
ON THE FORMAL DEFINITION OF ADA

V.Donzeau-Gouge, G.Kahn, B. Lang
IRIA-Laboria, Rocquencourt FRANCE

B. Krieg-Brueckner
CII-HB

ABSTRACT: This report presents the essential design decisions that were
made when drafting the Formal Definition of the programming language
Ada, commissioned by the U.S(Department of Defense. The goals,
structure and conventions of the document are outlined. This paper
constitutes an introduction to reading the Formal Definition.

KEIWORDS: Programming Languages, semantics, programming environment.

I Introduction

As a part of the DOD-I language effort, the Steelman Report has required a formal
Definition (IH). This requirement was both innovative and far-sighted.

Purposes

It may seem at first that devising the Formal Definition of a programming language is
essentially an academic exercise, in fact, the formal definition is called to play an
important role in several aspects related to the acceptance of the language by a
large community of users. A formal definition can serve:

(i) As a standard for the language, that is as a means to answer unambiguously all
questions that a programmer or an implementor may raise about the meaning of a
constrvct of the language. The formal definition should serve as a reference
document for the validation of implementations and as a guideline for
imDlementors. It will permit to unify the user interface across implementations
(e.g. error messages) and the interface between processors manipulating programs
(e.g. mechanical aids for normalization and documentation of Ada programs).

(ii) As a reference document for justifying the validity p_~ ootimizations and other
program transformations. The only valid optimizations will be those that do not
alter the meaning of a program.

(ill)As a reference document for p_~oving orooerties ~ programs written in the
language. In particular, it will allow the derivation of inference rules that
can be used conveniently when proving properties of programs.

476

(iv) As an input for a compiler-generator when the technology becomes available. The
Formal Definition of Ada is specified with enough precision to be processed,
except for some straightforward notational transformations, by the experimental
system SIS [Mosses].

Furthermore, the concurrent development of Ada and its formal definition have already
resulted in further major benefits:

- Difficulties in early drafts of the Reference Manual (such as lack of clarity,
ambiguities, omissions or inconsistencies) have been uncovered very early.

- Feedback was established to strive for economy of ~o~cepts in the Ada language.

These benefits are essentially independent of the particular method of definition
that has been selected.

Requirements

When designing the formal definition of a language like ~da, there are two major
requirements to keep in mind:

~i) The definition must be complete. If the definition is not complete its
usefulness as a reference will be seriously diminished. This completeness can
only be achieved by using a mathematically well-founded definitional method.

As of' the Spring of 1979, however, the State of the Art in formal semantics does
not allow us to offer a mathematically meaningful semantics for all issues
concerning tasking. This is a very serious gap in our theoretical understanding
of programs. ~esearch in Semantics of parallelism is extremely active [Kahn]
but the conclusion does not seem very near. No attempt has been made to give a
dynamic semantics for task synchronization in Ada, while it is hoped that all
other aspects of the language are satisfactorily covered.

in all matters relating to concurrency, the readers will have to do with the
textual description of the dynamic semantics that is provided, pending a
scientific breakthrough.

[ii) The Formal Definition of Ada is meant to be used in an industrial environment.
Therefore extreme care must be given to notations. Considerations of compactness
and mathematical elegance that are of prime importance in a scientific
environment Oecome less central in an engineering environment. ~ great deal of
effort should be spent on the style of the definition and its intuitive content,
to make it accessible to the intended readership: implementors of compilers,
standardization committees, educated ~da programmers. Naturally, such an
attempt should preserve the mathematical rigor of the definition, and should be
seen merely as the development of a convenient notation.

The formal definition given here is akin to a large program. Special attention has

been given to several key issues:

The structure of the description reflects the underlying semantic concepts of

the language.

~he choice of identifiers stays as close as possible to the terminology of the

Reference ~anual.

477

The style of the description is homogeneous and uniform conventions are used
throughout.

~-iethod

There are three widely accepted methods of formally defining the semantics of a
programming language.

(a) ~perational Semantics

In this method, best exemplified by the Vienna Definition Method, the semantics is
modelled by the behavior of an abstract m a~ine. This has a practical appeal but
also presents several problems:

(i) ~he mechanism of the abstract machine tends to overspecify the language since
all details of machine-state transitions must be given.

(ii) It is not immediately obvious that the language has been well defined. One must
rely on a proof that any execution terminates with a unique answer.

(iii)The theory of operational semantics is, in fact, rather difficult and not
well-understood. Using an operational semantics to validate optimizations or to
prove properties of programs is intricate because we are not well-equipped to
reason logically about the behavior of a complex machine.

Recent advances in operational semantics should make this approach more suitable in
the future. [hennessy-Flotkin, Huet-Levy]

(b) Axiomatic Definition

This method is very popular because it is directed towards proving properties of
programs. Its deficiencies, however~ render it unsuitable for the definition of a
language like Ada:

(i) First, giving some properties of language constructs cannot constitute a
definition~ unless some proof of completeness can be given.

(ii) An axiomatic definition is not adapted to a use by implementors since many
details about the dynamic semantics cannot be formalized adequately.

(iii)~o complete axiomatic definition of a large programming language has ever been
carried out successfully, to date. Treatment of exceptions, for example, does
not fit well in this formalism. Research in this area is active however.
[Luckham-Polak]

(c) Denotational ~emantics

We have elected to present a formal definition of Ada using denotational semantics.
There are several reasons for choosing this method:

(i) It allows the definition of the language to any desired level of detail.

(±i) The method has been used (with success) on a number of languages with
characteristics similar to tho~e of Ada: Pascal, Algol 60, CLU, etc. [Tennent,
Mosses~ Scheifler]

478

(ill)The mathematics underlying this method have been extensively investigated. The
method is based on very strong theoretical foundations.

(iv) It is well-suited to proving the validity of program transformations and proving
properties of programs. [Milner]

A potential objection to the use of this method is the arcane style of presentation
traditionally favored by its talented advocates. "[Milne-Strachey] We hope to have
overcome this difficulty.

Summary 9_~Denotational ~emanti¢~

It is not the place here to make a comprehensive presentation of the method pioneered
by Strachey and Scott. The reader is referred to the existing textbooks on the
subject.[Stoy, Gordon]. Here, we shall just outline very quickly the essential ideas
of the method.

In denotational semantics, one wishes to associate to every program an abstract
mathematical object called its meaning. Usually, the meaning of a program is some
functional object, say a function from inputs to outputs. The mapping that specifies
how one associates a meaning to every program in Ada is called the denotational
semantics ofAda. To properly define the denotational semantics of a language, one
must first define a semantic universe, where meanings are to be found. Then one
describes how to associate a meaning to every atomic component of a program and, for
every construct of the language, how to derive the meaning of a compound fragment of
program from the meaning of its subparts. Hence, denotational semantics is nothing
but a rather large, recursive definition of a function from syntactic objects -
programs - to semantic objects - input-output functions.

Defining the semantics of a language in this way naturally leads to assigning a
meaning not only to complete programs but also to program fragments, a very useful
mathematical property known as referential transparency. The reeursive structure of
the syntactic objects is well captured by the abstract s_yn~ 9_LAda. Section 2 is
devoted to a detailed presentation of the abstract syntax of Ada, that is of the tree

form of Ada programs.

There is a wide body of literature discussing the mathematical nature of the semantic
domains that need to be used. At first, it is not necessary to understand in depth
the mathematical theory of these domains in order to follow the semantic description
of Ada. In fact, denotational semantics uses a very small number of concepts. We
shall describe, in general terms, three keys ideas that pervade the whole definition.

Ada is an imperative language. Understanding it requires some notion of a store.
Programs use the store and update it as they are executed. Now if we wish to
describe the store as abstractly as possible, that is without assuming any particular
implementation, all we need to know is that it defines a mapping

STORE: LOCATIDNS ---> VALD~S

If s is a store and I is a loc~tion the expression s(1) will then denote the value
stored at location i. To update the store, we will assume the existence of a
function UPDATE that, given a store s, a location 1 and a value v returns a new store
s' = UPDAYE(s,I,v) that differs from s only by the fact that s'(1) = v. Typically,
it is the purpose of an assignment statement to modify the store.

479

Another feature of Ada is its name structure. This structure allows a given
identifier to refer to different objects, depending on where it occurs in a program.
To model this phenomenon abstractly, we will assume the existence of a mapping:

ENVIRONME~[~: IDENTIFIERS ---> D~EENOTATIONS

Here again, by merely saying that an environment is such a mapping, we want to avoid
describing any particular implementation of this concept. The primary purpose of
declarations is to modify the environment. In Ada, however, there are many other
ways to alter the environment.

As a third example, let us consider the problem of describing the control mechanism
of Ada. At first it would not seem too easy to describe it in a referentially
transparent manner. If the meaning of an assignment is some transformation of the
store, the meaning of a sequence of assignments should be the composition of these
transformations. But what if we wish to give meaning to a goto statement or an exit
statement? how can we describe the raising of an exception, either ~explicitly or
during the evaluation of an expression.

A very general technique allows us to deal with this kind of problem in denotational
semantics. Intuitively, the idea here is to give to the semantic functions an extra
parameter that specifies "what-to-do-next". This parameter is called a c~ntlnuation.
The meaning of a program fragment is in general also a continuation. Typically, the
~eaning of an assignment statement with continuation c is obtained by prefixing c
with a store to store transformation. In fact, Ada has a sophisticated exception
mechanism, implying the use of a whole exception environment associating a
continuation to each exception handler.

Continuations are not very easy to understand at first. The Static Semantics, where
it is specified what checks need to be performed "at compile time" on Ada programs,
does not use any continuations, so that it is possible to become thoroughly familiar
with the Formal Definition's approach before having to tackle this concept.

Style of the Definition

Given that the first objective of the Formal Definition is to serve as a reference
document for implementors, a great deal of attention was given to the choice of the
meta-lan~ua~e, i.e. the language in which Ada is to be formally described. The
typographical conventions of the Oxford School, with their intensive use of Greek
letters and diacritical signs, are not ideally suited to an audience of programmers
and engineers. The notation developped in [Mosses], (which is used as input for his
system SIS) is a much better candidate already. Mosses' notation is elegant, machine
readable, convenient to use for anybody familiar with applicative programming and
efficient in its treatment of abstract syntax. We have tried to go even further
towards usual programming convention in using a narrow (applicative) subset of Ada
itself as a meta-language.

A minor extension was needed in order to allow procedures as arguments and results.
Italics, boldface, upper and lower case are used systematically to avoid confusion
between language and metalanguage. Identifiers in distinct fonts are considered to
be distinct. It is hoped that the increased understandability of the Formal
Definition will compensate for a definite loss of elegance.

In keeping with the goal of minimizing the number of new notations, we have attempted
to stay close to the terminology of the Reference Manual, refraining from introducing
new names unless they were absolutely necessary. Furthermore, rather than presenting

480

the Formal Definition as a compietely separate document, we have followed the
structure of the 1\eference ~anual. The equations of the Formal Definition intend to
make more explicit the English text in the Reference Manual. They are folded in the
Reference Manual, so to speak. Experience with the Formal Definition will show
whether this is the right approach.

As a final remark, let us indicate that we make extensive use of the abstraction
facility of ~da. It may seem unfortunate that we could not avoid using one of the
seemingly more advanced features of the language. ~ut in fact, all we really need is
a way to specify a collection of related functions together with their types. This
concept is very familiar in mathematics as an algebra. Similarly, the use of the
generic facility corresponds directly to the notion of a polymorphic function (or
functional) in mathematics, in fact, all (value returning) procedures defined in the
document are functions in the mathematical sense. The sublanguage of Ada that is
used is purely applicative and the only "side effects" involve the construction of
new objects.

2 Abstract Representation of Programs

In this section, we present a standard way of representing programs. It is to be

used not only to define the semantics of the Ada language but also as a standard
interface between all processors manipulating Ada programs. Programs are represented
as trees, called Abstract ~_y~ax Trees. These trees are defined with the help of the
Aaa's encapsulation facility, so as not to preclude subsequent efficient

implementation.

2.1 Motivations

Since the meaning of programs will be defined recursively on their structure, it is

necessary to specify with great precision what this structure is before developing
the Formal Definition e~ s e. On the other hand, quite apart from the Formal

Definition, there is considerable interest in standardizing the representation of
programs. This standard representation will play a crucial part in the harmonious
development of the programming support, a collection of issues addressed in
Pebbleman. typical tools that are to benefit from such a definition are:
syntax-oriented editors, interpreters and compilers, documentation and normalization
aids, program analyzers, optimizers, verification tools.

2.2 Requirements

We now list some requirements that an abstract representation must satisfy to be

effective as a standard:

(a) It must be possible to implement it efficiently on a variety of machines.

481

(b) It must reflect the structure of programs. For example, it must be easy to
recognize and isolate program fragments such as statements, procedures,
declarations, expressions, identifiers, etc...

(c) It must be easy to manipulate and modify.

(d) It must include all meaningful information contained in the original program
text. in particular it must be possible to restore the program text from the
representation, up to minor standardizations.

(e) It should not be cluttered with irrelevant information.

(f) It must have a simple and usable mathematical definition since it will be a
foundation for the Formal Definition.

(g) Finally, as a matter of course, it must allow the representation of any legal
Ada program.

Requirements (b) and (c) rule out the textual representation of programs. It is easy
to see that many processors would need a "parser" as a mandatory front end. It would
also be a mistake to use a parse tree as usually produced by a parser: such trees
depend on the parsing method used and are cluttered with irrelevant details
(Requirement (e)).

Common intermediate languages designed for optimization fail requirements (b) through
(d). Using abstrao~ 3yntax, a method put forward in the early sixties is very
natural, simple and meets requirements (a) through (g).

2.3 Abstract Syntax Trees

The essential idea underlying abstract syntax is the treatment of programs and
program fragments as trees. For example, the assignment

A ::-P

will be (pictorially) represented by the tree t.

~sign

/ \
i_~d ~'A" i__dd "B"

Each node in the tree is labeled by a construct. In our notation, the construct
labeling the top node of the tree t is denoted by KIND(t). Here KiND(t) = assign.
The subtree representing the left-hand-side of the assignment is denoted by SON(I,t)
and the subtree denoting the right-hand-side by SON(2,t). The whole Ada language is
defined using 126 constructs. Most constructs label trees with a fixed number of
sons. These constructs are said to be of fixed arity. To represent lists, it is
necessary to use nodes that may have an arbitrary number of sons. For example the
fragment

B :: A;
D :=E;

482

is represented as

stm s

/\
ass, igD, ~ss iF.n

/\ /\
id"B" id"A" i d"D" ~ "E"

The construct assign is binary while stm s is a list construct.
stm s could have an arbitrary number of sons.

Notations: All ~da constructs have been written underscored.
names ending in s, like s tm S, ex_~, or decl s.

The node labeled

List constructs have

Not all trees labeled with constructs are abstract syntax trees. A grammar imposes a
restriction on the strings of terminal symbols that are sentences of the language it
defines. The Ada abstract syntax is similarly defined by a tree mrammar. This
grammar specifies precisely which ~rees are Ada trees. Let us define a sort to be a
set of constructs. The abstract syntax of Ada is specified with the help of 57
sorts. If the root of a tree t is a construct belonging to sort s, we say that t is

of sort s. The entire abstract syntax of Ada is completely specified by giving, for
each construct, its arity as well as the sQrt 9~[_e_~son.

~ote that list constructs are homogeneous: all constituents of a list must be of the
same sort.

Notations.

(a) Sorts are written underscored and capitalized (e.~. COND). When a sort is a
singleton sort (i.e. it contains a single construct), it has the same name as
its member, but capitalized. Furthermore, since list constructs are
characterized by the common sort of their constituents, their name always

reflects that sort. As an example, a node labeled s~ g has subtrees of sort
~_S_~, a node labeled decl s has subtrees of sort DEGL.

(b) A notation similar to BNF has been used to specify the sorts. When writing for

example:

COND ::= EXP I condition

we mean that CO~D is the union of sort E~p and the singleton set {condition}. Since
sorts and constructs are distinguished typographically, the symbol I is used without
ambiguity. For each construct, a sequence of sorts is given. For example the

specification

if-> COhDITIONAL S SIM S

means that the first son of an if construct is of sort GONDITIONAL S and the second

son is cf sort ST~ S.

Formally,

483

SORT OF S0~(]~,I) = CONDITIONAL
SORT_OF_SON(Lf,2) = $I~I

In the case of list constructs, the fact that all constituents belong to the same set

is emphasized by the use of three dots as in

stm s -> ST~ ...

A skeleton for the Abstract Syntax of Ada is shown below, encapsulated in an Ada
package as described in section 2.4 .

package ADA_SYNTAX is

type CONSTRUCT is (

-- nullary constructs

and , and then , catenate , etcetera...

-- unary

abor~ , access , address , etcetera..°

-- binary constructs

a~Iternative , arra~ , assign , etcetera...

-- ternary constructs

acg~pt , binary oo , block , etcetera...

-- arbitrary constructs

alternative s , bounds s , choice s , etcetera...

type ARITIES is (nullary, unary, binary, ternary, arbitrary);
function ~RITk (construct: CONSTRUCT) return ARITIES;

type SORT is set of (CONST~_U~);

-- We assume a generic package set has been defined
-- which provides sets and union of sets

ALTERNATIVE, ALTERNATSVE S, BINARI OP, etcetera...

: constant SORT;

function SORT_OF_SON(construct: CONSTRUCT; n: 1NTEGER := O) return ~ORT;
-- the expression SORT OF SON{construct, n) denotes the sort of the
-- n-th argument of "construct", if it is of fixed arity. In the case
-- of a list construct, it denotes the common sort of each son.

private

-- The sorts are sets described in a table included here.

-- The structure of each Ada construct is gien in a table included next.

end ADA~ SINTAX;

484

package AI~ TREES is
use AD~ SINTAX;
type T.~E~ is private;
-- Tree constructors

procedure MAKE(construct: CONSTRUCT; s: STRING.) return TREE;
procedure MAKE(construct: CONSTRUCT: t: TREE) return TREE;
procedure MAKE(construct: CONSTR~CT; tl, t2: ~) return TREE;
procedure MAKE(construct: CONSTRUCT: tl, t2, t3: TREE) return TREE;

-- ~ree selectors

procedure KIND
procedure SON
procedure TOKEN

(t: TRE.~)
(n: INTEGER, t: TREE)
(t: TREE)

return CONSTRUCt;
return TREE;
return STRING;

-- Handling of list constructs

procedure HEAD (I: TREE) return TREE;
procedure TAIL (I: TREE) return TREE;
procedure PRE (t: TREE. l: ~) return ~R~E;
procedure EMPTY (construct: CCNSTRUCT) return TREE;
procedure IS EMFT~(l: TREE) return ~OOLEA~;

private
-- Description of the implementation of type TREE

end ADA TREES;

485

2.4 Encapsulation of the Abstract Syntax

To be certain that the abstract syntax of Ada can be used as a standard for the
representation of Ada programs, we could define it as a Ada data structure. This
would not however leave enough room for efficient implementation and would involve
unnecessary and harmful overspecification. Instead, we have chosen to specify only
the visiole part of ~da packages that provide the abstract syntax of Ada and the
tools for the manipulation of Ada trees. Notice that the procedure MAKE is
overloaded. This avoids creating one procedure name per construct° This overloading
will be resolved on the basis of the number of arguments handed to it in any call.
The procedure MAKE must be programmed using the KIND and SORT OF SON procedures
provided in the package ADA $~NT~X, to check that it is not asked to build unlawful
Ada trees. Similarly, the constructor procedure EMPTk checks that its argument is a
construct of arbitrary arity.

~iost processors will find the selector function SON perfectly adequate. For the
Formal Definition, where readability is of prime importance, we have assumed the
existence of a third package, ADA SELECTORS. This package allows to refer to
subtrees by name rather than by position. A simple convention for the names of the
selectors has been followed in the Formal Definition: for each sort, a selector
function is defined that is named after the sort. Assume now, for example, that
"statement" is a tree with a root labeled i_ff. Instead of writln~:

SON[1,statement)

we may write

CONDitiONALS(statement)

in cases like the binary construct pair that has more than one son of the same sort,
numbering is used. Thus EXP1(pair) and EXP2(pair) return the first and second son of
the tree pair, respectively, as both are of sort EXP.

3 Structure and Notations

In the English language description of the semantics of Ada given in the Reference
i~anual, one can distinguish three kinds of concerns:

(i) Some features of the language are provided to shorten the text of programs or to
increase their readability. These features are best explained as combinations

486

of other possibilities of Ada.

(ii) A number of specifications are intended to delineate the class of legal
programs, within the class of syntactically correct ones. Considerations such
as the need to declare every identifier before using it, coherence in the use of
types and resolution of ambiguity in the use of overloading, are in this
category.

(ill)The rest of the informal definition concerns the behavior of programs during
execution.

The Formal Definition is structured in a manner that reflects these quite distinct
concerns.

3.1 Normalization

One part of the Formal Definition specifies transformations of the abstract syntax
tree that do not require any type information. These transformations are performed
to eliminate the use of some notational conveniences or to check simple syntactic
constraints. They are defined by functions mapping TREE's to TREe's and regrouped in
an Appendix of the Formal Definition. Whenever these functions are sufficiently
simple (i.e. involve no context), the text includes their description as a simple
rewriting rule.

Example:

[if CONDITIONAL S else STM $ end if;] ->
[if CONDITIONAL S elsif true then STM S end if;]

The kind of constraints dealt with by normalizations must require only little
contextual information, in particular no information about types. For example, when

the ~mnual states:

"Within the sequence of statements of a subprogram or module body, different

labels must have different identifiers."

this check is one of those performed in this normalization phase.

3.2 Static Semantics

The next part of the Formal Definition is concerned with what is usually called
type-checking. A type checker is presented as a mapping from abstract syntax trees
to an extended abstract syntax tree~ rather than as a mapping returning true or
false. This is intended to mimic the concepts of "compile time" checks as opposed to
"run time" cheeks. Type-checked programs contain all type information needed at run
time, and only that type information. In this way dynamic semantics will not need to

carry a static environment.

More specifically, the Static Semantics of Ada has to deal with the following tasks:

487

2.

3.

4.

It must check that the declarations are valid, i.e. there is no repeated
declaration of the same designator in the same scope. It must check that all
designators are declared.

it must check that all designators are used in a manner that is consistent with
their type.

it must carry out the evaluation of static expressions where required.

All information on types of designators must be used to generate an extended
abstract syntax tree. This includes:

4.1 Detecting and eliminating all overloading

4.2 Reordering actual parameters in subprogram calls. Remember that Ada
uses both positional and named parameters in subprogram calls. Once it has
been processed, a subprogram call will list all its parameters in named
parameter associations.

4.3 Normalizing aggregates as lists of named component associations.

4.4 Resolving ambiguities between indexed component, qualified expression
and subprogram call.

5. Exception names are made unique within a program

6. The dot notation is systematically used to access identifiers visible through a
use list.

Furthermore, the Static Semantics is given additional structure in collecting
together in separate packages:

a package that abstracts away the structure of the static environment, where
information regarding the type of designators is recorded. The external
behavior of this "abstract machine" is defined by a collection of functicns that

- build or select type denotations

- declare or access designators

a package that collects together auxiliary functions used:

- to solve overloading

- to check for side effects of functions and value returning procedures

3.3 Dynamic Semantics

The language Ada insists that a large number of verifications should be done ~at
compile time". It should come to no surprise that the precise description of the

488

type-checking of Ada should form a significant part of its formal definition. In
contrast, the dynamic semantics of Ada, if you wlll remember that tasking is not
dealt with in our Formal Definition is rather more conventional.

~he Static Semantics is described as a transformation performed on abstract syntax
trees. The Dynamic Semantics corresponds more to the customary notion of
interpretation. The meaning of each construct is defined recursively on type checked
abstract syntax trees. Information about the identifiers in the program (e.g. the
value of a constant, the constraints associated with a subtype) is recorded in the
dynamic environment.

The functions used in Dynamic Semantics are partitioned into three groups, following
to the terminology of the Reference Manual:

Those defining the elaboration of declarations ~Prefix ELAB).

Those defining the evaluation of expressions (Prefix EVAL).

Those aefining the execution of statements (Prefix EXEC).

(a)

(b)

(c)

The dynamic semantics is parameterized by:

- an abstract machine that provides a model of storage allocation

- a set of definitions which characterize the restrictions of a concrete
(minimum and maximum value for integers, etc).

mach ine

3.4 Treatment of Errors

Some errors may be discovered during normalization and during the evaluation of the
Static Semantics. They are reported by inserting a special construct in the abstract
syntax tree, at the lowest meaningful level. The Dynamic Semantics is only defined
on trees which do not contain such errors. In this way, the place and reason for an
error are defined precisely. Since the errors now are part of the formal definition,
an opportunity is given to standardize error messages. (Note that it seems more
difficult to standardize syntax error diagnostics, because the discovery of syntax
errors occurs at different moments with different parsing strategies and it may be
unwise to constrain Ada parsers to use a specific parsing technioue). Furthermore,
since error messages are located in the program tree, the location of the errors will
be completely unambiguous, This facility will be most useful when using
sophisticated program editors that know the structure of ~da such as the MENTOR

system.[Donzeau-Gouge]

Errors occurring during the execution of a program raise the appropriate exceptions,

as prescribed by the semantics of Ada.

REFERENCES

[Donzeau-@ouge] V.Donzeau-Gouge, G. Huet, G. Kahn, B. Lang, J-J. Levy "A structure
oriented program editor", Proceedings of the International Computing Symposium,

North-Holland Publishing Company, 1975.

489

[Gordon] ~. J. . Gordon, Descriptive Techniques for Denotational Semantics, Springer
Verlag, 1979.

[Hennessy-Plotkin] ~. Hennessy, G. D. Plotkin, "Full abstraction for a simple
parallel programming l~n~uage"~ MFCS Proceedings, Sept. 1979

[Huet-Levy] G. huet, J-J. Levy, "Call-by-need computations in non-ambiguous linear
term rewriting systems", ~apport IRiA-Laboria no. 359, August 1979.

[Kahn] G. Kahn (Ed.) 2emantics of concurrent computations, Lecture Notes Volume 70,
Springer Verlag 1979.

[t.uc~ham-Pola~] D. C. Luckham, ~. Polak, "Ada Exception Handling: An Axiomatic
Approach", Stanford University Artificial Intelligence Laboratory, August 1979.

[Milne-Strachey] ~. Milne, C. Strachey, A Theory of Programming Language Semantics,
Chapman and Hall, 1976.

[Milner] ~. Gordon, R. Milner~ C. Wadsworth, "Edinburgh LCF", Computer Science
Department, University of Edinburgh, 1978.

[Mosses] ~IS- Semantics Implementation System, Reference Manual and User Guide, DAI~I
MD-30, University of Aarhus, August 1979.

[~osses] P. osses, "The Mathematical Semantics of Algol 60", Technical Monograph
rRG-12, Oxford University Programming ~eseareh Group, January 1974.

[Scheifler] R. W. Scheifler, "A Denotational Semantics of CLU", Master's Thesis~ MIT
Laboratory For Computer Science, May 1978.

[Stoy] J. Stoy, Denotational Semantics: The Scott-Strachey approach to Programming
Language Theory, MIT Press, 1977~

[Tennent] ~. D Tennent "A denotational definition of the programming language
PASCAL", Programming Research Croup Memorandum, Oxford University, ~pril 1978.

