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Abstract. In this paper, we investigate problems which require O(n k) 

time, for each interger k, where n is the size of input. Also, we pre- 

sent a number of problems which require exponential time. 

1. Introduction 

A number of complete problems in various complexity classes are 

reported. Jones and Laaser [5] showed some familiar problems which 

are complete in deterministic polynomial time with respect to ~9g spac9 

reducibility. A great number of familiar problems have been reported 

which are complete in NP (nondeterministic polynomial time) [i], [3], 

[6]. Even and Tarjan [4] considered generalized Hex and showed that 

the problem to determine who wins the game if each player plays per- 

fectly is complete in polynomial space. Schaefer [9] derived some two- 

person games from NP complete problems which are complete in polynomial 

space. However compelling the circumstantial evidence may be, no one 

has yet been able to prove that NP complete or polynomial space complete 

problems are actually intractable, and also there are few authors to 

distinguish the degree of the polynomial when the time complexity of a 

given algorithm is polynomial. There is general agreement that if prob- 

lems have no polynomial time algorithm they are intractable. Some prob- 

lems, however, in the class P are not always tractable. In this point 

of view, it is significant to find the concrete degree of the polynomial 

which represent the time complexity of a problem. 

In this paper, a technique to obtain a lower bound of the time 
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complexity of problems is introduced. We consider k-pebble games for 

each integer k, which involves moving pebbles according to certain rules, 

initially k pebbles are placed on certain places. The goal of the 

game is to put a pebble on a particular place. We show that the problem 

to determine whether or not the first player has a forced win in a (2k+l)- 

pebble game requires O(n k) time. A rough discussion such as to deter- 

mine whether or not a given problem belongs to NP is independent of 

the machine model and the way of defining the size of problems, since 

any of the commonly used machine models can be simulated by any other 

with only a polynomial loss in running time and no matter what criteria 

the size is defined, they differ from each other by polynomial order. 

However, in precise discussion, for example, in the discussion whether 

the computation of a problem requires O(n k) time or O(n k+l) time, 

the complexity heavily depends on machine models and the definition of 

the size of problems. 

From these points, we introduce a somewhat stronger notion of re- 

ducibility. Using this reducibility, we show that the game, so called 

"Cat and 2k+2 Mice problem" requires O(n k) time. The basic results 

are also applied to show that certain problems are complete in exponen- 

tial time. We consider a game, so called "Chinese checkers game," and 

a game similar to the "Towers of Hanoi." It has been shown that the 

winning strategy problems of these games are exponential time complete. 

2. Preliminaries 

In this section, some fundamental notions are introduced for the 

study of polynomial time computability. 

Definition 2.1 A two-person game G is a tripple G = (X,E,s), 

where: 

(i) X is a finite set, an e!enent of X is called a position, 

(2) E is a subset of X × X, an element of E is called a rule, we 

sometimes write X ÷ y for an element (x,y) of E, 

(3) s, in X, is called the starting POsition. 

At the beginning of the game, the first player is in position s. 

If (x,y) ~ E for any x, y ~ X, then a player in his turn may move the 

position x to the position y. The winner is the player who makes the 

other player unable to move. 
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(i) 

(2) 

(3) 

(4) 

A pebble game of rank k 

Definition 2.2 A pebble game is a quadruple G = (X,R,S,t),where: 

X is a finite set of nodes, the number of node is called the order 

of G, 

R c {(x,y,z) Ix,y,z s X,x~y,y~z,z~x} is called a set of rules° 

S is a subset of X; the number of nodes in S is called the rank 

of G, 

t is a node in X, called the terminal node. 

is simply called k-pebble game. 

A pebble game is played by two plyers, P1 and P2" who alternatively 

move pebbles on the pebble game, with P1 playing first. At the beginning 

of the pebble game, pebbles are placed on all nodes of S. If (x,y,z) 

s R and pebbles are placed on x,y but not on z, then we can move a 

pebble from x to z. The winner is the player who puts a pebble on the 

terminal node or who makes the other player unable to move. 

More formally the two-person game represented by a pebble game is 

stated as follows. 

Definition 2.3 A two-person game induced from a pebble gam e G = 

(X,R,S,t) is a triple G = (X,E,S), where: 

(i) X = {AIA c X, #(A) = #(S)}, #(A) denotes the number of elements 

in A, 

(2) E = {(A,B)[A,B e X, t ~ A, (x,y,z) s R, x,y e A, z ~ A, 

B = (A- {x}) U {Z}}. 

Throughout this paper, by Turing machines, we mean a single tape 

Turing machine. 

Definition 2.4 We denote by N the set of all natural numbers. 

A problem is a triple (E,L,o), where E is an alphabet, L is a subset 

of Z*, and o is a computable function from ~* to N. When 

and o are understood, we simply write L instead of (E,L,o). The 

function ~ is called the size function of L, and for each w ~ Z*, 

o(w) is the size of w. 

Definition 2.5 Let L Z* be an arbitrary problem. Suppose that 

is the size function associated with L. Then L is said to be 

T(n) time computable with respect to the size iff there exists a Turing 

machine such that for any input x, the computation terminates within 

T(~(x)) steps. We say that a problem L requires T(n) time iff for 

any T', if i~f T'(n)/T(n) = 0 then L can not be solved within T'(n) 

time. In general, we write T' << T if inf T' (n)/T(n) = 0 for two 
n 
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functions T and T'. 

A Turing machine M is said to be T(n) time bounded with respect 

to the size 0 iff for any input x, the computation terminates within 

T(o(x)) steps. When the size is defined to be the length of inputs, i. 

e., ~(x) = Ixl, we simply say that M is T(n) time bounded. 

Definition 2.6 Let T and Z be functions from N to N, such 

that for any m, n e N, if m < n then Z(m) < Z(n). Let L 1 and L 2 

be problems. Let ~i and o 2 be sizes of L 1 and L2, respectively. 

Then L 1 is (T,Z)-reducible iff there exists a function f from Z~ 

to Z~ which satisfies the following: 

(i) For any x £ Z~, x e L 1 iff f(x) c L2, 

(2) There exists a Turing machine which computes the function f, and 

for any x, the computation of f terminates within T(Ol(X)) steps, 

(3) For any x ~ ~, o2(f(x)) < Z(Ol(X). 

Lemma 2.1 Let L 1 and L 2 be problems with the size function 

o I and 02, respectively. Suppose that L 1 is (T,Z)-reducible to L 2 

and T << T I. If the computation of L 1 requires T 1 time with respect 
-i 

to the size a I, then the computation of L 2 requires TI.Z time 

with respect to the size 02, where TI-Z-I stands for the composition 

of the function T 1 and the inverse function Z -I. 

3. Problems which require O(n k) time. 

In this section we consider two problems which require O(n k) time. 

Definition 3.1 For each integer k, k-pebble game problem is the 

problem when a k-pebble game is played by two persons to determine 

whether the first player has a wining strategy, that is, a way to win the 

game. In the k-pebble game problem, the size is defined to be the number 

of nodes. 

Theorem 3.1 The 2k+l-pebble game problem requires O(n k) time. 

The proof is done by showing that any O(n k) time computable prob- 

lem is (O(n log n), O(n))-reducible to the 2k+l pebble game problem. 

The outline of the proof is as follows: From a given O(n k) time bounded 

Turing machine M and an input x of length n, we construct 2k+l 

pebble game such that M accepts x if and only if the first player 
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has a forced win in the 2k+l pebble game, and furthermore, the con- 

struction can be performed under (O(n log n), 0(n))-reducibility. 

Definition 3.2 A cat and mice game is a 5-tuple G = (X,E,S,a,t) 

where: X is a finite set of nodes, E c X × X is the set of edges, 

S is a subset of X, and a and t are elements of X-S. The size 

of G is defined to be the number of nodes. If the number of elements 

of S is k, then G is called a cat and k-mice game. The game is 

played on the directed graph (X,E). At the beginning of the game, mice 

occupy all nodes of S, and the cat occupies the node a. The cat and 

one of the mice alternate moves according to a single edge of the graph 

with the cat moving first. The cat wins if the cat and one of the mice 

occupy the same node. The mice wins if one of the mice reaches the 

goal t before being caught. 

Theorem 3.2 The cat and 2k+2 mice game problem requires O(n k) 

time. 

The proof is done by showing that the 2k+l pebble game problem 

is (O(n log n), O(n))-reducible to the cat and 2k+2 mice problem. 

4. Problems which requier exponential time. 

In this secrion, the basic results are applied to show that certain 

games are exponential time complete. From Theorems 3.1 and 3.2, it 

follows the followings. 

Theorem 4.1 (i) The two-person pebble game problem requires expo- 

nential time. (ii) The cat and mice problem requires exponential time. 

Definition 4.1 A Chinese checkers game is G = (N,E,W,B,t), where 

N is a finite set of nodes, E c N 2 is the set of edges, W and B 

are subsets of N such that W n B = ~, and t is an element of N. 

A Chinese checkers game G is a game played on the graph (N,E) 

between two players, White and Black. White moves first. Initially, 

White stones are placed on each node of W and black stones are placed 

on each node of B. Suppose that (x,y) and (y,z) are edges of E. 

If there are a white stone on x, a black stone on y and no sto~e on 

z, then White in his turn can move the stone from x to z. Similarly, 

if a black stone is on x, a white stone is on y and no stone is on z, 
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then Black can move the black stone from x to z. The player wins 

if after his move he has a stone on his color on the node t or the 

other player cannot move any stone of his color. 

Theorem 4.2 The problem to determine whether there is a winning 

strategy in a Chinese checkers game require exponential time. 

Definition 4.2 Let Z be the set of integers. A peg game is 

G = (V,m,n), where m, n s N and V is a finite subset of Z n such 

that (Vl,--',v n) c V implies Vl+V2+..-+v n = 0. 

A peg game can be considered as the game described as follows. 

There are n pegs fixed upright of a board, and m disks. Each disk 

has a hole in its center. An element y = (yl,-..,yn) of N n repre- 

sents that Yi disks are threaded on the i-th peg, i = i, 2,''', n. 

A rule v = (Vl,---,Vn) ~ V means that for each i, if v i => 0 then 

< 0 we remove-v. we put v i disks on the i-th peg, and if v i l disks 

from the i-th peg. Initially, all disks are threaded on the first 

peg. The object of the game is to transfer all disks to the n-th peg. 

In the two-person game, when two players althernatively move disks by 

the rules, the player wins if after his move all disks are on the n-th 

peg. 

Theorem 4.3 A two-person peg game problem requir~ exponential time. 
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