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Abstract. Several intersection graphs such as curves-in-the-plane 

graphs, circular-arc graphs, chordal graphs and interval graphs are 

reviewed, especially on their recognition algorithms. In this con- 

nection graph realization problem is mentioned. 

i. Introduction 

This report summarizes some already known results on certain inter- 

section graphs. A finite undirected graph G=(V,E) is an intersection 

graph on intersection model M=(S,2) when there is a i-i correspondence 

f between V and ~ such that (u,v) e E iff f(u) nf(v)~, where2is a col- 

lection of subsets of S. Trivially, any graph is an intersection graph 

on some appropriate model M [i]. In practical applications, graphs 

having simple intersection models such as chordal graphs and interval 

graphs etc. are of interest [2][3]. 

In the following, several intersection graphs having particular 

models are considered. They are curves-in-the-plane, chordal, path, 

interval, circular-arc and circie graphs. Relations between them are 

mentioned and recognition algorithms and computational complexity of 

several problems on them are sketched. Connection between path graphs 

and the graph realization problem is also mentioned. 

2. Curves-in-the-plane graphs and circle graphs 

Without loss of generality, the set S in intersection model M=(S,~) 

can be taken to be a plane: Any graph is an intersection graph on the 

plane. Therefore it is necessary to restrict the family of subsets to 

have an appropriate property for the purpose of defining a proper sub- 

class of graphs. When every S'e~is a connected piece in the plane, the 
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corresponding intersection graphs seem to be a proper subclass of all 

graphs. In [4], the class of intersection graphs of curves in the plane 

is introduced. 

Definition. Let V be a set of (non self-intersecting) curves in the 

plane. The corresponding curves-in-the-plane graph has V as the vertex 

set and two vertices are connected by an edge iff two corresponding 

curves intersect in the plane. Similarly straight-lines-in-the-plane 

graph is defined as an intersection graph of straight line segments in 

the plane. 

The following facts are reported. 

Theorem 1 General graphs ~ curves-in-the-plane graphs ~ straight-lines- 

in-the-plane graphs [4]. 

Fig.l shows an example which is not a curves-in-the-plane graph, as 

underlying K 5 is not planar. 

Fig.1 Fig. 2 

Theorem 2 Every planar graph is a curves-in-the-plane graph [4]. 

(see Fig. 2) 

Theorem 3 The problem of finding the chromatic number for straight- 

lines-in-the-plane graph is NP-complete [4]. 

The class of circle graphs is a restricted class of straight-lines- 

in-the-plane graphs. 

Definition A circle graph is an intersection graph of straight line 

segments in the circle such that two endpoints of each line segment are 

on the circle. 

Fig.3 

Complexity of coloring a circle graph is reported. 

Theorem 4 Determining the chromatic number of circle graphs is NP- 

complete [6]. 

No recognition algorithms for curves-in-the-plane graphs, straight- 

lines-in-the-plane graphs and circle graphs have been given so far. 

3. Circular-arc graphs 



173 

Definition A graph is a circular-arc graph iff it is the intersection 

graph of arcs on a circle. 

Pig.4 

The class of circular-arc graphs is a proper superset of interval 

graphs, Though there exists a polynomial time algorithm for determin- 

ing the chromatic number of interval graphs, the same problem for circu- 

lar-arc graphs seems intractable. There is reported the following. 

Theorem 5 Determining the chromatic number for circular-arc graphs 

is NP-complete [6]. 

Unlike chordal graphs, the number of dominant cliques of a circular- 

arc graph or a circle graph (which is a curves-in-the-plane graph) can 

grow exponentially. Fig.5 shows an example of such a graph [7] [8]. 

It is a complete n-partite graph of 2n vertices which has 2 n dominant 

cliques. 
~ ) ~  circle 

graph ~ m o d e l  

Fig.5 

circular-arc 
model 

Because of the above fact, efficient recognition algorithms for 

circle or circular-arc graphs, if exist, cannot use the set of all domi- 

nant cliques. This is essentially different from the recognition algo- 

rithm for interval graphs which makes use of dominant cliques effec~vely. 

An efficient recognition algorithm for circular-arc graphs which searches 

for an appropriate order of vertices is presented in [8]. 

4. Subtree graphs (chordal graphs) 

In sections 4-6, intersection model on a tree is treated, i.e., the 

case where the set S in model M is a tree. Also for this case, an 

arbitrary undirected graph can be an intersection graph if disconnected 

pieces for S'e ~are allowed. Restricting the, sets in'to be connected 

leads to the following definition. 

Definition A graph is a subtree graph iff it is the intersection graph 

of subtrees in a tree. (a tree or a subtree is thought to be connected.) 

Related to the Gaussian elimination pivot ordering of symmetric 

matrices, chordal graphs are known. 
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f 

Fig.6 

Definition A graph is a chordal graph iff every cycle with more than 

3 edges has a chord. 

In [9], it is proved that the above two classes of graphs coincide 

with each other. 

Theorem 6 A graph is a subtree graph iff it is a chordal graph [9]. 

Any subtree graph has a, so called, rooted tree model as follows. 

Definition A model M=(S,2) for a subtree graph is a rooted tree model 

if i) the underlying tree S has a root on the left and stretches to 

the right, i.e., any branch point of the tree S has only one 

edge incident from the left 

~) the function x(v) is one to one where x(v) is defined as follows. 

Let l(v) be the point on the tree S which is the leftmost 

point of the subtree corresponding to vertex v. (l(v) is well 

defined because of the property of tree S). x(v) is defined 

as the x-coordinate of l(v) . 

Fig.7 x(v) 
Fig.8 

Rooted tree models are not restrictive. 

Lemma Let G be any subtree graph and v I be any vertex of Go G has a 

rooted tree model for which X(Vl) is the smallest value among {x(v) ~EV- 

There is a recognition algorithm for chordal graphs which is based 

on LBFS [i0]. It can be interpreted on the above mentioned intersection 

models as follows. First, a chordal order can be defined on a rooted 

tree model. 

Definition v n, Vn_ 1 ..... v I is a chordal order if,for any i (l~i~n) , 

v I. is a simplicial vertex for the section graph G({vi_ l,...,vl}) , that 

is, any distinct vertices u,v in {weV ; weAdj(vi)n{vi_ 1 .... Vl}} are 

connected by an edge. 

Theorem 7 v n, Vn_l,...,v I is a chordal order of vertices iff X(Vn)> 
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X(Vn_l)>...>x(v I) for some rooted tree model. 

This is because subtrees corresponding to u and v must pass the point 

l(v i) in the corresponding rooted tree model. (see Fig.9) 

u l(vi) " ~ v .  

Fig.9 

A recognition algorithm for subtree graphs can be divised which 

tries to construct rooted tree models from the left to the right, in 

particular, left to right order of l(v) points. Any vertex, say Vl, 

can be put at the leftmost position on the tree S. The detail of the 

form of the subtree v I and tree S is not determined at this stage. 0nly 

the point l(v I) is fixed. Consider three vertices u,v,w such that u,v, 

weAdj (v I) , (u,v) ~ E, (u,w) e E and (u,w) ~ E. 

(a) (b) 
Fig. ii 

Fig. i0 

If (W,Vl)~E , then there exists no intersection model for such a graph 

and the construction of a model stops. Now assume (W,Vl) eE. Suppose 

w is to be located on the tree after putting u and v. Then x(w) must 

be smaller than x(u) or x(v). Thus putting Vl,U,V,W in such a sequence 

destroyes left-to-right-rule. This suggests putting vertices in lexi- 

cographic breadth first order. Actually, the following theorem is given 

which is an intersection model interpretation of LBFS recognition 

algorithm for chordal graphs [I0]. 

Theorem 8 A rooted tree model for a subtree graph can be constructed 

by any LBFS sequencing. 

LBFS on a graph can be performed in linear time, so the recognition 

algorithm for chordal graphs [i0]. 

For subtree graphs, the number of dominant cliques is not greater 

than the number of vertices. This can be used in recognition algorithms 

for interval graphs and path graphs in the following sections, though 

it is immaterial for subtree graph recognition. 

Unlike the case for circular-arc graphs, the determination of chro- 

matic number of a chordal graph can be performed in polynomial time [ii]. 
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5. Path graphs and graph realization problem 

Definition A path graph is an intersection graph of simple paths in 

a tree. 

The class of path graphs is a subclass of subtree graphs, and is a 

superclass of interval graphs. 

The above inclusion is strict as is seen from Fig. 12. 

(a) (b) 
Fig.12 

No fast recognition algorithm for path graphs seems to be reported. 

A path graph is a subtree graph and so the set of dominant cliques 

can be obtained in linear time. As in the case for interval graphs, 

recognition for path graphs can be reduced to a placement problem of 

dominant cliques. 

Here a placement problem on a tree is defined. 

Definition (Linear placement on a tree) 

Given a set of n points S:{Sl, .... s n} and a familyJ of subsets Pi 

of S (i=l ..... k), place Sl,...,s n on an appropriate tree so that elements 

of every Pi appear consecutively on a path on the tree. 

Fig. 13 

s : {1,2,3,4,5,6} 
Pl = {1,2,4,5} 
p2= {1,2,3} 
P3= {2,3,4,6) 
P4 = {5,6) 

Now the recognition for path graphs can be stated using the above 

definition. 

Theorem 9 A subtree graph G is a path graph iff there is a solution 

for linear placement on a tree problem for which S is the set of dominant 

cliques and Pi is the set of dominant cliques including vertex v i, such 

that full branch point constraint is satisfied. Here full branch point 

constraint requires that every branch point of the tree has a point 

S.E2. 
3 

The last constraint is needed because each S. represents a dominant 
1 

clique and {S i} is the set of all dominant cliques. 

There is a similar placement problem in graph realization problem. 
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Definition (Graph realization problem) 

Given a 0-i matrix K, find a graph which has K as the principal 

part of the fundamental circuit matrix. In a fundamental circuit matrix 

[I:K], each row corresponds to a circuit, and each column to an edge. 

This problem is equivalent to the next placement problem: Place 

columns of K on a tree so that for every row r, R(r) (the set of columns 

whose r-th row is I) appears consecutively on a simple path on the tree. 

Every branch point must not have a column. 

The last constraint is due to the fact that every column represents 

an edge. (see Fig.14) 

1234 

i 0 -- " : 

(b) (c) (a) 
Fig. 14 

So to say, graph realization problem is a linear placement on a tree 

problem under empty branch point constraint. 

Thus, path graph recognition and graph realization problem are dif- 

ferent only in the constraints on the branch points. 

Though there seems no simple reduction between these two problems, 

the algorithm for graph realization problem in [15][16] seems to be 

efficiently used for path graph recognition. 

In section 4, it is shown that a graph is a subtree graph iff it 

has no chordless cycle (with more than 3 edges). This is a kind of 

forbidden graph formulation of graphs. Such a formulation will be given 

for interval graphs in the following section. 

Graph realization problem is known to have such a kind of formulation. 

However, it seems that no forbidden graph formulation has been given 

for path graphs. 

6. Interval graphs 

An interval graph is a subtree graph which has a intersection model 

whose underlying tree is a line. (i.e. without branch point) 

Fig.15 
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As in subtree graphs, l(v) and x(v) of the model define an ordering 

of vertices [12]. Using such an ordering, a recognition algorithm for 

interval graphs can be made [12][13], though no linear time algorithm 

has been obtained in this direction yet. 

Linear time test for interval graphs now available runs in two steps 

[14]: 

1 Perform chordal graph test and obtain a vertex vs. dominant 

clique matrix. 

2 Test the matrix obtained above for consecutive ones property 

using PQ tree algorithms. 

Step 1 can be performed using LBFS and step 2 can be performed in linear 

time using a sophisticated data structure called PQ trees. 

Next is a structure theorem for interval graphs [22]. 

Definition Three vertices al,a2,a3, of a graph is called an aster- 

oidal triple if there exist three paths Wl,W2,W 3 such that for i=i,2,3, 

(i) w i connects the two vertices aj (j~i) (~) a iis not adjacent to 

any vertices in w i- 

Theorem i0 A graph is an interval graph iff it is chordal and has 

no asteroidal triple. 

In [22], interval graphs are characterized by five kinds of forbid- 

den graphs. No linear time recognition algorithm is given using such 

a structure yet. 

7. Completion problems and isomorphism 

Completion problem is to obtain a minimum number of edges to be 

added so that the augmented graph becomes to have a specified property. 

Completion problems are studied for several intersection graphs mentioned 

before. 

Theorem ii Completion problems for interval graphs and path graphs 

are NP-complete [6] [19] [20] . 

Whether other completion problems (for chordal graphs, for circular- 

arc graphs and for curves-in-the-plane graphs) are NP-complete remains 

unsolved. 

For isomorphism test, the next results are known. 

Theorem 12 Isomorphism test for general graphs, isomorphism test for 

chordal graphs and isomorphism test for path graphs are polynomially 

reducible to one another [6] [21]. 

Theorem 13 There is a polynomial time isomorphism test for interval 

graphs [21]. 
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8. Relations among the classes 

Several relations among the various classes are known. 

Theorem 14 

g r a p h s  ~ c u r v e s - i n - t h e - p l a n e  ~ s t r a i g h t - l i n e s - i n - t h e - p l a n e  £ c i r c l e  
= = 

IIU 
IIU 

c i r c u l a r - a r c  
~ I n t e r v a l  

s u b t r e e ( c h o r d a l )  ~ p a t h  ~ 

Some explanation would be necessary. In the definition of curves- 

in-the-plane graphs, each curve has no self-intersecting point and two 

curves have only finite number of intersecting points. This seems 

different from the definition of other classes, for example a circular- 

arc model may have a circle as a subset and the number of intersecting 

points may be infinite. 

O v 
(a) Fig.16 ~" (b) 

However these differences are immaterial as is seen below. For a circle 

in circular-arc model, cutting at some appropriate point does not change 

the intersection graph. Then draw the model on the plane as in fig.17 

(b) so that each arc does not intersect the others. (this is the usual 

illustration for circular-arc model, though the meaning is quite differ- 

ent). Now modify each circle to obtain necessary intersection by zig- 

zagging sufficiently. 

0 ' 0  O 
(a) (b) 

Fig. 17 

( c)> ~ 

The same configuration applies to subtree graphs. In this case 

each subtree is transformed once to a fringing curve as in fig.18(b) 

(just as in [4]) and then modified to have zigzags to intersect neces- 

sary curves. 
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Fig.18 

9. Conclusion 

Fast recognition algorithms are known for several intersection 

graphs. However many completion problems are still open. 

The author wishes to thank Professor T. Fujisawa for his helpful 

suggestion and encouragement. 
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