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I Introduction 

As a part of the DOD-I language effort, the Steelman Report has required a formal 
Definition (IH). This requirement was both innovative and far-sighted. 

Purposes 

It may seem at first that devising the Formal Definition of a programming language is 
essentially an academic exercise, in fact, the formal definition is called to play an 
important role in several aspects related to the acceptance of the language by a 
large community of users. A formal definition can serve: 

(i) As a standard for the language, that is as a means to answer unambiguously all 
questions that a programmer or an implementor may raise about the meaning of a 
constrvct of the language. The formal definition should serve as a reference 
document for the validation of implementations and as a guideline for 
imDlementors. It will permit to unify the user interface across implementations 
(e.g. error messages) and the interface between processors manipulating programs 
(e.g. mechanical aids for normalization and documentation of Ada programs ). 

(ii) As a reference document for justifying the validity p_~ ootimizations and other 
program transformations. The only valid optimizations will be those that do not 
alter the meaning of a program. 

(ill)As a reference document for p_~oving orooerties ~ programs written in the 
language. In particular, it will allow the derivation of inference rules that 
can be used conveniently when proving properties of programs. 
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(iv) As an input for a compiler-generator when the technology becomes available. The 
Formal Definition of Ada is specified with enough precision to be processed, 
except for some straightforward notational transformations, by the experimental 
system SIS [Mosses]. 

Furthermore, the concurrent development of Ada and its formal definition have already 
resulted in further major benefits: 

- Difficulties in early drafts of the Reference Manual (such as lack of clarity, 
ambiguities, omissions or inconsistencies) have been uncovered very early. 

- Feedback was established to strive for economy of ~o~cepts in the Ada language. 

These benefits are essentially independent of the particular method of definition 
that has been selected. 

Requirements 

When designing the formal definition of a language like ~da, there are two major 
requirements to keep in mind: 

~i) The definition must be complete. If the definition is not complete its 
usefulness as a reference will be seriously diminished. This completeness can 
only be achieved by using a mathematically well-founded definitional method. 

As of' the Spring of 1979, however, the State of the Art in formal semantics does 
not allow us to offer a mathematically meaningful semantics for all issues 
concerning tasking. This is a very serious gap in our theoretical understanding 
of programs. ~esearch in Semantics of parallelism is extremely active [Kahn] 
but the conclusion does not seem very near. No attempt has been made to give a 
dynamic semantics for task synchronization in Ada, while it is hoped that all 
other aspects of the language are satisfactorily covered. 

in all matters relating to concurrency, the readers will have to do with the 
textual description of the dynamic semantics that is provided, pending a 
scientific breakthrough. 

[ii) The Formal Definition of Ada is meant to be used in an industrial environment. 
Therefore extreme care must be given to notations. Considerations of compactness 
and mathematical elegance that are of prime importance in a scientific 
environment Oecome less central in an engineering environment. ~ great deal of 
effort should be spent on the style of the definition and its intuitive content, 
to make it accessible to the intended readership: implementors of compilers, 
standardization committees, educated ~da programmers. Naturally, such an 
attempt should preserve the mathematical rigor of the definition, and should be 
seen merely as the development of a convenient notation. 

The formal definition given here is akin to a large program. Special attention has 

been given to several key issues: 

The structure of the description reflects the underlying semantic concepts of 

the language. 

~he choice of identifiers stays as close as possible to the terminology of the 

Reference ~anual. 
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The style of the description is homogeneous and uniform conventions are used 
throughout. 

~-iethod 

There are three widely accepted methods of formally defining the semantics of a 
programming language. 

(a) ~perational Semantics 

In this method, best exemplified by the Vienna Definition Method, the semantics is 
modelled by the behavior of an abstract m a~ine. This has a practical appeal but 
also presents several problems: 

(i) ~he mechanism of the abstract machine tends to overspecify the language since 
all details of machine-state transitions must be given. 

(ii) It is not immediately obvious that the language has been well defined. One must 
rely on a proof that any execution terminates with a unique answer. 

(iii)The theory of operational semantics is, in fact, rather difficult and not 
well-understood. Using an operational semantics to validate optimizations or to 
prove properties of programs is intricate because we are not well-equipped to 
reason logically about the behavior of a complex machine. 

Recent advances in operational semantics should make this approach more suitable in 
the future. [ hennessy-Flotkin, Huet-Levy ] 

(b) Axiomatic Definition 

This method is very popular because it is directed towards proving properties of 
programs. Its deficiencies, however~ render it unsuitable for the definition of a 
language like Ada: 

(i) First, giving some properties of language constructs cannot constitute a 
definition~ unless some proof of completeness can be given. 

(ii) An axiomatic definition is not adapted to a use by implementors since many 
details about the dynamic semantics cannot be formalized adequately. 

(iii)~o complete axiomatic definition of a large programming language has ever been 
carried out successfully, to date. Treatment of exceptions, for example, does 
not fit well in this formalism. Research in this area is active however. 
[Luckham-Polak] 

(c) Denotational ~emantics 

We have elected to present a formal definition of Ada using denotational semantics. 
There are several reasons for choosing this method: 

(i) It allows the definition of the language to any desired level of detail. 

(±i) The method has been used (with success) on a number of languages with 
characteristics similar to tho~e of Ada: Pascal, Algol 60, CLU, etc. [Tennent, 
Mosses~ Scheifler] 
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(ill)The mathematics underlying this method have been extensively investigated. The 
method is based on very strong theoretical foundations. 

(iv) It is well-suited to proving the validity of program transformations and proving 
properties of programs. [Milner] 

A potential objection to the use of this method is the arcane style of presentation 
traditionally favored by its talented advocates. "[Milne-Strachey] We hope to have 
overcome this difficulty. 

Summary 9_~Denotational ~emanti¢~ 

It is not the place here to make a comprehensive presentation of the method pioneered 
by Strachey and Scott. The reader is referred to the existing textbooks on the 
subject.[Stoy, Gordon]. Here, we shall just outline very quickly the essential ideas 
of the method. 

In denotational semantics, one wishes to associate to every program an abstract 
mathematical object called its meaning. Usually, the meaning of a program is some 
functional object, say a function from inputs to outputs. The mapping that specifies 
how one associates a meaning to every program in Ada is called the denotational 
semantics ofAda. To properly define the denotational semantics of a language, one 
must first define a semantic universe, where meanings are to be found. Then one 
describes how to associate a meaning to every atomic component of a program and, for 
every construct of the language, how to derive the meaning of a compound fragment of 
program from the meaning of its subparts. Hence, denotational semantics is nothing 
but a rather large, recursive definition of a function from syntactic objects - 
programs - to semantic objects - input-output functions. 

Defining the semantics of a language in this way naturally leads to assigning a 
meaning not only to complete programs but also to program fragments, a very useful 
mathematical property known as referential transparency. The reeursive structure of 
the syntactic objects is well captured by the abstract s_yn~ 9_LAda. Section 2 is 
devoted to a detailed presentation of the abstract syntax of Ada, that is of the tree 

form of Ada programs. 

There is a wide body of literature discussing the mathematical nature of the semantic 
domains that need to be used. At first, it is not necessary to understand in depth 
the mathematical theory of these domains in order to follow the semantic description 
of Ada. In fact, denotational semantics uses a very small number of concepts. We 
shall describe, in general terms, three keys ideas that pervade the whole definition. 

Ada is an imperative language. Understanding it requires some notion of a store. 
Programs use the store and update it as they are executed. Now if we wish to 
describe the store as abstractly as possible, that is without assuming any particular 
implementation, all we need to know is that it defines a mapping 

STORE: LOCATIDNS ---> VALD~S 

If s is a store and I is a loc~tion the expression s(1) will then denote the value 
stored at location i. To update the store, we will assume the existence of a 
function UPDATE that, given a store s, a location 1 and a value v returns a new store 
s' = UPDAYE(s,I,v) that differs from s only by the fact that s'(1) = v. Typically, 
it is the purpose of an assignment statement to modify the store. 
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Another feature of Ada is its name structure. This structure allows a given 
identifier to refer to different objects, depending on where it occurs in a program. 
To model this phenomenon abstractly, we will assume the existence of a mapping: 

ENVIRONME~[~: IDENTIFIERS ---> D~EENOTATIONS 

Here again, by merely saying that an environment is such a mapping, we want to avoid 
describing any particular implementation of this concept. The primary purpose of 
declarations is to modify the environment. In Ada, however, there are many other 
ways to alter the environment. 

As a third example, let us consider the problem of describing the control mechanism 
of Ada. At first it would not seem too easy to describe it in a referentially 
transparent manner. If the meaning of an assignment is some transformation of the 
store, the meaning of a sequence of assignments should be the composition of these 
transformations. But what if we wish to give meaning to a goto statement or an exit 
statement? how can we describe the raising of an exception, either ~explicitly or 
during the evaluation of an expression. 

A very general technique allows us to deal with this kind of problem in denotational 
semantics. Intuitively, the idea here is to give to the semantic functions an extra 
parameter that specifies "what-to-do-next". This parameter is called a c~ntlnuation. 
The meaning of a program fragment is in general also a continuation. Typically, the 
~eaning of an assignment statement with continuation c is obtained by prefixing c 
with a store to store transformation. In fact, Ada has a sophisticated exception 
mechanism, implying the use of a whole exception environment associating a 
continuation to each exception handler. 

Continuations are not very easy to understand at first. The Static Semantics, where 
it is specified what checks need to be performed "at compile time" on Ada programs, 
does not use any continuations, so that it is possible to become thoroughly familiar 
with the Formal Definition's approach before having to tackle this concept. 

Style of the Definition 

Given that the first objective of the Formal Definition is to serve as a reference 
document for implementors, a great deal of attention was given to the choice of the 
meta-lan~ua~e, i.e. the language in which Ada is to be formally described. The 
typographical conventions of the Oxford School, with their intensive use of Greek 
letters and diacritical signs, are not ideally suited to an audience of programmers 
and engineers. The notation developped in [Mosses], (which is used as input for his 
system SIS) is a much better candidate already. Mosses' notation is elegant, machine 
readable, convenient to use for anybody familiar with applicative programming and 
efficient in its treatment of abstract syntax. We have tried to go even further 
towards usual programming convention in using a narrow (applicative) subset of Ada 
itself as a meta-language. 

A minor extension was needed in order to allow procedures as arguments and results. 
Italics, boldface, upper and lower case are used systematically to avoid confusion 
between language and metalanguage. Identifiers in distinct fonts are considered to 
be distinct. It is hoped that the increased understandability of the Formal 
Definition will compensate for a definite loss of elegance. 

In keeping with the goal of minimizing the number of new notations, we have attempted 
to stay close to the terminology of the Reference Manual, refraining from introducing 
new names unless they were absolutely necessary. Furthermore, rather than presenting 
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the Formal Definition as a compietely separate document, we have followed the 
structure of the 1\eference ~anual. The equations of the Formal Definition intend to 
make more explicit the English text in the Reference Manual. They are folded in the 
Reference Manual, so to speak. Experience with the Formal Definition will show 
whether this is the right approach. 

As a final remark, let us indicate that we make extensive use of the abstraction 
facility of ~da. It may seem unfortunate that we could not avoid using one of the 
seemingly more advanced features of the language. ~ut in fact, all we really need is 
a way to specify a collection of related functions together with their types. This 
concept is very familiar in mathematics as an algebra. Similarly, the use of the 
generic facility corresponds directly to the notion of a polymorphic function (or 
functional) in mathematics, in fact, all (value returning) procedures defined in the 
document are functions in the mathematical sense. The sublanguage of Ada that is 
used is purely applicative and the only "side effects" involve the construction of 
new objects. 

2 Abstract Representation of Programs 

In this section, we present a standard way of representing programs. It is to be 

used not only to define the semantics of the Ada language but also as a standard 
interface between all processors manipulating Ada programs. Programs are represented 
as trees, called Abstract ~_y~ax Trees. These trees are defined with the help of the 
Aaa's encapsulation facility, so as not to preclude subsequent efficient 

implementation. 

2.1 Motivations 

Since the meaning of programs will be defined recursively on their structure, it is 

necessary to specify with great precision what this structure is before developing 
the Formal Definition e~ s e. On the other hand, quite apart from the Formal 

Definition, there is considerable interest in standardizing the representation of 
programs. This standard representation will play a crucial part in the harmonious 
development of the programming support, a collection of issues addressed in 
Pebbleman. typical tools that are to benefit from such a definition are: 
syntax-oriented editors, interpreters and compilers, documentation and normalization 
aids, program analyzers, optimizers, verification tools. 

2.2 Requirements 

We now list some requirements that an abstract representation must satisfy to be 

effective as a standard: 

(a) It must be possible to implement it efficiently on a variety of machines. 
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(b) It must reflect the structure of programs. For example, it must be easy to 
recognize and isolate program fragments such as statements, procedures, 
declarations, expressions, identifiers, etc... 

(c) It must be easy to manipulate and modify. 

(d) It must include all meaningful information contained in the original program 
text. in particular it must be possible to restore the program text from the 
representation, up to minor standardizations. 

(e) It should not be cluttered with irrelevant information. 

(f) It must have a simple and usable mathematical definition since it will be a 
foundation for the Formal Definition. 

(g) Finally, as a matter of course, it must allow the representation of any legal 
Ada program. 

Requirements (b) and (c) rule out the textual representation of programs. It is easy 
to see that many processors would need a "parser" as a mandatory front end. It would 
also be a mistake to use a parse tree as usually produced by a parser: such trees 
depend on the parsing method used and are cluttered with irrelevant details 
(Requirement (e)). 

Common intermediate languages designed for optimization fail requirements (b) through 
(d). Using abstrao~ 3yntax, a method put forward in the early sixties is very 
natural, simple and meets requirements (a) through (g). 

2.3 Abstract Syntax Trees 

The essential idea underlying abstract syntax is the treatment of programs and 
program fragments as trees. For example, the assignment 

A ::-P 

will be (pictorially) represented by the tree t. 

~sign 

/ \  
i_~d ~'A" i__dd "B" 

Each node in the tree is labeled by a construct. In our notation, the construct 
labeling the top node of the tree t is denoted by KIND(t). Here KiND(t) = assign. 
The subtree representing the left-hand-side of the assignment is denoted by SON(I,t) 
and the subtree denoting the right-hand-side by SON(2,t). The whole Ada language is 
defined using 126 constructs. Most constructs label trees with a fixed number of 
sons. These constructs are said to be of fixed arity. To represent lists, it is 
necessary to use nodes that may have an arbitrary number of sons. For example the 
fragment 

B :: A; 
D :=E; 
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is represented as 

stm s 

/\ 
ass, igD, ~ss iF.n 

/\ /\ 
id"B" id"A" i d"D" ~ "E" 

The construct assign is binary while stm s is a list construct. 
stm s could have an arbitrary number of sons. 

Notations: All ~da constructs have been written underscored. 
names ending in s, like s tm S, ex_~, or decl s. 

The node labeled 

List constructs have 

Not all trees labeled with constructs are abstract syntax trees. A grammar imposes a 
restriction on the strings of terminal symbols that are sentences of the language it 
defines. The Ada abstract syntax is similarly defined by a tree mrammar. This 
grammar specifies precisely which ~rees are Ada trees. Let us define a sort to be a 
set of constructs. The abstract syntax of Ada is specified with the help of 57 
sorts. If the root of a tree t is a construct belonging to sort s, we say that t is 

of sort s. The entire abstract syntax of Ada is completely specified by giving, for 
each construct, its arity as well as the sQrt 9~[_e_~son. 

~ote that list constructs are homogeneous: all constituents of a list must be of the 
same sort. 

Notations. 

(a) Sorts are written underscored and capitalized (e.~. COND). When a sort is a 
singleton sort (i.e. it contains a single construct), it has the same name as 
its member, but capitalized. Furthermore, since list constructs are 
characterized by the common sort of their constituents, their name always 

reflects that sort. As an example, a node labeled s~ g has subtrees of sort 
~_S_~, a node labeled decl s has subtrees of sort DEGL. 

(b) A notation similar to BNF has been used to specify the sorts. When writing for 

example: 

COND ::= EXP I condition 

we mean that CO~D is the union of sort E~p and the singleton set {condition}. Since 
sorts and constructs are distinguished typographically, the symbol I is used without 
ambiguity. For each construct, a sequence of sorts is given. For example the 

specification 

if-> COhDITIONAL S SIM S 

means that the first son of an if construct is of sort GONDITIONAL S and the second 

son is cf sort ST~ S. 

Formally, 
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SORT OF S0~(]~,I) = CONDITIONAL 
SORT_OF_SON(Lf,2) = $I~I 

In the case of list constructs, the fact that all constituents belong to the same set 

is emphasized by the use of three dots as in 

stm s -> ST~ ... 

A skeleton for the Abstract Syntax of Ada is shown below, encapsulated in an Ada 
package as described in section 2.4 . 

package ADA_SYNTAX is 

type CONSTRUCT is ( 

-- nullary constructs 

and , and then , catenate , etcetera... 

-- unary 

abor~ , access , address , etcetera..° 

-- binary constructs 

a~Iternative , arra~ , assign , etcetera... 

-- ternary constructs 

acg~pt , binary oo , block , etcetera... 

-- arbitrary constructs 

alternative s , bounds s , choice s , etcetera... 

type ARITIES is (nullary, unary, binary, ternary, arbitrary); 
function ~RITk (construct: CONSTRUCT) return ARITIES; 

type SORT is set of (CONST~_U~); 

-- We assume a generic package set has been defined 
-- which provides sets and union of sets 

ALTERNATIVE, ALTERNATSVE S, BINARI OP, etcetera... 

: constant SORT; 

function SORT_OF_SON(construct: CONSTRUCT; n: 1NTEGER := O) return ~ORT; 
-- the expression SORT OF SON{construct, n) denotes the sort of the 
-- n-th argument of "construct", if it is of fixed arity. In the case 
-- of a list construct, it denotes the common sort of each son. 

private 

-- The sorts are sets described in a table included here. 

-- The structure of each Ada construct is gien in a table included next. 

end ADA~ SINTAX; 
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package AI~ TREES is 
use AD~ SINTAX; 
type T.~E~ is private; 
-- Tree constructors 

procedure MAKE(construct: CONSTRUCT; s: STRING.) return TREE; 
procedure MAKE(construct: CONSTRUCT: t: TREE) return TREE; 
procedure MAKE(construct: CONSTR~CT; tl, t2: ~ )  return TREE; 
procedure MAKE(construct: CONSTRUCT: tl, t2, t3: TREE) return TREE; 

-- ~ree selectors 

procedure KIND 
procedure SON 
procedure TOKEN 

(t: TRE.~) 
(n: INTEGER, t: TREE) 
(t: TREE) 

return CONSTRUCt; 
return TREE; 
return STRING; 

-- Handling of list constructs 

procedure HEAD (I: TREE) return TREE; 
procedure TAIL (I: TREE) return TREE; 
procedure PRE (t: TREE. l: ~ )  return ~R~E; 
procedure EMPTY (construct: CCNSTRUCT) return TREE; 
procedure IS EMFT~(l: TREE) return ~OOLEA~; 

private 
-- Description of the implementation of type TREE 

end ADA TREES; 
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2.4 Encapsulation of the Abstract Syntax 

To be certain that the abstract syntax of Ada can be used as a standard for the 
representation of Ada programs, we could define it as a Ada data structure. This 
would not however leave enough room for efficient implementation and would involve 
unnecessary and harmful overspecification. Instead, we have chosen to specify only 
the visiole part of ~da packages that provide the abstract syntax of Ada and the 
tools for the manipulation of Ada trees. Notice that the procedure MAKE is 
overloaded. This avoids creating one procedure name per construct° This overloading 
will be resolved on the basis of the number of arguments handed to it in any call. 
The procedure MAKE must be programmed using the KIND and SORT OF SON procedures 
provided in the package ADA $~NT~X, to check that it is not asked to build unlawful 
Ada trees. Similarly, the constructor procedure EMPTk checks that its argument is a 
construct of arbitrary arity. 

~iost processors will find the selector function SON perfectly adequate. For the 
Formal Definition, where readability is of prime importance, we have assumed the 
existence of a third package, ADA SELECTORS. This package allows to refer to 
subtrees by name rather than by position. A simple convention for the names of the 
selectors has been followed in the Formal Definition: for each sort, a selector 
function is defined that is named after the sort. Assume now, for example, that 
"statement" is a tree with a root labeled i_ff. Instead of writln~: 

SON[1,statement) 

we may write 

CONDitiONALS(statement) 

in cases like the binary construct pair that has more than one son of the same sort, 
numbering is used. Thus EXP1(pair) and EXP2(pair) return the first and second son of 
the tree pair, respectively, as both are of sort EXP. 

3 Structure and Notations 

In the English language description of the semantics of Ada given in the Reference 
i~anual, one can distinguish three kinds of concerns: 

(i) Some features of the language are provided to shorten the text of programs or to 
increase their readability. These features are best explained as combinations 
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of other possibilities of Ada. 

(ii) A number of specifications are intended to delineate the class of legal 
programs, within the class of syntactically correct ones. Considerations such 
as the need to declare every identifier before using it, coherence in the use of 
types and resolution of ambiguity in the use of overloading, are in this 
category. 

(ill)The rest of the informal definition concerns the behavior of programs during 
execution. 

The Formal Definition is structured in a manner that reflects these quite distinct 
concerns. 

3.1 Normalization 

One part of the Formal Definition specifies transformations of the abstract syntax 
tree that do not require any type information. These transformations are performed 
to eliminate the use of some notational conveniences or to check simple syntactic 
constraints. They are defined by functions mapping TREE's to TREe's and regrouped in 
an Appendix of the Formal Definition. Whenever these functions are sufficiently 
simple (i.e. involve no context), the text includes their description as a simple 
rewriting rule. 

Example: 

[ if CONDITIONAL S else STM $ end if; ] -> 
[ if CONDITIONAL S elsif true then STM S end if; ] 

The kind of constraints dealt with by normalizations must require only little 
contextual information, in particular no information about types. For example, when 

the ~mnual states: 

"Within the sequence of statements of a subprogram or module body, different 

labels must have different identifiers." 

this check is one of those performed in this normalization phase. 

3.2 Static Semantics 

The next part of the Formal Definition is concerned with what is usually called 
type-checking. A type checker is presented as a mapping from abstract syntax trees 
to an extended abstract syntax tree~ rather than as a mapping returning true or 
false. This is intended to mimic the concepts of "compile time" checks as opposed to 
"run time" cheeks. Type-checked programs contain all type information needed at run 
time, and only that type information. In this way dynamic semantics will not need to 

carry a static environment. 

More specifically, the Static Semantics of Ada has to deal with the following tasks: 
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2. 

3. 

4. 

It must check that the declarations are valid, i.e. there is no repeated 
declaration of the same designator in the same scope. It must check that all 
designators are declared. 

it must check that all designators are used in a manner that is consistent with 
their type. 

it must carry out the evaluation of static expressions where required. 

All information on types of designators must be used to generate an extended 
abstract syntax tree. This includes: 

4.1 Detecting and eliminating all overloading 

4.2 Reordering actual parameters in subprogram calls. Remember that Ada 
uses both positional and named parameters in subprogram calls. Once it has 
been processed, a subprogram call will list all its parameters in named 
parameter associations. 

4.3 Normalizing aggregates as lists of named component associations. 

4.4 Resolving ambiguities between indexed component, qualified expression 
and subprogram call. 

5. Exception names are made unique within a program 

6. The dot notation is systematically used to access identifiers visible through a 
use list. 

Furthermore, the Static Semantics is given additional structure in collecting 
together in separate packages: 

a package that abstracts away the structure of the static environment, where 
information regarding the type of designators is recorded. The external 
behavior of this "abstract machine" is defined by a collection of functicns that 

- build or select type denotations 

- declare or access designators 

a package that collects together auxiliary functions used: 

- to solve overloading 

- to check for side effects of functions and value returning procedures 

3.3 Dynamic Semantics 

The language Ada insists that a large number of verifications should be done ~at 
compile time". It should come to no surprise that the precise description of the 
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type-checking of Ada should form a significant part of its formal definition. In 
contrast, the dynamic semantics of Ada, if you wlll remember that tasking is not 
dealt with in our Formal Definition is rather more conventional. 

~he Static Semantics is described as a transformation performed on abstract syntax 
trees. The Dynamic Semantics corresponds more to the customary notion of 
interpretation. The meaning of each construct is defined recursively on type checked 
abstract syntax trees. Information about the identifiers in the program (e.g. the 
value of a constant, the constraints associated with a subtype) is recorded in the 
dynamic environment. 

The functions used in Dynamic Semantics are partitioned into three groups, following 
to the terminology of the Reference Manual: 

Those defining the elaboration of declarations ~Prefix ELAB). 

Those defining the evaluation of expressions (Prefix EVAL). 

Those aefining the execution of statements (Prefix EXEC). 

(a) 

(b) 

(c) 

The dynamic semantics is parameterized by: 

- an abstract machine that provides a model of storage allocation 

- a set of definitions which characterize the restrictions of a concrete 
(minimum and maximum value for integers, etc). 

mach ine 

3.4 Treatment of Errors 

Some errors may be discovered during normalization and during the evaluation of the 
Static Semantics. They are reported by inserting a special construct in the abstract 
syntax tree, at the lowest meaningful level. The Dynamic Semantics is only defined 
on trees which do not contain such errors. In this way, the place and reason for an 
error are defined precisely. Since the errors now are part of the formal definition, 
an opportunity is given to standardize error messages. (Note that it seems more 
difficult to standardize syntax error diagnostics, because the discovery of syntax 
errors occurs at different moments with different parsing strategies and it may be 
unwise to constrain Ada parsers to use a specific parsing technioue). Furthermore, 
since error messages are located in the program tree, the location of the errors will 
be completely unambiguous, This facility will be most useful when using 
sophisticated program editors that know the structure of ~da such as the MENTOR 

system.[Donzeau-Gouge] 

Errors occurring during the execution of a program raise the appropriate exceptions, 

as prescribed by the semantics of Ada. 
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