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PREFACE 

Coroutines have been known and discussed for some years, but unfor- 

tunately have acquired a reputation for leading to poorly-structured and 

inefficient programs. It is perhaps a consequence of this unjustified 

reputation that coroutines are not widely available in programming 

languages. 

The work described in this volume began both as an investigation of 

methodologies for programming with coroutines and as an attempt to 

extend the notion of hierarchical program structure to programs involv- 

ing coroutines. The results of these efforts are presented in Chapter 2. 

Inadequate support for hierarchically-structured systems of corou- 

tines in existing languages then motivated the design of a language with 

coroutines. Although they are not widely available in implemented 

programming languages, coroutines have been described and discussed 

extensively in the literature, with a large number of proposals for the 

inclusion of coroutines in programming languages being put forward. The 

approach to language design described in Chapter 3 was born out of a 

desire to draw on the experience represented by this body of coroutine- 

related literature• This approach involves: 

. the design of semantics before that of syntax, 

• the division of the design of the semantics of a language into 

that of three largely orthogonal aspects of the language (data 

structures, sequence control, and data control), and 

• the use of specific abstract models to aid the design of the 

semantics of each of these aspects, by facilitating comparisons 

among previous languages and proposals, and among competing design 

options for the language being designed. 

The result of applying this approach to the design of a language 

with coroutines (known as ACL) is described in Chapters 4 (semantics) 

and 5 (syntax). This language was designed with relatively efficient 

implementation as one of its goals, and Chapter 6 describes some aspects 

of an implementation which has been carried out• 

Apart from some minor corrections and editorial changes, this 

volume reproduces a thesis submitted by the author to the University of 
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Adelaide, Adelaide, South Australia, for the degree of Doctor of 

Philosophy, on 16th November 1979. 

I gratefully acknowledge the support and encouragement of my 

supervisor, Dr.C.J.Barter. My thanks are also due to Dr.J.G.Sanderson 
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