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Abstract. This paper describes an efficient algorithm to find a Hamiltonian circuit in an 

arbitrary 4-connected maximal planar graph. The algorithm is based on our simlplified version 

of Whitney's proof of his theorem: every 4-connected maximal planar graph has a Hamiltonian 

circuit. 

1. Introduction 

The Hamiltonian circuit problem is one of the most popular NP-eomplete problems, and 

remains NP-complete even if we restrict ourselves to a class of (3-connected cubic) planar 

graphs [4,8]. Therefore, there seems to be no polynomial-time algorithm for the Hamiltonian 

circuit problem. However, for (nontrivial) certain classes of restricted graphs, there exist 

polynomial-time algorithms [2,3,5]. In fact, employing the proof technique used by Tutte [9], 

Gouyou-Beauchamps has given an O(n 3) time algorithm for finding a Hamiltonian circuit in a 

4-connected planar graph G, where n is the number of vertices of G [5]. Although such a graph 

G always has a Hamiltonian circuit [9 ], it is not an easy matter to find actually a Hamiltonian 

circuit of G. However, for a little more restricted class of graphs, i.e., the class of 

4-connected maximal planar graphs, there may be an efficient algorithm. One can easily design 

an O(n 2) time algorithm to find a Hamiltonian circuit in a 4-connected maximal planar graph 

G with n vertices, entirely based on Whitney's proof of his theorem [10]. 

In this paper, we present an efficient algorithm for the problem, based on our simplified 

version of Whitney's proof of his result. We employ "divide and conqure" and some more 

techniques in the algorithm. The computational complexity of our algorithm is linear, so 

optimal within a constant factor. 
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2. Preliminaries. 

We first give some of the graph theoretic concepts needed to understand our algorithm. We 

use definitions similar to those found in any text on graph theory, e.g.,[6]. A graph G--(V,E) 

consists of a set V of vertices and a set E of edges. Throughout this paper, n and m denote the 

number of vertices and edges of G, i.e., n = iVl and m=IEl. Each edge is an unordered pair (v,w) 

of distinct vertices. If (v,w) is an edge, v and w are adjacent and (v,w) is incident to both v and 

w. A walk of length k with endvertices v,w is a sequence v=v0,vl,v2,...,Vk=W such 

that (Vi_l,Vi) is an edge for l~ i~ko  If all the vertices v0,vl,v2,...,Vk_ 1 are distinct, 

the walk is a path. If v=w the path is a circuit. A path is sometimes referred as the vertex set. 

A circuit of length two (or three) is called a 2-circuit (or triangle). A path vi,vi+l,...,v j 

in the circuit R=v0,vl,v2,...,Vk_iV 0 is called an ar__~c of R, and denoted by 

R ~vi,vj] or R(Vi_rvj+l ). A chord of a circuit R=v0,vl,v2,...,Vk_lV 0 is an 

edge (vi,v j) of G such that Li-jl~ i (mod k), that is, an edge joining nonconsecutive vertices 

v i and vj on R. A Hamiltonian circuit (path) of a graph G is a circuit (path) containing all 

vertices of G. A graph GI=(VI,E 1) is a subgraph of a graph G=(V,E) if VI~-V and 

EI~-E. If EI=E •{(v,w)Iv,we V1} , G I is an induced subgraph of G. The induced subgraph 

G 1 is obtained from G by removing vertices in V-V1, and denoted by GI--G-(V-V1). A 

graph G is connected if any two vertices of G are joined by a path. The connected components 

of a graph G are its maximal connected subgraphs. A cutvertex of a graph is a vertex whose 

removal increases the number of connected components. A graph G is (k+l)-connected if the 

removal of any k or fewer vertices of G results in a connected graph. The blocks of a graph are 

its maximal 2-connected subgraphs. A graph is planar if it can be embedded in the plane so that 

its edges intersect only at their endvertices. A plane graph is a planar graph which is embedded 

in the plane. A plane graph divides the plane into connected regions called faces. The 

unbounded region is called the exterior face, and all the others are called interior faces. Each 

face of a 2-connected plane graph G is bounded by a curve corresponding to a circuit of G, 

called boundary of the face. We shall sometimes not distinguish between a face and a 

boundary. A maximal planar graph is a planar graph to which no edge can be added without 

losing planarity. Note that every face of a maximal planar graph G with n(~ 3) vertices is a 

triangle. A triangle of a plane graph G is said to be a separating triangle if it is not a face of 

G. Refer to [1,6] for all undefined terms. 

Next, introducing Whitney's condition, we describe Whitney's lemma used to establish his 

theorem. 

Let G=(V,E) be a 2-connected plane graph with the exterior face R. Let A and B be two 

distinct vertices on R. If these G, R, A and B together satisfy the following conditions (W1) and 

(W2) (called Whiteney's condition, or for short Condition (W)), then we say that (G,R,A,B) 

satisfies Condition (W): 

(W1) All interior faces of G are triangles, and all triangles are faces of G; 

(W2) Either 

(W2a) R is divided into two ares R 1 = R~A,BJ = a 0 a I ... a r and R 2 = RC B,AJ = b 0 b I ... b s 
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(a 0 = b s = A, a r = b 0 = B), and there are no chords of R joining two vertices on R i 

(i<=i<=2), or 

(W2b) R is divided into three arcs RI=R[A,BJ=a0a 1 . . a  r ,  R2=R[B,C]=b0b l . - .b  s 

and R3=R[C,A]=C0el...ct for some vertex C on R(B,A) (a0=ct=A, ar=b0=B, 

b s = e 0 = C), and there are no chords of R joining two vertices on R i (i<=i_<-3). 

We sometimes say "G satisfies Condition (W)" instead of "(G,R,A,B) satisfies Condition (W)" 

if there is no confusion. It should be noted that the exterior face of K 2 (the complete graph 

of two vertices) is a circuit of length two under our definition although it is not a circuit under 

~qlitneyrs definition. Thus K 2 satisfies Condition (W), since K 2 has no interior faces. This 

observation can greatly simplify the proof of the following Whiteney's lemma, from which his 

theorem immediately follows. 

Lemma 1. [10j Let G be a 2-connected plane graph with the exterior face R, and let A and 

B be two distinct vertices of R. If (G,R,A,B) satisfies Condition (W), then G has a Hamiltonian 

path connecting A and B. 

Based on the proof of Whitney's lemma, one can easily design an O(n 2) algorithm for 

finding a Hamiltonian circuit in a 4-connected maximal planar graph G with n vertices. In order 

to design a linear algorithm, we now introduce Condition (X)~ which is the same as Condition (W) 

except for Condition (W2b) above being replaced with the following Condition (X3): 

(X3) R is divided into three arcs R 1 = R[A,B] = a 0 a I ... ar, R 2 = RIB,C]= b 0 b I ... b s and 

R3=R[C,A]=C0Cl...c t for some vertex C onR(B,A) (a0=et=A, ar=b0=B , bs= 

c O =C), and there are no chords of R joining two vertices on R i (I<= i-_3). Moreover, 

there exists either chord (bs_l, c k) or (Cl, bj). 

Remark I. Whenever (G,R,A,B) satisfies Condition (W), we can choose some vertex as C so 

that G may satisfy Condition (X) (sometimes C may disappear) by scanning vertices on R 3 

from C to A or vertices on R 2 from C to B. If (G,R,A,B) satisfies Condition (X), then it 

clearly satisfies Condition C~'q) and no chord of R joins C and other vertex ( see Fig. 1). 

a I a2 a 3 

a0=Ac21@~1~B=a4=b0 

Cl C b2 

Fig. 1. A plane graph G satisfying Condition (W). If one take e I or b 2 as C, then G 

satisfies Condition (X), since there is a chord (c2,bl). 
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We now obtain the following lemma. 

Lemma 2. Let G be a 2-connected plane graph with the exterior face R, and let A and B be 

two distinct vertices of R. If (G,R,A,B) satisfies Condition (X), then G has a Hamiltonian path 

connecting A and B. 

3. An outline of the algorithm. 

This section sketches the idea behind our algorithm. We first apply the linear planar 

embedding algorithm [7] in order to embed a given planar graph in the plane. Thus we can 

assume that a 4-connected maximal plane graph G=(V,E) with the exterior face R=1,2,3,1 is 

given, where I, 2 and 3 are vertices of G. Clearly (G,R,I,2) satisfies Condition (X), so that G 

has a Hamiltonian path connecting vertices 1 and 2 by Lemma 2. Thus we can easily obtain a 

Hamiltonian circuit by combining the Hamiltonian path and edge (1,2). So we may consider only 

the algorithm to find a Hamiltonian path connecting A and B for a graph G such that (G,R,A,B) 

satisfies Condition (X). We add one more definition. 

Let G be a 2-connected plane graph such that (G,R,A,B) satisfies Condition(X). If a 

subgraph G' of G satisfies the following conditions (AI)-(A5), then we say that G' satisfies 

Condition (A): 

(A1) G' is a connected spanning subgraph of G; 

(A2) G' consists of g blocks GI, G2, ..., Gg (g>2) with (g-l) cutvertices Xl, 

x2, ..., Xg_l , where each xf ( l~f~g-1) belongs to exactly two blocks Gf and 

Gf+l; 
(A3) Neither A nor B is a cutvertex of G'; 

(A4) AisavertexofG l and B is a vertex of Gg; and 

(A5) Let x0=A and Xg=B, and let Qf (l=<f ~g) be the exterior face of the plane 

subgraph Gf of G. Then each (Gf, Qf, xf, xf_ I) (l_---f~g) satisfies Condition 

(W) (see Fig. 2). 

x I x. x~ ~ x~ x 
..... .... 

X =B 
g 

Fig. 2. Graph G' satisfying Condition(A), where each block Gf (l <_ f~=g) satisfies 

Condition (W). 

Our Hamiltonian path algorithm now can be outlined as follows: 

First delete one or more edges from G so that the resulting graph G' satisfies Condition(A); 
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next for each Gf (l_-<f_-<g) choose C appropriately so that (Gf, Qf, xf, xf_ 1) may satisfy 

Condition(X); then obtain a Hamiltonian path H(Gf, xf, xf_ 1) connecting xf and xf_ 1 

by recursively applying the algorithm for each Gf (l<f<__g); and finally obtain a Hamiltonian 

path H(G,A,B) by combining all H(Gf, xf, xf_l)'S. In Fig. 3 below is an outline of the 

algorithm written by Pidgin ALGOL Ill .  

procedure HPATH(G,R,A,B): 
~ comment an outline of the algorithm to find a Hamiltonian path in G=(V,E) connecting 
A and B such that (G,R,A,B) satisfies Condition (X). The set of edges marked by the 
procedure is a Hamiltonian path of G connecting A and B; 

i if {V{=2 then (A,B) is a Hamiltonian path of G connecting A and B, so mark (A,B) 
else begin 

2 - -  delete appropriate edges from G so that the resulting graph G' satisfies Condition (A); 
3 for each block Gf of G' do 

- -beg in  comment (Gf,QT, xf,xf_ I) satisfies Condition (W); 
4 choose C appropriately so that (Gf,Qf,xf,xf_ 1) may satisfy Condition (X); 
5 HPATH(Gf,Qf,xf,xf_ I) 

end 
end 

end; Fig. 3 An outline of the algorithm. 

Remark 2. We can always execute line 2 because (G,R,A,B) satisfies Condition (X) (we 

present in Section 4 a method to determine which edges are to be deleted). Noting Remark 1 

we can always execute lines 3-5. Thus it is easy to show, by induction on the number of edges 

of G, that the algorithm correctly finds a Hamiltonian path of G, because G' satisfies Condition 

(A). 

In order to make it easy to analize the time complexity of the procedure HPATH, we 

define an execution tree. 

An execution tree TR(G,R,A,B) for the procedure HPATH(G,R,A,B) is recursively defined 

as follows: 

(i) TR(G,R,A,B) is a rooted tree whose root is (G,R,A,B); 

(ii)If{V{=2 then (G,R,A,B) has no sons. Otherwise the (Gf, Rf, xf, xf_ I) is the 

fth left son of (G,R,A,B) and is the root of the execution tree TR(Gf, Rf, xf, xf_l) , 

where Gf is the fth block of G' obtained from G by the execution of line 2. 

Let V(G) denote the vertex set of a graph G. Let EX(G,R,A,B) denote the set of vertices 

of G which newly appear on the exterior face of G'. Let CV(G,R,A,B) denote the set of 

vertices of G which newly become cutvertices of G'. Let (F, RF, AF, B F) and 

(H, RH, AH, B H) be two distinct vertices of the execution tree TR(G,R,A,B). It is clear 

that if (H,RH,AH,B H) is neither a descendant nor an ancestor of (F, RF, AF, B F) 

in TR(G, R, A, B), then V(F) NV(H)= ~ Since G' satisfies Condition (A) we can observe the 

following fact. 

Remark 3. Let (H, RH, AH, B H) be a descendant of (F ,R F ,A F ,B F) in 



187 

TR(G,R,A,B), and let x be a vertex of both F and H. Then 

(RI) If x is on the exterior face R F of F then x is on the exterior face R H of H; 

(R2) If x is a cutvertex of F' (F'  is the graph satisfying Condition (A), which is 

obtained from F by the execution of line 2 in HPATH(F, RF, AF, B F) ), then x 

is one of endvertices of the Hamiltonian path of H, that is, x=A H or X=BH; 

(R3) If x is an endvertex of the Hamiltonian path of F (that is, x=A F or X=BF) , then x 

is not a cutvertex of F' and x=A H or x=B F. 

By Remark 3 we have the following remarks. 

Remark 4. Let ( F, R F, A F, B F ) and ( H, RH, AH, B H ) 

vertices of the execution tree TR(G,R,A,B). Then 

EX(F,RF,AF,B F) N EX(H,RH,AH,BH )= ~, and 

CV(F,RF,AF,B F) n CV(H,RH,AH,BH)=~. 

be two distinct 

Remark 5. Let T(G,R,A,B) denote the time spent by the HPATH(G,R,A,B) for the graph 

G=(V,E). Let T'(G,R,A,B) denote the time spent by the HPATH(G,R,A,B), exclusive of the time 

spent by its recursive calls. We claim 

T'(G,R,A,B) ~ K( Z d(v) + Z d(v) ) (1) 
v ~ EX(G,R,A,B) v ~ CV(G,R,A,B) 

for any (G,R,A,B) satisfying Condition (X), where K is constant and d(v) denotes the degree of 

vertex v of G. Noting Remark 4 and the fact that G is planar we obtain 

T(G,R,A,B) < K( Z d(v) + Z d(v) ) <4KIEI~12KIV[ v~V v~V -- . 

Thus (I) implies that the algorithm is linear. We shall verify (1) in Section 5. 

4. Proof of Lemma 2. 

In this section we give the proof of Lemma 2 which is a simplified version of Whitney's 

proof of Lemma 1. Since the proof is constructive, we can easily design an algorithm based on 

the proof. 

We proceed to prove Lemma 2 by induction on the number of edges of G=(V,E). Let m=IEl. 

The claim is obviously true if m=1 (that is, G=K2). For the inductive step, we assume that 

the claim is true for all graphs with at most m-1 edges (m-->2). We should show that the claim is 

true for any 2-connected plane graph with m edges. 

Let G be a 2-connected plane graph with m edges. We consider the exterior face R of G as 

a sequence of vertices on R ordered in a clockwise sense, and denote three arcs of R by 

Rl=R(A,B]=a0al. . .ar  (a0=A, ar=B), R2=RIB,C]=b0bl...b s (b0=B , bs=C) , and R 3 = 

R [C,A]= c O c I ... c t (c O = C, c t = A). If (G,R,A,B) satisfies Condition (W2a), then R 3 is empty and R 2 
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a .  a ,  
l i 

b j  Ck C 
(a) Case 1 (b) Case 2 

C 
(c) Case 3 

Fig. 4 Three cases in the proof. 

=RIB,A], that is, bs=A. Since (G,R,A,B) satisfies Condition (X), no chord of R joins two 

vertices on the same arc, and no chord joins vertex C (if any) and a vertex of R. We have three 

cases according to the types of the chords of R (see Fig. 4). 

Case 1. R has a chord of form (ai,b j) (0_<i_gr-l, l_<_j<s-1) or (ai,c k) (l~i<=r, i~_ 

k __<t-i). 

Case 2. R has no chords. (In this case G satisfies Condition (~2a).) 

Case 3 (the remainin~ case). R has no chords of form (ai,b i) or (ai,ck) , but 

has a chord of form (bj ,c k ) (1 _-<j ~s-l, 1 ~_k ~_t-l). 

Note that vertex C of R disappears in Case 2 since (G,R,A,B) satisfies Condition (X). This 

is one of the reason why we introduce Condition (X). This fact together with technique finding 

a Q-chain (defined later) enables us to design a linear algorithm. 

Case I. We can assume without loss of generality that R has a chord of form (a i ,bj ). 

If R has a chord of form (a i,c k) it suffices to interchange the roles of A and B and of c k 

and b..l Suppose that (a i ,bj) is the chord nearest B among all chords of this form, that 

is, the circuit a i ai+ 1 ...ar_ 1 Bb I o..bj a i has no chord. Now either, 

Case (la), R has no chords other than (a i ,bj ) joining bj and a vertex on R 1 , or 

Case (lb), otherwise, that is, R has a chord other than (a i ,bj) joining bj and a vertex 

on R1. (See Fig. 5.) 

We first consider Case  (la). Let P0'Pl 'P2 '""  Pu (P0 =ai+l ' Pu =bj) be a 

sequence of vertices adjacent to a i such that each (ai,Pk) is the immediately clockwise 

edge of (a i ,Pk_1 ) around a i . Since (G,R,A,B) satisfies Condition (W1), all (pk,Pk+l) 

(0~k_~u-l) are edges of G, and there are no edges of form (Pk 'Pk' ) (0~_k, k+2<__k' <.u). Let 

EDEL = {(ai 'Pk ) I 0 -<k _<u-i }. 
Delete all edges in EDE L from G, and let G' be the resulting graph, i.e., G'=G-EDE L . Then 

G' consists of two blocks G 1 and G 2 , one of which contains A and the other B. Both G 1 

and G 2 have fewer edges than G. Moreover, let Qll =a0al""aibj' Q12 =bjbj+l""bs' QI3 =R3 ' and 

QI =QllQI2Q13 ' then (G 1 'Q1 ,A,bj) satisfies Condition (X), where QII ' Q12 and Q13 are 

threearcs (possibly Q13 is empty) concerned in this case. Similarly let Q21=b0b1...bj, 

Q22 =Pu Pu-1 ""P0 ' Q23 =ai+l ""as (if P0 =at =B then Q23 is empty), and Q2 =Q21 Q22 Q23" 
Then (G2,Q2,B,b j ) satisfies Condition (W). Thus the resulting graph G' of G satisfies 

Condition (A). Noting Remark 1, we can choose a vertex as C appropriately so that 

(G2 'Q2 ,B,bj ) satisfies Condition (X). By the inductive hypothesis G 1 has a 
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EDEL a. 
Q1 l P0=ai+l 

/ PI~ Q23 

A P 2 2 G 2 ~ B  

Q1 I/Q21 

bj=p u 

Case (la) 

/ 
a., Q1 

a 
i 

B 

22 

P0=bj -i 
EDEL 

Case (ib) 

Fig. 5 Case 1, where (ai,b j) is the chord nearest B. 

Hamiltonian path H(G1,A,b j) connecting A and bj and G 2 has a Hamiltonian path 

H(G2,B,b j) connecting B and bj. Thus we obtain a Hamiltonian path H(G,A,B) of G 

connecting A and B by combining H(G 1 ,A,bj ) and H(G 2 ,B,bj ). 

Next consider C a s e  (ib). In this case let P0 'Pl 'P2 ""'Pu (P0 =bj-1 ' 

Pu=ai) be a sequence of vertices adjacent to bj such that each (bj,Pk) is the 

immediately counter-clockwise edge of (bj,Pk_ 1 ) around bj. We delete all edges in 

EDEL={(bj,Pk)I 0_~k_~u-1 }. An argument similar to one in Case (la) shows that G has a 

Hamiltonian path H(G,A,B) connecting A and B (see Fig. 5). 

Case 2. This case can be considered to be a special case of either Case (la) with a i =A 

and bj=bs_ 1 or Case (lb) with ai=a I and bj=bl=A (see Fig. 6). An argument 

similar to one above works. Note that G 1 =K 2 satisfies Condition (X). 

EDEL al=P 0 al=Pu 

A A 

b s - l = P  u EDEL B=P 0 

~ 21 

Fig. 6 Case 2. 

Case 3. Suppose that (bj,c k) is the chord furthest from vertex C of R. Note that 

bj is one of b I ,...,bs_ 1 and c k is one of e I ,...,ct_ 1 . Let 

Q=q0 'ql 'q2 '""qu ( q0 = bj, qu =al ) be a sequence of vertices which satisfies 

the following: Each (qi'qi+l) (0 ~ i <_u-l) is the next edge of (qi'qi-I) in a 

touter-clockwise sense around qi among all edges with an endvertex adjacent to a vertex on 
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B=x g b. =q 
_ ~ - ~  -I -i 

E a l-qu///~G~ -'3~f" ~- b 

x ~  ck--Xg-2 

xf_ I xf 

Fig. 7 Q-chain and G' satisfying Condition (A). 

R3, where q_l=bj_l . Such a sequence is called a Q-chain of R. The existence of 

the Q-chain is verified as follows. Since (bj,c k) is the chord furthest from C, 

and every interior face is triangle, there exists a vertex x inside the circuit 

A a I ... 8r_ 1 B b 1 ...bj c k ...et_ 1 A adjacent to both bj and c k . Thus ql 

always exists (possible ql=x) .  If q l = a l  then qu=ql . Otherwise, let Ckl be the 

vertex furthest from C among all vertices on R 3 adjacent to ql" Similarly we can easily 

show that q2 exists, since there is a vertex inside the circuit 

A a I ... ar_ 1 B b I ...bj ql Ok1 ekl+l ""ct-1 A adjacent to both ql and Ckl. 
Repeating this argument, we can prove that the Q-chain always exists since a I is adjacent to 

A. N o t e  that any vertex of ql '""qu-1 is not on R, and the circuit 

D = qu a2 "'" at-1 B b I ...bj ql ""qu has no chord of form ( qi 'qi' ) (0 _<__ i, i+2 <= i' 

u). Let EOU T (D) be the set of edges adjacent to ql 'q2 " '"  or qu outside D, and let 

EDE L =Eou T (D) UCL(q0 , ek, ql ) (2) 
where CL(q0,ek,ql) denotes the set of edges incident to q0' from c k to ql 

clockwisely. Let G'=G-EDEL, then G' consists of g(>=3) blocks, and satisfies Condition (A) 

(see Fig. 7). Each block Gf of G' has at most m-1 edges. Noting Remark 1, we can choose a 

vertex as C of Qf so that (Gf,Qf,xf,xf_ I)  may satisfy Condition (X), where Qf 

(1_-<f~g) is the exterior face of Gf and xf (iK_f_gg-l) is the cutvertex of G' belonging to both 

Gf and Gf+ 1 (x0=A , Xg=B). By the inducutive hypothesis, each Gf (1-<_f<=g) has a 

Hamitonian path H( Gf ,xf ,xf. 1 ) connecting xf and xf_ I . Thus we obtain a 

Hamiltonian path H(G,A,B) of G connecting A and B by combining all H( Of ,xf ,xf_ 1 ) ' s. 

This completes the proof. Q.E.D. 

5. The Hamiltonian path algorithm. 

The proof of Lemma 2 leads to an algorithm for finding a Hamiltonian path in a graph 

satisfying Condition (X). To make the algorithm efficient, we need a good representation of a 

plane graph. (We assume that a given graph satisfying Condition (X) is already embedded in the 
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plane by a linear planar embedding algorithm [ 8 ]  .) For this purpose we use a list s t ructure  

whose elements  correspond to the edges of the graph. Stored with each edge e=(x,y) are its 

endpoints x and y, and four pointers c l ( e )  , c2(e)  , CCl(e) and cc2(e)  , designating the 

edges immediate ly  clockwise and counter-clockwise around the endpoins of the edges. Stored 

with each ver tex  x are two edges c(x) and cc(x) incident to x which indicate the s tar t ing edge 

and the final edge of the adjacency list A(x), where c(x) is the immediate ly  clockwise edge of 

cc(x) around x. Furthermore,  we need a representaion of the exterior  faces of blocks of a 

graph. For this purpose we use another list s t ructure together  with an array. Each exter ior  

face R of a simple block G has pointers, designating A,B, and C of R, chords of R and so on. 

Pointers R(A), R(B) and R(C) represent  current  ver t ices  A, B and C of the exter ior  face  R. The 

set of chords of R are parti t ioned into three classes: the set  D12 of chords of form (a i ,bj); 

the set  D13 of chords of form (a i , c k ) ;  and the set  D23 of chords of form (bj,Ck). The 

chords of D12 are arranged in nearest  order to B. The chords of D13 and D23 are arranged in 

furthest  order from C. R(D12) stores the chord of D12 nearest  B. R(D13) and R(D23) store the 

A=I  

^ 3 e~ 
e 

e 1 

4 

e~e5B=5 

6 

Vertex  incidences Edges, neighbors and next chords 

c co 1 2 c I cc I c 2 cc 2 NEXT 

1 e I e 8 
2 e2 e l 
3 e 3 e2 
4 e 4 e 3 
5 e 5 e 4 
6 e 6 e 5 
7 e 7 e 6 
8 e 8 e 7 

Face R and i~chords 

e l  
e2 
e3 
e4 
e5 
e6 
e7 
e8 
e9 
e l0  
e l l  
e12 
e l3  

1 2 e 8 e 8 e 2 e 9 0 
2 3 e9 e~ e 3 el0 0 
3 4 e l l  e 2 e 4 el2 0 
4 5 e12 e 3 e5 e 5 0 
5 6 e4 e4 e6 el2 0 
6 7 e13 e~ e 7 e 7 0 
7 8 e~ e6 e 8 el3 0 
8 1 e 9 e 7 e I e I 0 
2 8 e I e 2 el  0 e 8 el0 
3 8 e 2 e l l  e~3 e 9 0 
3 6 el0 e 3 e12 el3 0 
4 6 e 3 e 4 e 5 e l l  e l l  
6 8 e l l  e 6 e 7 el0 0 

A B C DI2 DI3 D23 

R{ I { 5 I 7 { el2 { e9 { el3 { 

Fig. 8 Rerpresentation of a plane graph (G,R,A,B) satisfying Condition (X). 
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chords of D13 and D23 furthest from C, respectively. Array NEXT(x) stores a next chord in the 

order above for each chord x of R. Thus the chord of D12 second nearest B is stored with 

NEXT(R(DI2)), and so on. Stored with each vertex are flags, indicating whether or not the 

vertex is on R or whether or not it is adjacent to some vertex on R. Fig. 8 illustrates such a 

data structure. Moreover, we set c(v i)=(v i,vi+ 1 ) and cc(v i)=(vi_ I ,v i) for each 

vertex v i on the exterior face R=v0v 1..`vk_Iv 0. Thus R is represented as follows: 

v I is an endvertex of c(v 0) different from v0; v 2 is an endvertcx of c(v I)  different 

from Vl; and v 0 is an endvertex of C(Vk_ I) different from Vk_ I .  Adjacency list A(v) 

in a clockwise sense is reprensented as follows: the first vertex of A(v) is an endvertex of c(v) 

different from v; the second vertex of A(v) is an endvertex of immediately clockwise edge of 

c(v) around v different from v; and the last vertex of A(v) is an endvertex of cc(v) different 

from v. Counter-clockwise adjacency list is similarly obtained. Thus we can consider that our 

data structure contains adjacency lists. 

Now we are ready to present the algorithm. In Fig. 9 below is the algorithm to find a 

Hamiltonian path in a 2-connected plane graph G such that (G,R,A,B) satisfies Condition (X). 

procedure HPATH(G,R,A,B): 
begin comment G=(V,E) is a plane graph with the exterior face R satisfying Condition (X). 
Let R=RIR2R3, Rl=a0,al,...,ar (a0=A , ar=B) , R2=b0,bl,...,b s (b0=B , bs=C) , and R3=c0,cl,.. 
.,c t (c0=C , et=A). If G=K 2 then R is a 2-circuit. R has no chords which join vertices on 
Ri(i=l,2,3). If R 3 is not empty, then R has a chord joining either c I and some vertex 
on R 2 or bs_ 1 and some vertex on R 3. HPATH(G,R,A,B) finds a Hamiltonian path in 
G connecting A and B, whose edges are marked by HPATH; 

1 if IVI= 2 
2 t-riCh (A,B) is a Hamiltonian path of G from A to B so mark (A,B) 
3 

I0 

11 

else if ( R has a chord of forms (ai,bj) , or (ai,c k) ) or ( R has no chord ) then 
begin comment Case I or Case 2; 
~ h a s ~ d  of form (ai,bj), or (ai,e k) 
t'fien begin comment Case 1;- 

we can assume that R has a chord of form (ai,b j) otherwise 
nterchange the roles of A and B and of bj and e k in 

,b~) be the edge nearest B among such edges; 
if R h~s a chord other than (ai,b j) joining bj and a vertex on 
R 1 then 

begin comment Case (ib). Q1 and Q2 correspond to the 
new e x ~ e s ;  
x:=bj; y:=bj_l; z:=ai; CLOCK:=false; Q2(A):=z; Q2(B):=B 
end 

else begin comment Case (la); 
x:=ai; y:=ai+l; z:=bj; CLOCK:=true; Q2(A):=B; Q2(B):=z 
end 

end 
end 

else ~ n c o m m e n t  Case 2. R has no chord; 
it" b I # A the n 

begin 
x:=A; y:=al; z:=bs_l; CLOCK:=true; Q2(A):=B; Q2(B):=z 
end 
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12 

13 
14 
15 

16 

17 
18 

19 
20 

21 

22 
23 
24 
25 

26 

27 
28 

29 
30 

31 

32 

33 

34 

35 
36 
37 
38 

39 

40 

41 

end__~; 

else begin comment bl=A; 
x:=A; y:=B; z:=al; CLOCK:=false; Q2(A):=z; Q2(B):=B 
end 

end; 
QI(A):---~A; QI(B):=z; QI(C):=C; 
if y=B then Q2(C):=0 else Q2(C):=y; . , 

CLO-~then EDEL:-~CL(x,y,z) else EDEL:=CCL(x,y,zl; 
"~mment E-~L=CL(x,y,z) (EDE-L=CCL(x,y,z)) is the list of edges incident 
}-o ~ ~ (y,x) to (z,x) in a (counter-)clockwise sense, where (y,x)CEDE L and 
(z,x)~EDEL; 
let G'=G-EDEL; 
comment G' satisfies Condition (A). G' consists of two blocks G 1 and G 2 
and z ~-the unique cutvertex of G'; 
split G' into G 1 A and G 2 B with respect to z; 
for f:=l to 2 do 

beg~n 
let Qf be the exterior faces of Gf; 
choose Qf(C) appropriately so that (Gf,Qf,Qf(A),Qf(B)) may 
satisfy Condition (X); 
HPATH(Gf,Qf,Qf(A),Qf(B)) 
end 

end 
else b~gl-n 

comment Case 3. There is a chord of form (bj,Ck); 

~ be furthest from C; 
-.,qu (q0=bi, qu=al ) be the Q-chain of R from q0 to qu; 

let EDE L be the edge set defined in (2) in Section 4; 
let G'=G-EDEL; 
comment G' satisfies Condition (A); 

Xl, ..., Xg-i (Xg-2 = Ck, Xg_ 1 = b'] ) be the sequence of 
eutvertices of G' on tt 2 or ~3 from A to B; 
let Gf be a block of G' containing xf_ I and xf ( x 0 = A, Xg = B ); 
fo__rr f=l to g-2 do 

Qf(A):=xf; Qf(B);=Xf-l; 
if there is a vertex Cf in Gf adjacent to beth qi and qi+l of the 
Q-chain in G then Qf(C)= Cf else Qf(C)=-o; 
split Gf from G' with respect to xf; 
comment G':=G'-(V (Gf)-xf); 
let Qf be the exterior face of Gf; 
comment (Gf,Qf,Qf(A),Qf(B)) satisfies Condition (W); 
choose Qf(C) appropriately so that (Gf,Qf,Qf(A),Qf(B)) may satisfy 
Condition (X); 
HPATH(Gf,Qf,Qf(A),Qf(B)) 
end; 

Qg_l(A-~-..=ek; Q~_I(B):=bj; Q~_I(C):=C; Qg(A):=B; Qg(B):=bj; 
if al=B then Q~C):=0 else ~g(C):=al; 
s'plit G' Int'~'o G~_ I and Gg'wit~ respect to bj; 
for f:=g-I to g-do 

b e ~ i n - - -  
let Qf be the exterior face of Gf; 
comment _ _  (Gf,Qf,Qf(A),Qf(B)) satisfies Condition (W); 
~ f ( C )  appropriately so that (Gf,Qf,Qf(A),Qf(B)) may satisfy 
Condition (X); 
HPATH(Gf,Qf,Qf(A),Qf(B)) 
end 

end 

Fig. 9 The algorithm for finding a Hamiltonian path. 
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We now verify the correctness and the time complexity of the algorithm. 

Lemma 3. If (G,R,A,B) satisfies Condition (X), then HPATH correctly finds a Hamiltonian 

path connecting vertices A and B in G. 

Proof. Note that HPATH finds an edge set EDE L in G whose removal results in the 

graph G' satisfying Condition (A). Thus, the correctness of HPATH can be proved by the 

induction on the number of edges of a graph. Q.E.D. 

Lemma 4. If (G,R,A,B) satisfies Condition (X), then HPATH requires O(IVI) time to find a 

Hamiltonian path connecting A and B in G=(V,E). 

Proof. We show that the algorithm reqiures O(IVI) time with the data structure described 

above. We first establish (1). Let T(G,R,A,B) denote the time spent by the HPATH(G,R,A,B) for 

the graph G=(V,E). Let T'(G,R,A,B) denote the time spent by the HPATH(G,R,A,B), exclusive 

of the time spent by its recursive calls. Clearly lines 1-14, 22, and 35-36 require constant 

time. Let EX(G,R,A,B) denote the set of vertices of G which newly appear on the exterior face 

of G'. Let CV(G,R,A,B) denote the set of vertices of G which newly become cutvertices. 

Suppose Case I or 2 occurs. Since (x,y) =c(x) or cc(x) we can obtain G T in O(IEDEL[ ) time by 

scanning the adjacency list A(x) from c(x) or cc(x) successively. Thus lines 15-17 reqiures 

O( IEDE L I) time. Line 20 can be done by scanning adjacency lists A(v), where v 's  are the 

vertices newly appeared on the exterior face or the new cutvertices. Thus lines 19-20 requires 

O( Z d(v) + Z d(v)) 
v c EX(G,R,A,B) v ~CV(G,R,A,B) 

time. Suppose next Case 3 occurs. Since (q_l,q0)=cc(q0) we can find ql in O(d(qo)) 

time by scanning adjacency list A(q0) in a counter-clockwise sense. Thus line 23 can be done 

in O( ~l<i~u_ld(qi )) time, that is, we can obtain Q-chain in O( ~ei~u ld(qi)) • Similarly 

lines 24-27 require scanning adjacency lists A(qi) for I- < _ i ~u-1. Lines 33 and 40 can be done by 

scanning adjacency lists A(v), where v ' s are vertices newly appeared on the exterior face or the 

new cutvertiees, that is, v z (EX(Gi,Qi,Qi(A),Qi(B))-R) u{ Qi(A),Qi(B) } . Thus  lines 

29-33, 37 and 39-40 require 

O( Z d(v) + Z d(v) ) 
v z EX(G,R,A,B) v c CV(G,R,A,B) 

time. Thus we obtain 

T'(G,R,A,B) 

<= O( Z d(v) + Z d(v) ) 
v ~ EX(G,R,A,B) v ~ CV(G,R,A,B) 

for any (G,R,A,B) satisfying Condition (X). This implies (i). Noting Remarks 3-5 we have 

T(G,R,A,B) ~_ O(IV ]). Q.E.D. 

Thus by Lemmas 3 and 4 we obtain the following theorems. 

Thoerem I. If G=(V,E) is 2-connected plane graph and (G,R,A,B) satisfies the condition(X), 

then HPATH finds a Hamiltonian path joining A and B in G in O(IVI) time. 



195 

Theorem 2. There exists a linear time algorithm for finding Hamiltonian circuits in 

4-connected maximal planar graphs. 
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