
Lecture Notes in
Computer Science
Edited by G. Goos and J. Hartmanis

95

Christopher D. Marlin

Coroutines
A Programming Methodology, a Language
Design and an Implementation

I

Springer-Verlag
Berlin Heidelberg New York 1980

Editorial Board

W. Brauer P. Brinch Hansen
J. Stoer N. Wirth

D. Gries C, Moler G. Seegm~Jiler

Author

Christopher D. Marlin
Department of Computer Science
101 MacLean Hall
The University of Iowa
Iowa City, Iowa 52242/USA

AMS Subject Classifications (1980): 68-02, 68 B05, 68 F20
CR Subject Classifications (1974): 4.0, 4.12, 4.20, 4.22

ISBN 3-540-10256-6 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-10256-6 Springer-Verlag New York Heidelberg Berlin

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically those of translation, reprinting, re-use of
illustrations, broadcasting, reproduction by photocopying machine or similar means,
and storage in data banks. Under § 54 of the German Copyright Law where copies
are made for other than private use, a fee is payable to the publisher, the amount of
the fee to be determined by agreement with the publisher.

© by Springer-Verlag Berlin Heidelberg 1980
Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2t45/3140-543210

PREFACE

Coroutines have been known and discussed for some years, but unfor-

tunately have acquired a reputation for leading to poorly-structured and

inefficient programs. It is perhaps a consequence of this unjustified

reputation that coroutines are not widely available in programming

languages.

The work described in this volume began both as an investigation of

methodologies for programming with coroutines and as an attempt to

extend the notion of hierarchical program structure to programs involv-

ing coroutines. The results of these efforts are presented in Chapter 2.

Inadequate support for hierarchically-structured systems of corou-

tines in existing languages then motivated the design of a language with

coroutines. Although they are not widely available in implemented

programming languages, coroutines have been described and discussed

extensively in the literature, with a large number of proposals for the

inclusion of coroutines in programming languages being put forward. The

approach to language design described in Chapter 3 was born out of a

desire to draw on the experience represented by this body of coroutine-

related literature• This approach involves:

. the design of semantics before that of syntax,

• the division of the design of the semantics of a language into

that of three largely orthogonal aspects of the language (data

structures, sequence control, and data control), and

• the use of specific abstract models to aid the design of the

semantics of each of these aspects, by facilitating comparisons

among previous languages and proposals, and among competing design

options for the language being designed.

The result of applying this approach to the design of a language

with coroutines (known as ACL) is described in Chapters 4 (semantics)

and 5 (syntax). This language was designed with relatively efficient

implementation as one of its goals, and Chapter 6 describes some aspects

of an implementation which has been carried out•

Apart from some minor corrections and editorial changes, this

volume reproduces a thesis submitted by the author to the University of

IV

Adelaide, Adelaide, South Australia, for the degree of Doctor of

Philosophy, on 16th November 1979.

I gratefully acknowledge the support and encouragement of my

supervisor, Dr.C.J.Barter. My thanks are also due to Dr.J.G.Sanderson

for many helpful discussions, particularly while acting temporarily as

my supervisor, and to the many other people who assisted me while I was

carrying out the work described here. I would also like to thank

Prof. D.L.Epley of the University of Iowa for his thoughtful advice and

comments.

Above all, I am grateful to my wife, Deborah, for her constant

support and for her unfailing confidence in my ability to finish the

task I had set myself; she is also responsible for the careful prep-

aration of the many diagrams in this volume.

Iowa City, Iowa

July 1980

C.D.M.

TABLE OF CONTENTS

Page

LIST OF TABLES ix

LIST OF FIGURES x

Chapter

i, INTRODUCTION

I,i Coroutines

1.2 Past Applications for Coroutines

1.3 Coroutines in Programming Languages

2. PROGRAMMING WITH COROUTINES

2.1 Aspects of Program Design

2.2 Program Structure

2.3 A Methodology for Programming with Coroutines

2.4 An Example: The Telegrams Problem

3. A PROGRAMMING LANGUAGE WITH COROUTINES

3.1 Introduction

3.2 The Design Goals

3.3 Programming Language Design

3.4 The Choice of Pascal as the Base Language

4. THE DESIGN OF THE SEMANTICS OF THE LANGUAGE

4.1 The Semantics of the Data Structures Aspect

4.2 The Semantics of the Sequence Control Aspect

4.2.1 Introduction

4.2.2 The Sequence Control Model

9

9

i0

I I

14

21

21

22

24

27

29

29

32

32

33

Chapter

V;

4.2.3 Sequence Control in Previous Coroutine Facilities

Simula

Gentleman's Portable Coroutine System

Coroutine PASCAL

2.PAK

SL5

Krieg's Cooperations of Coprocedures

Pritchard's Pools of Coroutines

Sajaniemi's Cogroups

Alphard and CLU

TELOS

4.2.4 Sequence Control in ACL

4.2.4.1 Introduction

4.2.4.2 Extensions to the Sequence Control Model

4.2.4.3 The Sequence Control Operations

The Semantics of the Data Control Aspect

3ol Data Control in Programming Languages

4.3.1.1 Introduction

4.3.1.2 Data Control and Storage Management

4.3.1.3 Block Structure

4.3.1.4 Scope Rules

4.3.1.5 Parameters and Function Values

4.3.2 The Data Control Model

4.3.3 Data Control in Previous Programming Languages

4.3.3.1 Introduction

4.3.3.2 Pascal

Local Declarations

Value Parameters

Variable Parameters

Procedure and Function Parameters

Scope Rules

Returning Values from Functions

A Complete Example

4.3.3.3 Explicit Scope Rule Schemes

4.3.3.4 Previous Coroutine Facilities

4.3

4.

Page

36

36

45

46

5O

52

53

54

55

56

57

58

58

60

65

75

75

75

79

83

85

87

94

i01

I01

I01

105

106

109

iii

113

117

119

122

125

VIi

Chapter

4.3.4 Data Control in ACL

4.3.4.1 Introduction

4.3.4.2 Scope Rules

. Local Declarations

. RO Inheriting Declarations

. RW Inheriting Declarations

4.3.4.3 Parameters

• RO Reference (Seen) Parameters

. RW Reference (Modifiable) Parameters

. Value Parameters

4.3.4.4 Returning Values from Subprograms

4.3.4.5 Summary, Restrictions and Disciplines

5. THE SYNTAX OF THE LANGUAGE

5.1 Introduction

5.2 Declarations

5.2.1 Defining Declarations

5.2.2 Inheriting Declarations

5.2.3 Forward Declarations

5.2.4 A Difficulty of Pascal Avoided in ACL

5.3 Parameters

5.4 Statements

5.5 Predefined Procedures and Functions

6. THE IMPLEMENTATION OF THE LANGUAGE

6.1 Overview

6.2 Declarations

6.3 Statements

6.4 Storage Management

7. CONCLUSIONS

7.1 The Programming Methodology

Page

128

128

130

134

135

138

140

142

145

147

150

151

157

157

157

158

159

159

162

164

165

166

169

169

172

175

182

191

191

VIII

Chapter

7.2 The Language Design

7.3 The Implementation

APPENDICES

Appendix A: Syntax Diagrams for ACL

Appendix B: Some ACL Programs

B.I The Telegrams Problem

B.2 The Odd Word Reversal Problem

B.3 Hamming's Problem

B.4 Lynning's Solution to Grune's Problem

B.5 A Data Abstraction Example

REFERENCES

Page

191

195

199

199

207

207

212

218

224

226

229

INDEX 242

Table

LIST OF TABLES

Page

2.1 Caller-Callee Relationships in Figure 2.1

4.1 A Comparison of Sequence Control in Simula and 2.PAK

4.2 A Summary of the Sequence Control Operations of ACL

4.3 The Characteristics of Various Static Scope Rule Schemes

4.4 A Summary of the Data Control Events for ACL

5.1 Predefined Procedures in ACL Requiring RWAccess to Actual
Parameters

B.I Names in Figure B.I Corresponding to Nodes in the
Discussion of Chapter 2

20

52

73

123

152

168

210

Figure

LIST OF FIGURES

Page

2.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

The Structure of the Solution to the Telegrams Problem 19

An Example of a Dynamic Hierarchy 37

The Simula Text Corresponding to the Dynamic Hierarchy of
Figure 4.1 38

The Tree of Instances in an Executing Simula Program 42

Some Typical Cycles of Instances in Coroutine PASCAL
Programs 48

An Example of a Master Tree 61

The Algorithm for the Computation of "live(i)" 62

The Algorithm for the Computation of "susp(il,i2)" 63

The Effect of an Instance Creation Operation on the Master
Tree of Figure 4.5 67

The Effect of a Generator Call Operation on the Master Tree
of Figure 4.5 70

Wegner's Binding Diagram 75

A Temporal Partial Ordering on Events Concerned With a
Variable 83

Two Algol 60 Fragments with the Same Data Control Structure 83

An Example of the Use of Parameters to Construct
Specialized Data Control Structures 90

A Pascal Fragment Containing a Function Parameter 91

Avoiding Violations of the Principle of Disjointness Which
were Due, in part, to Access via Scope Rules 93

The Pictorial Representation of Block Instances in
Depictions of the Data Control Structure of Programs 96

Transmission of Access via an Intermediary Identifier 98

Allowable Transmissions of Access to a Known Identifier 99

A Pascal Fragment Illustrating Value Parameters 109

Data Control Structures Occurring during the Execution of

Xi

Figure

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.31

4.32

4.33

4.34

4.35

4.36

4.37

4.38

5.1

5.2

Page

the Fragment of Figure 4.19 109

A Pascal Fragment Illustrating Variable Parameters ii0

Data Control Structures Occurring during the Execution of
the Fragment of Figure 4.21 iii

A Pascal Fragment Illustrating Procedure and Function
Parameters 112

Data Control Structures Occurring during the Execution of
the Fragment of Figure 4.23 112

The Partial Ordering on the Events Comprising the Data
Control Effect of Block Entry in Pascal 113

A Pascal Fragment Illustrating the Scope Rules 115

Data Control Structures Occurring during the Execution of
the Fragment of Figure 4.26 116

Examples of Pascal Functions which Cannot Return a Value 117

A Pascal Fragment Containing a Function 119

Data Control Structures Occurring during the Execution of
the Fragment of Figure 4.29 119

A Complete Pascal Program 120

Data Control Structures Occurring during the Execution of
the Program of Figure 4.31 121

A Program Fragment Illustrating an Amomaly with Scalar
Types in Pascal 136

Data Control Structures Illustrating the Effect of Local
and Inheriting Declarations in ACL 139

A Simula Fragment Illustrating the Establishment of Mutual
References between Instances 144

Data Control Structures Illustrating the Establishment of
Mutual References between Instances in ACL 145

Data Control Structures Illustrating the Rebinding of
Continuation Parameters in ACL 149

An Example of a Generator not Exhibiting Procedure-like
Behaviour 154

Specifying Recursively-defined Data Types in ACL and Pascal 161

Specifying Mutually Recursive Procedures in ACL and Pascal 162

XII

Figure

5.3

B.6

B.7

B.8

B.9

B. i0

Page

Two Pascal Fragments Illustrating Situations Subject to
Interpretation 163

6.1 Steps in the Development of an ACL Processor from Pascal'H" 171

6.2 The Layouts of the Various Kinds of Heap Object 177

6.3 An Example of a Heap Object and its Description List 186

B.I A Solution to the Telegrams Problem 208

B.2 The Structure of the Program in Figure B.I after the
Initialization of its Instances 211

B.3 Barter's Solution to the Odd Word Reversal Problem 214

B.4 Another Solution to the Odd Word Reversal Problem 216

B.5 The Sequence Control Structures of the Two Solutions to the
Odd Word Reversal Problem 217

Dijkstra's Solution of Hamming's Problem 219

Transforming Dijkstra's Solution of Hammlng's Problem 220

Another Solution to Hamming's Problem 222

Lynning's Solution to Grune's Problem 225

The Stack Abstraction in ACL 228

