, where 

D is a compound symbol different from those two, is equivalent 

to a variable s(P)X, where P is the result of concretization of 

kD~. 

2.1.3 All entries of the same variable; i.e., those with the 

same index, must be replaced by the same value. 

2.2 If there are several alternative ways of assigning values 

to the variables, the ambiguity is resolved in one of the fol- 

lowing two ways, which will be called recognition from l e f t  to 

r ight  and from r ight  to l e f t .  If recognition from left to 

right (from right to left) takes place, then of all alterna- 

tives the one is chosen in which the leftmost (rightmost) ex- 

pression variable in E takes the shortest value. If this does 
P 

not resolve ambiguity, the analogous selection is made with 

respect to the second from the left (right) expression variable 

etc. 
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• kE 0 => means to 2 3 To recognize a term ~ as a left side kEp 

recognize E 0 as Ep. 

3. Refal Machine• 

The Refal machine is an abstract device which executes 

algorithms written in Refal. It consists of two potentially 

infinite stores, which are called the memory-field and the 

view-field, and a processor. At every moment in time the 

memory-field contains a finite sequence of sentences, and the 

view-field contains a workable expression. 

The Refa! machine works by steps. Having fulfilled a 

step, the machine proceeds to execute the next one, provided 

that the former has not led to a normal or abnormal stop. Exe 

cution of the step begins with the search for the leading sign 

k in the view-field. If there is no sign k, the Refal machine 

comes to a normal stop. On finding the leading sign k the 

Refal machine examines the term which begins with it; it is 

called the active term, and we say that the starting sign k 

became a c t i v e .  

3.1 If the active term is k/BR/(N)E~, where N and E are some 

expressions, the machine writes down a new sentence 

# k/DG/N => E 

into the memory field, putting it before the first sentence. 

The active term is removed from the view field, and the step 

is completed. 

3.2 If the active term is k/DG/N~, the Refal machine finds 

in the memory field the first sentence of the form 
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# k/DG/N => E 

with the same N, removes it from the memory field and substi- 

tutes E for the active term, thus finishing the step. If there 

is no such sentence, the active term is merely removed. 

3.3 In other cases the Refa! machine compares the active term 

with the consecutive sentences in the memory field, beginning 

with the first one, searching for an applicable sentence, by 

which we mean such a sentence, that the active term can be re- 

cognized as its left side. Recognition is performed from left 

to right if the reversion indicator is empty, and from right to 

left if it is (R). Having found the first applicable sentence, 

the Refal machine copies its right side, replacing the vari- 

ables by the values they have taken in the process of recogni- 

tion. The workable expression thus formed is substituted for 

the active term, and the step is finished. If there is no ap- 

plicable sentence, an abnormal stop occurs. 

4. External Functions 

In real implementations of Refai, as distinct from the 

abstract Refal machine described above, one more action is 

taken at each step before using the sentences: the examination 

of whether the active term is or is not an ext£rnaZ function 

call. By external we mean those functions which are not de- 

scribed in Refal. Some symbols must be specified in every im- 

plementation as external function determiners. If the active 

term has the form kFE~, where F is such a determiner, control 

goes to a program (or whatever) that performs the concretiza- 

tion. It may result in the replacement of the active term by 



472 

some workable expression, and may produce any effect in the 

environment. After it is over, the current step is finished 

and control goes back to the Refal machine. 

The functions which provide input-output facilities 

clearly must be external. In all implementations a function 

/PR/ is available, which is defined so that when a term k/PR/E~ 

becomes active, the expression E is printed and the term is 

transformed into E. Another function, /P/, prints the argu- 

ment and deletes the active term. 

We do not introduce into the formal description of Refal 

the concept of number, but in implementations it is possible 

to code positive integer numbers in a certain range as compound 

symbols of a special kind. The arithmetic operations on them 

are performed with the aid of appropriate external functions. 

A compound symbol which enters a symbol variable as a 

specifier may also represent an external function. 

5. Representations. 

In written and printed representations, variable indexes 

are lowered. The sign # may be omitted in which case each 

sentence must begin in a new line. 

It is also possible to use the  shor thand  n o t a t i o n ,  in 

which Greek letters are introduced as representing combinations 

of a sign k and a function determiner. Additionally we agree 

that if a concretization point paired with a k-sign implicit 

in a Greek letter closes a subexpression it may be omitted 

(because concretization points closing subexpressions can be 
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unambiguously restored). Therefore, the definition of the 

function /FIRSYM/ whose value is the first symbol of an ex- 

pression may take the form: 

= k/FIRSYM/ 

~sle 2 => s 1 

e(el)e 2 => ~ele 2 

=> 

At last we introduce one more facility into the shorthand 

notation: upper indexes can be used without any further de- 

finitions. If e is defined as above, then a means 

k/FIRSYMA/ and 25 is equivalent to k/FIRSYM25/. An upper in- 

dex used with an object sign turns it into a compound symbol. 

So, F 1 is equivalent to /FI/, and R +- to /R+-/. 

The representation of the Refal program to input into the 

computer may depend on implementation. In current implementa- 

tions (semi-compilers) of Refal the above definition of the 

function /FIRSYM/ will take this form: 

FIRSYM SIE2 = S1 

(El)E2 = k/FIRSYM/EIE2. 
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