Lecture Notes in Computer Science

Edited by G. Goos and J. Hartmanis

101

André Thayse

Boolean Calculus of Differences

Springer-Verlag
Berlin Heidelberg New York 1981

Editorial Board

W. Brauer • P. Brinch Hansen • D. Gries • C. Moler • G. Seegmüller J. Stoer • N. Wirth

Author

André Thayse
Philips Research Laboratory
av. Van Becelaere, 2
B-1170 Brussels
Belgium

AMS Subject Classifications (1979): 94C05, 94C10 CR Subject Classifications (1979): 6.1

ISBN 3-540-10286-8 Springer-Verlag Berlin Heidelberg New York ISBN 0-387-10286-8 Springer-Verlag New York Heidelberg Berlin

FOREWORD

by Sheldon B. Akers

The development of switching circuit theory over the past three decades has mirrored the varying concerns of the logic designers who have had to confront the many problems presented by constantly changing circuit technologies. All too often, yesterday's elegant solution has been rendered obsolete by today's technological breakthrough. It is not surprising, therefore, that the accepted techniques and procedures of present day switching circuit theory too often tend to stand as distinct entities rather than as part of a cohesive whole.

Accordingly, it is a great pleasure to be able to recommend a book which not only provides a much needed historical perspective to these many developments but, even more importantly, does so within the framework of a single comprehensive structure. Starting with the basic definitions of Boolean algebra and the Boolean difference, the author carefully and systematically develops and extends these concepts to subsume such diverse areas as two-level minimization, hazard detection, unate functions, fault diagnosis, functional decomposition, and many others. A significant part of this theory derives directly from previous work by the author and his colleagues at the Philips Research Laboratory.

The elegance of the underlying theory, together with its breadth of coverage and the clarity of the author's presentation, is destined to make this book a classic in its field.

Contents.

Preface of Prof. Sheldon B. Akers

1. Introduction 1
2. Canonical expansions of Boolean functions 5
2.1. General Boolean notations 5
2.1.1. Definitions and elementary properties 5
2.1.2. Boolean algebra 6
2.1.3. Boolean ring 7
2.1.4. The two element Boolean algebra ; Boolean functions 9
2.1.5. Well-formed Boolean expression ; well-formed Galoisian expression 9
2.2. Partial expansions with respect to one variable 10
2.2.1. Lagrange expansion and redundant expansion 10
2.2.2. Hybrid expansions 12
2.2.3. Galoisian expansions 12
2.2.4. Matrix expression of the canonical expansions 13
2.2.5. Equivalent forms for canonical expansions 13
2.3. Complete expansions 14
2.3.1. Lagrange expansions 14
2.3.2. The extended state vector 15
2.3.3. Redundant canonical expansions 16
2.3.4. Prime implicants and prime implicates 17
2.3.5. Galoisian expansions 18
3. Differences of Boolean functions 19
3.1. Simple differences 19
3.1.1. Definitions 19
3.1.2. Functional properties 20
3.1.3. Relations between the differences 21
3.1.4. Relations between the function and its differences 22
3.1.5. Relations between differences for a fixed operation 22
3.1.6. Table of differences 23
3.1.7. Lattice of differences 25
3.1.8. The Boolean difference $\Delta^{A} f / \Delta x:$ properties and bibliographical 28
notes
3.1.9. The meet difference $\mathrm{p}^{A_{f} / \mathrm{px}}$: properties and bibliographical notes 29
3.1.10. The join difference $q^{A} f / q x:$ properties and bibliographical notes 31
3.1.11. Properties of the envelopes 32
3.1,12. Envelopes and Galoisian expansions 33
3.1.13. The oriented differences : properties and bibliographical notes 34
3.1.14. Example 35
3.2. Multiple differences 36
3.2.1. Definitions and functional properties 36
3.2.2. Expansions and properties of the function $T^{A^{A}}{ }_{f} / \mathrm{Tx}_{0}$ 38
3.2.3. The function δ 39
3.2.4. Generalization of theorem 3.l.3. 41
3.2.5. Generalization of theorem 3.1.4. 42
3.2.6. Functional properties of the meet and join differences 44
3.2.7. Properties of the function δ 45
3.2.8. Applications in switching theory 46
3.2.9. The Boolean differences and the Galoisian expansions 48
3.2.10. The Boolean differences and the circuit optimization 50
3.2.11. The sensitivities 50
3.2.12. Theorem 52
3.2.13. Meaning of the sensitivity function 53
3.2.14. Meaning of the function $S f / \mathrm{Sx}_{0} \oplus \delta f / \delta \mathrm{x}_{0}$
3.2.15. Theorem 56
3.2.16. Generalization of theorem 3.1.11. 56
3.2.17. Generalization of theorem 3.1.12. 57
3.2.18. Application of the concept of envelope in switching theory 57
3.2.19. Continuation of the example 3.1.14. 58
4. Application to switching theory 62
4.1. Introduction 62
4.2. Universal algorithms 62
4.2.1. Algorithms grounded on the extended vector 62
4.2.1.1. Formulas and theorems 62
4.2.1.2. The algebra derived from the general law 65
4.2.1.3. Continuation of the example 3.1.14. 65
4.2.2. Algorithm grounded on the generalized consensus 69
4.2.2.1. Introduction 69
4.2.2.2. The generalized consensus with respect to the law \uparrow 73
4.2.2.3. Continuation of example 3.1.14. 76
4.2.2.4. Obtention of the matrix $\psi^{(\uparrow)}(f)$ from a diagonal matrix 78
4.3. Particular algorithms related to circuit analysis synthesis methods 79
4.3.1. Synthesis of two-1evel circuits using AND- and OR-gates 79
4.3.1.1. Problem statement 79
4.3.1.2. Algorithm 80
4.3.1.3. Theorem 81
4.3.1.4. Algorithm 82
4.3.1.5. Computation method for obtaining $p f / p \underline{x}^{k}$ and $q f / q \underline{x}^{k}$ 82
4.3.1.6. Algorithm 83
4.3.1.7. Example 84
4.3.1.8. Algorithm grounded on the use of the extended vector 93
4.3.2. Synthesis of three-level networks using AND- and OR-gates 96
4.3.2.1. Problem statement 96
4.3.2.2. Algorithm 96
4.3.2.3. Some further considerations related to logical design 97
4.3.3. Two-level networks using AND and EX-OR gates 102
4.3.3.1. Problem statement 102
4.3.3.2. Algorithms grounded on the use of differential operators 103
4.3.3.3. Algorithms grounded on the use of the Taylor expansions 105
4.3.3.4. Algorithm grounded on the Kronecker matrix product 107
4.4. Analysis of combinatorial networks 108
4.4.1. Problem statement 108
4.4.2. Hazard detection 108
4.4.2.1. Problem statement 108
4.4.2.2. Algorithms 110
4.4.2.3. Example 111
4.4.3. Fault detection 111
4.4.3.1. Problem statement 111
4.4.3.2. Computation of test functions for simple faults 114
4.4.3.3. Computation of test functions for multiple faults 114
4.4.3.4. Algorithm and examples 116
4.4.3.5. Continuation of example 4.2.1.7. 120
4.5. Detection of functional properties 120
4.5.1. Detection of the decomposition 120
4.5.1.1. Problem statement 120
4.5.1.2. Decomposition classification 121
4.5.1.3. The results of Ashenurst and Curtis 122
4.5.1.4. Fundamental theorems for simple decompositions 123
4.5.1.5. Algorithm for disjunctive decomposition detection 127
4.5.2. Detection of symmetry 128
4.5.3. Detection of A-degeneracy 129
4.5.4. Other applications 130
References 131
Author index 140
Subject index 142
List of symbols 144
