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1. Introduction 

The purpose of this paper is to display some relations between 

different classes of graphs, in particular: 

the edge-critical graphs, 

- the well-covered graphs ("every maximal stable set is 

maximum"), 

the B-graphs ("each vertex is contained in some maximum 

stable set"), 

- the regularizable graphs, 

- the quasi-regularizable graphs. 

Though some of the proofs have already appeared somewhere else, 

we shall give them in full for the basic lemmas. No use of the Farkas 

lemma will be made (as for similar researches about hypergraphs) and 

this paper is self contained. 

2. Edge-critical Graphs 

Let G be a simple graph with vertex-set X. For x~X, let Fx denote 

the set of all neighbours of x; if A c__ X. put FA=UFx if A~@, and FA=@ 

if A=@. Let ~(G) denote the stability number, i.e. the largest number 

of independent vertices in G. An edge e of G is a-critical if 

~(G-e) ) ~(G). 

G is e-edge-critical or edge-critical if every edge is 

s-critical. This concept, introduced by Zykov [24], has been studied 

by many authors (see Plummer [15], Erd~s-Gallai [8] , Hajnal [ii], 

Berge [3], George [I0], Andrasfai [i], Suranyi [22], etc...) 

In this paper we shall write G=.~ if G is edge-critical and has 

no connected component isomorphic to K 1 (isolated vertex) or K 2 
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(isolated edge). We shall also consider some more general classes of 

graphs. We write G~2 if each vertex is of degree ~ 2 and incident 

to at least one critical edge. An obvious result is: 

Proposition i. Every graph in ~i is also in_~2. 

Proof. It suffices to show that an edge-critical connected graph 

different from K 1 or K 2 has no vertex of degree i. Let a be a 

vertex with dG(a)=l. Since G is connected and has at least three 

vertices, there exists a vertex x with [a,x]~G. Since G/K2, and 

dG(a)=l, there exists a vertex b~a adjacent to x. Since [b,x] is a 

critical edge, there exists a set S of cardinality ~(G)+I which 

contains only one edge, namely the edge [b,x]. Hence a/S, and 

(S-{x})u{a} is a stable set of cardinality ~(G)+I, a contradiction. 

Q.E.D. 

Definition. We shall write G~3 if for each vertex x of G there 

exists a maximum stable set T x such that X~Tx, x~T x. 

Proposition 2. Every graph in ~2 is also in ~3. 

Proof. Let x be a vertex of a graph G in~2. Thus, x is incident 

to a critical edge [x,b], and there exists at least one edge 

[x,a]~[x,b]. Also, there exists a set Sbx of cardinality a(G)+l 

which contains only one edge, namely [b,x]. So X~Sbx , aISbx. 

Hence, T=Sbx-{X} is a maximum stable set and x/T; since a~T, we 

have also T ~Fx. Q.E.D. 

THEOREM i. In a graph G~3 , every stable set S satisfies Irsl ) Jsl. 

Proof. We shall assume that G is connected without loss of 

generality. 

We shall show, by induction on ISI, that IFS~ ) ISJ for every 

stable set S. 

First, let S={x} be a singleton. Then x is not an isolated vertex 

(because TxU{X} would be a stable set larger than Tx). Also, x is 

not incident to only one edge, say Ix,y], because XITx, hence 

Y~Tx, hence Fx c T x, a contradiction. Thus iFSi ) ISl. 

Assume that every stable set S with cardinality ! p-i satisfies 

IFSI ) Isl, and consider a stable set S with cardinality p ) i. Let 

a~S; we have 

IFSNTaJ ! IS-Tal 

Otherwise, IFSDTal ( ~S-Tal, and Ta-(FSNTa)U(S-Ta) would be 

a stable set larger than Ta, a contradiction. 
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Case i: SNTa=@. Since Fa-Ta~@, 

IrSl ± IFSnTal + IFa-Tal ) IFSnTal ! IS-Tal=Isl- 

Case 2: SNTa/@. Then SNT a is a stable set with cardinality 

! p-l, and by the induction hypothesis, IF(SqTa) I ) ISlITal. Hence 

IFSI ~ IF(SNTa) I+IFSNTal ) ISNTaI+IS-Tal = ISI. 

In both cases we have IFSl ) ISl, which completes the proof. 

Q.E.D. 

Note that THEOREM 1 generalizes a result of Hajnal [ii] who has 

shown that in an edge-critical graph, every stable set S satisfies 

I rSl ~ Isl. 

3. Re@ularizable graphs and quasi-regularizable graphs 

5 = 

96-- 

Let G be a multigraph with no loops. We denote by m(G) the number 

of edges in G, by A(G) the maximu ~ degree of its vertices, by ~(G) 

the matching number, i.e. the maximum size of a matching ("set of 

independent edges"), and by T(G) the transversal number = n-e(G). For 

an integer k and an edge e of G, we say that we multiply e by k if we 

replace e by k parallel edges; if k=0, multiplying e by k means 

removing e. The graph kG is the graph obtained from G by multiplying 

each edge by k. We say that a graph G is reqularizable if by 

multiplying each edge by an integer ~ i, we get a regular multigraph 

(of degree /0). We say that G is guasi-regularizable if by 

multiplying each edge by an integer ~ 0, we get a regular multigraph 

(of degree #0), 

In this section, we shall denote: 

~ 4 = class of all regularizable graphs which have no bipartite 

connected components; 

class of all regularizable graphs; 

class of all quasi-regularizable graphs. 

Proposition 3. Every graph in ~4 is also in ~5' and every graph 

in ~5 is also in ~6. The converses are not true (for example, the 

graph P4 is quasi-regularizable but not regularizable.) 

A fractional transversal of G is a non-negative function t(x), 

defined for x~X, such that for each edge [x,y] 

t(x)+t(y) ) I. 

T*(G) denotes the minimum of Zx~xt(X) for all fractional 
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transversals t. 

A k-transversal of G is a function t(x) on X such that: 

(i) t(x)~{0,1,2,...,k}, 

(ii) t(x)+t(y) ~ k for every edge [x,y] of G. 

Tk(G) denotes the minimum of Zx~xt(X) when t ranges over all the 

k-transversals of G. Thus TI(G ) is the usual transversal number 

T(G), i.e. the minimum cardinality of a set T c X which meets all the 

edges. A partial graph H of kG is called a k-matchin~ if A(H) ! k. So 

a 1-matching is an ordinary matching. 

Denote by Vk(G) the maximum number of edges in a k-matching. 

Thus ~I(G)=~(G) is the usual matching number. 

Lemma 1. For every graph G, 

9k(S)/k ! T*(G) i T k(s)/k- 

Checking these inequalities is easy. 

Lemma 2. Let G be a simple graph. Then there exists an optimal 

2-matching H of G such that each connected component of H is either a 

single vertex or a pair of parallel edges ("double edge") or an odd 

cycle. For every 2-matching of that kind there exists an optimal 

2-transversal With values: 0 for a singleton of H, (0,2) or (i,i) for 

the two vertices belonging to a double edge of H, 1 for a vertex 

belonging to an odd cycle of H. 

Proof. We may assume that G is connected. Let H be a maximum 

2-matching. Every connected component of H which is a path or a cycle 

of even length can be replaced by a set of pairwise disjoint 

double-edges without changing m(H). No component of H is an odd path 

(i.e. a path of odd length) since m(H) is maximum. Thus a connected 

component of H is either a simple vertex or a double edge or an odd 

cycle. Now we shall label each vertex with 0,i or 2, by an iterative 

procedure described by the following rules: 

(i) label with 0 each vertex which is a singleton of H; 

(2) label with 2 each vertex which is adjacent in G to a vertex 

previously labelled with 0; 

(3) label with 0 every vertex which is adjacent in H to a vertex 

previously labelled with 2; 

(4) every vertex which cannot be labelled by the iterative 

procedure described by rules (1),(2), and (3) will be labelled i. 

No odd chain, starting from a singleton of H and consisting 

alternately of edges of G-H and of double-edges of H, ends with a 



112 

singleton because such a chain would constitute a connected component 

of a 2-matching H' with m(H') ) m(H). Similarly no odd chain of that 

kind can end in an odd cycle of H. No odd chain of that kind can 

cross itself at a vertex labelled with 0 (because there would be a 

better 2-matching having as connected components an odd cycle and a 

set of double edges). 

Thus a unique label t(x) is given to each vertex x by the above 

rules; furthermore, 

t(x)=0 if x is a singleton of H, 

t(x)=2 and t(y)=0 (or vice versa) if [x,y] is a double-edge 

connectable to a singleton (otherwise t(x)=t(y)=l), t(x)=l if x 

belongs to an odd cycle of H. 

The rule (2) shows that t(x) is a 2-transversa! of G. 

Furthermore, by lemma i, 

m(H)/2 ! ~2 (G)/2 ! T*(G) ! T2(G)/2 ! ~x~X t(x)= m(H)/2. 

Therefore, these inequalities hold as equalities; and t(x) is an 

optimal 2-transversal and H is an optimal 2-matching. Q.E.D. 

Lemma 3. For every graph G, 

v(G)= min k Vk(G)/k ! max k Vk (G)/k = v2 (G)/2 = T*(G) 

= Y2 (G)/2 = min k Tk(G)/k ! max k Tk(G)/k = T(G). 

Proof. - We "have ~(G) _) inf ~k(G)/k because ~(G)=uI(G). 

-We have ~y(G) (_ inf Vk(G)/k: let H be a maximum matching; 

so kH is a k-matching, and 

~(G)= m(H)= m(kH)/k ! Vk (G)/k" 

Hence v(G)= min ~k(G)/k. 

- We have T(G) ) sup Tk(G)/k. -- 

Let T be a minimal transversal set , with characteristic function 

t(x). Then kt(x) is a k-transversal; hence: 

T(G)=ITI=Zkt(x)/p _> Tk(G)/k 

- We have T(G) (_ suPTk(G)/k, because [(G)=TI(G). Hence, 

T(G)= max Tk(G)/k. 

- The other equalities follow from lemma 1 and lemma 2. 

Q.E.D. 

THEOREM 2. For a graph G, the following conditions are equivalent: 

(i) G is quasi-regularizable; 

(2) t(x)~ 1 is an optimal 2-transVersal; 

(3) G has a partial graph whose connected components are either a 

K 2 or an odd cycle; 

(4) IFSI ) IS1 for every stable set S. 
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Proof. (i) implies (2). If G is quasi-regularizable and has n 

vertices, there exists a k-regular graph H ~ kG, and by counting in 

two different ways the edges of the incident graph of H, we get 

kn=2m(H). Hence: 

n/2 = m(H)/k ! ~k (G)/k ! T*(G)= T2(G)/2 ! n/2 

(since t(x)~ 1 is a 2-transversal of G). Thus, the 

quasi-regularizablity implies T2(G)= n. So the 2-transversal 

t(x)~ 1 is an optimal one. 

(2) implies (i). By lemma 3 we see that T*(G)= n/2 implies 

v2(G)= n; so by lemma 2 we can cover the vertex-set of G with 

isolated double-edges and odd cycles; consequently G is 

quasi-regularizable. 

2 implies (3) (as above). 

3 implies (2) (obvious). 

2 implies (4). 

Let S be a stable set. Put : 

t(x)=0 if x~S, 

t(x)=2 if x~rS, 

t(x)=l otherwise. 

Clearly, t(x) is a 2-transversal, and by (2), Zt(x) ) n. Hence 

I FSI-ISI = ~ (t(x)-l)) n-n = 0. 
x 

4 implies (2). Let t(x) be a 2-transversal; clearly, S={xlt(x)=0} 

is a stable set and FS ~ {xlt(x)=2}. Hence 

Zxt(X) = n + Zx(t(x)-l) ~ n+IFSI-ISI ! n. 

Hence the 2-transversal identical to 1 is an optimal one. Q.E.D. 

COROLLARY. Let G be a connected graph of even order such that every 

pair of vertex-disjoint odd cycles is linked by an edge. A necessary 

and sufficient condition that G possess a perfect matching is that 

IFSI ) ISI for every stable set S. 

Proof. By Theorem 2, IFSI ) ISI for every stable set S if and only if 

G can be covered with a set of K2's and of odd cycles 

(vertex-disjoint). The number of odd cycles is even, and each pair of 

odd cycles, which is linked by an edge, can be covered by a set of 

K2's. Thus G can be covered with disjoint K2's , i.e. a perfect 

matching. Q.E.D 

REMARK. This corollary has been proved by different methods by 

Fulkerson, McAndrew, Hoffman [9]. Theorem 2 was partly found by 

Tutte([23]) who proved in 1952 the following result: G has a perfect 

2-matching iff for every A c X the number of connected components of 



114 

GX_ A which are isolated vertices is !IAl. 

A similar condition for the existence of a perfect 2-matching 

without K 3 was found by CORNUEJOLS and PULLEYBLANK ([7]). In [17], 

PULLEYBLANK shows also that G has a perfect 2-matching iff for every 

A c X, 

l{xlx~X-A, FX c A}I ! IAI. 

Note that in Theorem 2, (2) can be replaced by: 

(2') For every A c X, IFAI ! IAI. 

THEOREM 3. For a simple graph G, the following conditions are 

equivalent: 

(i) G is regularizable and has no bipartite connected component; 

(2) the optimal 2-transversal is unique and is defined by t(x)~ i; 

(3) IFSI ) ISI for every stable set S. 

Proof. (i) implies (2). Let G be a graph and let H be a regular 

multigraph obtained from G by edge-multiplication. Then 

T 2 (G) =2 T* (G) =2 T* (H) =2m(H)/A(H) =2n (H)/2= n. 

Thus, t(x)~ 1 is an optimal 2-transversal for G. 

Now, assume that there exists another optimal 2-transversal 

t'(x), and for s=0,1,2, put 

As={XlX~X , t'(x)=s}. 

Then IA01=IA21#0. The set A 0 is stable (otherwise t'(x) would 

not be 2-transversal), and FA 0 ~ A 2. We have FA0=A 2 

(otherwise, t'(x) would not be optimal; a better 2-transversal can be 

obtained from t'(x) by replacing a 2 by a i. Since H is regular, 

A(H) IA01= mH(A0,A2) 

! Zx= A mH(X,A 0) ! IA21 (H)=A(H)IA01" 

Hence mH(x,A0)=A(H) 2 for all x~A2, and no edge goes out of 

AoUA 2. Since G is connected, its vertex set is AoUA 2 and G is 

a bipartite graph having two vertex classes with the same 

cardinality. This contradicts the hypothesis. 

(2) implies (3). Let S be a stable set, and let H ~ 2G be an 

optimal 2-matching as described in Lemma 2. 

Since t(x)~ 1 is an optimal 2-transversal, we have T2(G)= n, so 

the connected components of H are either double edges or odd cycles. 

Hence 

;FGSI i ~FHSI i {SI. 

If IFGSI=ISI, it would follow that all the components of H meeting 

S are double edges. We can then define a 2-transversal t'(x) by 

putting 
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t' (x)=0 if x~_S, 

2 if x~FS, 

1 if x~X-(SUFS). 

Since t' (x) would also be an optimal 2-transversal of G, this 

contradicts the uniqueness of the optimal 2-transversal. Thus 

Irsl > ISl. 

(3) implies (i)° Now assume that IFSI ) ISI for every stable set 

S. Let H be a bipartite graph whose vertex-classes are two copies X 

and ~ of the vertex set of G, the vertices x~X and y~ being joined 

by an edge in H if and only if x and y are adjacent in G. 

Let B ~_ X, B~@, B~X, be a set such that the subgraph G B has no 

isolated vertex. Then FH(B) 2 [. Now let S ~_ X be a set such that 

G S has only isolated vertices. Then S is a stable set of G, and by 

(3) , 

IFHSI=IFGSI ) ISI. 

So, for every set A=BUS, A~@, A~X, we have 

I rHAI > I A I ,  

noting that FHSNB= ~ if there are no edges between B and S. 

First, we shall show that each edge [a,~] of H belongs to at 

least one perfect matching, that is , the subgraph H' of H induced by 

(XU~)-{a,'b} has a perfect matching. For every A c X-{a}, 

iFH,AI=IFHA-{D}J _)IFHAi-I _) iAI. 

Thus, by Konig's theorem, H has such a matching. 

Consequently, for each edge [a,b] of G, there exists a 2-matching 

which saturates all the vertices and which uses the edge [a,b]. The 

union of all these possible 2-matchings defines a regular multigraph 

which is from G by edge-multiplications. Thus G is regularizable. 

Q.E.D. 

REMARK. It is easy to see that in Theorem 3, (3) can be replaced by 

(3') For every non-empty set A, IFAI ) IAI. 

Theorem 3 was stated as above in [3],[4], but equivalent results were 

found independently by PULLEYBLANK [17], NEMHAUSER and TROTTER [14], 

BRUALDI [6]. In fact, those graphs are also called "2-bicritical" by 

PULLEYBLANK, with the following definition: 

(4) For every x, GX_{x } is quasi-regularizable. 

Clearly (3) implies (4) because every stable S' of G'=Gx_{x } 

satisfies IFG,S'I ~ IFGS'I-I ~ IS'I, and (4) follows from Theorem 

2. Conversely, if (3) is false, there exists in G a stable S with 

IFGSI ~ ISJ. So for X~FGS , G'=Gx_{x } satisfies IFG,SI ( ISI, 

and (4) is false. 
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Proposition 4. Every graph in~3 is also in~4. 

This follows from Theorem 1 and Theorem 3. 

Lemma Let G=(X,Y;E) be a bipartite connected graph. 

Then G is regularizable if and only if 

I rSl > ISl (SEX, S#X), 

I FTI ) ITi (T~Y, T~Y), 

Ixl=IYl#~. 
Proof. This follows immediately from the theorem of Konig, which 

gives a necessary and sufficient condition that for each edge [x,y], 

the subgraph induced by (X-{x})u(Y-{y}) has a perfect matching, that 

is G has a perfect matching containig [x,y]. (The union of all these 

perfect matchings gives a regular multigraph, which shows that G is 

regularizable). Q.E.D. 

THEOREM 4. A graph G is regularizable iff IFSi ) ISl for every stable 
m 

set S, and IFSI=iSl ~ F(FS)=S. 

This follows immediately from this lemma and Theorem 3. 

In [5], we have also shown that the line-graph of an r-uniform 

hypergraph with no vertex of degree 1 and no edge meeting less than r 

other edges is regularizable. An impotant class to be considered is 

the claw-free 9raphs, i.e. the graphs which have no induced subgraphs 

isomorphic to KI, 3 (for instance, the line-graphs). M. Las Vergnas 

[13] and D. Sumner [21] have shown independently that a connected 

claw-free graph with an even number of vertices has a perfect 

matching (and therefore is quasi-regularizable). A claw-free graph is 

not always regularizable, as we can see with the following graph: 

take an even cycle, whose vertices are colored alternately with red 

and blue, and add a few (at least one) triangular chords connecting 

two blue vertices at distance 2. Such a graph is called a C-graph; 

Jaeger and Payan have shown: 

THEOREM 5([12]). A connected claw-free graph G is regularizable if 

and only if G has no pendant vertices and is not a C-graph. 

Proof. It suffices to show that a connected claw-free graph G with no 

pendant vertices and which is not regularizable is a C-graph. 

Thus, G is not bipartite (otherwise, a vertex in one vertex-class 

is adjacent to exactly two vertices in the other class, so G is an 

even cycle, so G is regularizable, a contradiction). 
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So, by Theorem 4, there exists a stable set S with IFSI ( ISl. 

Each vertex in S has at least 2 neighbours in S (otherwise there is 

a pendant vertex), and each vertex in FS has less than 3 neighbours 

in S (otherwise there is an induced KI,3). So the number of edges 

m(S,FS) between S and FS satisfies: 

2~SI ! Zx~ S d(x)= m(S,FS) ! 2~FSI ! 21Sl. 

Hence ISI=IFSl and every vertex in S has exactly two neighbours 

in FS, and every vertex in FS has exactly two neighbours in FS. 

Furthermore, a vertex in FS has no neighbour in X-(SUFS), and since G 

is connected, X=SUFS. 

Since G is not bipartite, GFS has at least one edge e=[x,y]; 

the vertices x and y have a common neighbour z in S (since G is 

claw-free). So G is a C-graph. Q.E.D. 

The same proof shows that a claw-free graph with no pendant 

vertex is quasi-regularizable. So, a claw-free graph with no pendant 

vertex is quasi-regularizable. 

4. Well-covered 9raph 

A graph G is well-covered, or G~7, if G has no isolated 

vertices and if every maximal stable set is also a maximum stable 

set. This class is independant of ~i. For instance, the graph P4 

(elementary chain with four vertices) is well-covered but is not in 

~i; the graph is in ~i but is not well-covered. C 9 

Nevertheless, we shall see that the two classes have similar 

properties. 

graph G is a B,graph, or G~8, if G has no isolated vertices A 

and if each vertex belongs to some maximum stable set. 

Proposition 5. Every well-covered graph is a B-graph. 

(Trivial). 

Proposition 6. Every graph in~2 is a B-graph. 

(Trivial). 

The converse is not true: the graph C 6 is a B-graph, but is not 

in ~2" The characterizations of well-covered graphs and of B-graph 

are difficult problems as quoted by Plummet [16]; Ravindra [19] has 

shown that a 2-connected graph G with no odd cycles of length > 5 is 

a B-graph if and only if G is isomorphic to K3, or to K4, or is a 
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bipartite graph with a perfect matching. 

For a graph G with n vertices, a transversal set is the 

complement of a stable set, and therefore, the cardinality of a 

minimum transversal set is T(G)= n- ~(G). A vertex x is T-critical if 

T(G-x) ! T(G), that is if there exists a maximum stable set S X 

which does not contain x. A graph G whose vertices are all ~-critical 

is said to be T-vertex-critical, or to be in class~ 9. 
l 

Proposition 7. Every B-graph is T-vertex-critical. 

(Trivial). 

8. Every graph in ~ is T-vertex-critical. Proposition 

(Trivial). 

The converse is not true. The graph in FIGURE 1 is in ~9 but 

not in ~8 or in~3. 

W V 

FIGURE i. ~ = 4 

\ -  

FIGURE 2. ~ = 6 FIGURE 3. ~ = 3 
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A T-vertex-critical graph is not necessarily regularizable, as we 

can see with the graph in FIGURE 2; a graph regularizable is not 

necessarily T-vertex-critical, as we can see with the graph 

represented in FIGURE 3. 

However, we shall show thah every T-vertex-critical graph is 

quasi-regularizable° We first need a lemma. 

Lemma. In a graph G, a stable set S is maximum if and only if every 

stable set T disjoint from S can be matched into S. 

Proof. i. Let S be a maximum stable set, and let T be a disjoint 

stable set. 

Let H=(T,S;E) be the bipartite graph defined by the edges having 

one end point in T and the other in S. 

For B ~ T, we have IBI ~ ~FHBI (otherwise, IBI ) IFHBI, and 

BU(S-FHB) would be a stable set with cardinality ) ISl, a 

contradiction). 

Thus, by the theorem of K~nig, there exists a matching between T 

and S saturating all the vertices in T. 

2. Now, assume that every stable set T can be matched into S; let 

B be a maximum stable set, B~S; then T=B-S can be matched into S, and 

therefore into S-B. So, JB-Si ( IS-BI. 

Hence ISl ) IBI, and S is a maximum stable set. Q.E.D. 

THEOREM 6. Every T-vertex-critical graph is quasi-regularizable. 

Proof. Let G be a T-vertex-critical graph; so for every vertex a, 

there exists a maximum stable set T a with a/T a. 

Now, we show that IrSl ~ ISl for every stable set S by induction 

on ISI. 

- if ISl=l, this is trivial. 

- if ISI = p > i, consider a vertex a~S, and a maximum stable set T a 
which does not contain a. By the lemma, S-T a can be matched into 

Ta, and therefore into Ta-S ; also, SNT a can be matched into 

X-(SnTa), by the induction hypothesis (because IS-Ta~ < ISI= p). 

Thus S can be matched into X-S and IFSI ) ISI. Q.E.D. 

Remark that the converse is not true; the graph in FIGURE 3 is 

quasi-regularizable but is not T-vertex-critical (because all the 

maximum stable sets contain a). 

The results of this section can be summarized by the diagram 

shown in FIGURE 4. 

We see that G~4a ~=~ G~n, because the graph in FIGURE 3 is 
d= 
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regularizable and not T-vertex-critical (because of the point a) . 

Also, G= ^ gT' ~8 ' -~'~ ~ 9  but G45'nOt~ to because~5, the graph in FIGURE 2 belongs to 

(e-edge-critical with no 

isolated vertex and no 

isolated edge) II pr" 

# 1 

G~2 
Pr.2 

(well-covered with 

no isolated vertex) 

Pr. 6 

~ Pr. 5 

> 

(B-graph with 

no isolated vertex) 

~ Pr 4 Pr 8 Pr. 7 

(regularizable with no 

bipartite connected 

component) ~ T-vertex-critical 

 regulariza le/ 

G~ 6 
(quasi-regu!arizable) 

FIGURE 4 

5. Case of bi.partite .graphs 

If G is bipartite, we have G~I , G~2, G~3, G~4, and 
the other properties considered in the preceding sections are easier 
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to characterize. 

We have: 

Proposition 9. For a bipartite graph G=(X,Y;E), the following 

properties are equivalent: 

- G is quasi-regularizable, 

- G has a perfect matching, 

- G is a B-graph, 

- G is ~-vertex-critical. 

Proof. If G is quasi-regularizable, then G has a perfect matching by 

Theorem 2 (characterization 3). 

If G has a perfect matching, then X is a minimum transversal set 

(by the K~nig theorem), hence X and Y are both maximum stable sets; 

so G is a B-graph. 

If G is a B-graph, then G is T-vertex-critical, by Proposition 5. 

If G is T-vertex critical, then G is quasi-regularizable, by 

Theorem 6. Q.E.D. 

Proposition i0. (Ravindra [18]). A tree T is well-covered if and only 

if its pendant edges constitute a perfect matching. 

Proof. i. An edge is pendant if it is incident to a vertex of degree 

i. Let G be a graph (not necessarily a tree) whose pendant edges 

constitute a perfect matching M; then the pendant vertices constitute 

a stable set of cardinality n/2, and e(G)= n-T(G) ( n-]M]= n/2. So 

~(G)= n/2. If a stable set S O has less than n/2 elements, there 

exists an edge e~M which does not meet SO, so S 0 plus the pendant 

vertex attached to e is also a stable set. This shows that every 

maximal stable set is also maximum, i.e. G~7. 

2. Now, let T be a well-covered tree. So, T~98 , and since T is 
u 

bipartite, T has a perfect matching M (by Proposition 7 and Theorem 

6). 

Hence, ~(T)= n-T(T)= n-IMI = n/2, and a maximal stable set has 

exactly one point in each edge of M. 

Now, let e=[a,b]~M, and assume that e is not a pendant edge. Then 

there exists two edges [b,b'] and [a,a'] with a'/b', [a',b']IT (since 

T has no cycle). Therefore, the maximal stable set which contains a' 

and b' does not meet {a,b} and cannot be maximum: a contradiction. 

Thus, every edge in M is pendant (and every pendant edge is in M, 

because the matching M is perfect). So T has the required property. 

Q.E.D. 
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Lemma. Let G be a well-covered graph having a perfect matching M such 

that no alternating chain constitute two disjoint odd cycles linked 

by an odd chain. Then for each edge [a,b]~M, the set {a,b}uFaurb 

induces on G a comPlete-bipartite graph. 

Proof. By a theorem of Sterboul [20], if there exists a perfect 

matching of the described kindr then T(G) = ~(G). Hence 

e(G)= n-T(G)= n-~(G)= n/2. 

So, a maximum stable set has exactly one point in each edge of M. 

Let [a,b]~M. If a' is a neighbour of a and b' a neighbour of b, 

then a'~b' (otherwise a maximum stable set containing {a'} cannot 

meet [a,b]). Also, [a',b'] is an edge of G (otherwise a maximum 

stable set containing {a',b'} does not meet [a,b]). 

So {a,b}uraurb induces on G a complete bipartite graph. 

Q.E.D. 

Proposition ii. Let G be a connected regularizable bipartite graph; 

then G is well-covered if and only if G is isomorphic to a complete 

bipartite graph K r,r" 
Proof. Clearly K is well-covered. 

r,r 
Conversely, Let G=(X,Y;E) be a well-covered bipartite graph. If G 

is not isomorphic to a complete-bipartite graph Kr,s, then there 

exists a x~X and a y~Y whose distance d(x,y) is larger than i, so 

there exists a set {x,b,a,y} which induces a P4" The edge [a,b] 

belongs to some perfect matching M (since a regular bipartite 

multigraph has the edge-coloring-property). Applying the lemma with 

the edge [a,b], we get a contradiction. 

Thus G is isomorphic to Kr,s, and since G is regularizable, 

IrsI > IsI for all stable set S, hence r=s. Q.E.D. 
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