Lecture Notes in Computer Science

Edited by G. Goos and J. Hartmanis

102

James Harold Davenport

On the Integration of Algebraic Functions

Springer-Verlag
Berlin Heidelberg New York 1981

Editorial Board

W. Brauer P. Brinch Hansen D. Gries C. Moler G. Seegmüller J. Stoer N. Wirth

Author

James Harold Davenport
Emmanuel College
Cambridge
England

AMS Subject Classifications (1979):
CR Subject Classifications (1979): 5.25, 5.7

ISBN 3-540-10290-6 Springer-Veriag Berlin Heidelberg New York ISBN 0-387-10290-6 Springer-Verlag New York Heidelberg Berlin

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort", Munich.

Acknowledgements

I wish to express my gratitude to all the people who have made this work possible. The programming could not have been done without the expert advice of Drs. J.P. ffitch and A.C. Norman on their LISP system, and the advice of Prof. A.C. Hearn, Dr. A.C. Norman and Mr. R.G. Hall on the REDUCE-2 system. I am also grateful to Mrs. P.M.A. Moore for her permission to incorporate several of her changes to REDUCE-2.

I am grateful to the Director and staff of the Cambridge University Computing Service, where nearly all the work described here was performed, for their support of my apparently endless computations and for their advice, especially that of Mr M.J.T. Guy and Mr. C.E. Thompson. The implementation of the integration system at the IBM Thomas J. Watson Research Centre relied on the advice of Mr. J.E. Harry, and the MTS implementation was performed with the assistance of Mr. W.A. Dodge and Mrs. J. Caviness of Rensselaer Polytechnic Institute and Mr. M. Alexander of the University of Michigan. Many improvements to the factoriser were made by Dr. D. Dahm (Burroughs Corp.), who also pointed out several other bugs. Many problems with the LISP interface were discovered and corrected by Mr. D. Morrison (University of Utah).

I am very grateful to the many mathematicians whose advice I have sought, especially Prof. Sir Peter Swinnerton-Dyer, Dr. B.J. Birch, Prof. D.J. Lewis, Prof. S. Maclane, Dr. R.H. Risch, Prof. A. Schinzel and Prof. M.F. Singer. My original introduction to computers and algebraic geometry was performed by Dr. N.M. Stephens. The discussion in chapter 6 on special values of parameters was inspired by discussion with Dr. P.M. Neumann and the Oxford University Number Theory Seminar.

I would also like to acknowledge the help I have received from many discussions with Dr. J.P. ffitch, Prof. B.F. Caviness and the Rensselaer Polytechnic Institute seminar, Dr. R.D. Jenks and Dr. D.Y.Y. Yun of the IBM Thomas J. Watson Research Centre, and the MACSYMA group at M.I.T. (especially Mr. B.M. Trager).

I am very grateful to Professor Sir Peter Swinnerton-Dyer and Professor A. C. Hearn, who read an earlier version of this work, for their many helpful comments and suggestions.

Professor M.F. Singer also read a version and made many valuable remarks. Earlier versions of this work were prepared at the Cambridge University Computing Service, and I am grateful to Dr. A.J. Herbert and Mr. M.A. Johnson for their advice on text processing. This version was prepared at the IBM Thomas J. Watson Research Centre using the Yorktown Formatting Language, and I am grateful to the text processing consultants, Miss A.M. Gruhn, Miss K.C. Keene and Mrs. C.H. Thompson, for their advice.

Finally I would like to thank my mother for her assistance, especially with the references, and Dr. A.C. Norman, my supervisor, for his continued advice and encouragement.

Contents

CONTENTS
1 Introduction 5
2 Algebraic Computations 14
3 Coates' Algorithm 30
Algorithm COATES 31
Algorithm INTEGRAL_BASIS_REDUCTION 34
Algorithm NORMAL_BASIS_REDUCTION 35
Algorithm DIVISOR_TO__FUNCTION 43
4 Risch's Theorem 49
Algorithm RISCH_ALGEBRAIC 54
Algorithm FIND_ALGEBRAIC_PART 60
5 The Problem of Torsion Divisors 64
Algorithm WEIERSTRASS_FORM 68
6 Gauss-Manin Operators 76
Algorithm FIND__ORDER_MANIN 83
7 Elliptic Integrals Concluded 92
Algorithm LUTZ__NAGELL 97
Algorithm FINITE__ORDER__ELLIPTIC 101
Algorithm DENOMINATOR_ALGEBRAIC 104
8 Curves Over Algebraic Number Fields 106
Algorithm MAX__POWER 107
Algorithm BOUND__TORSION 109
Algorithm OCCURRENCES 114
Algorithm BOUND__TORSION 114
9 Conclusions 119
APPENDICES
1 Changes to REDUCE-2 134
1 Printing. 134
2 Differentiation. 135
3 Greatest Common Divisors. 136

Contents

4 Algebraics. 137
5 Factorisation. 138
6 Uniqueness of Algebraics. 139
2 Examples 141
Example 1: Simple Logarithmic. 141
Example 2: 1/SQRT((X**2-1)*(X*2-K**2)). 146
Example 3: A Torsion Example. 146
Example 4: Modular Curve $X(7)$ 148
Example 5: Chebyshev's Integral 152
Example 6: A Nested Expression. 163
Example 7: Logarithmically Unintegrable. 164
Example 8: Sum of two Functions. 173
3 Algorithms for Algebraic Expressions. 177
Algorithm SQFR NORM 177
Algorithm ALG_FACTOR 178
Algorithm ALG_FACTOR_2 179
Algorithm PRIMITIVE ELEMENT 180
Algorithm SQUARE_FREE_DECOMPOSE 182
Bibliography 186

