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Abstract. A simple linear algorithm is presented for coloring planar 

graphs with at most five colors. The algorithm employs a recursive 

reduction of a graph involving the deletion of a vertex of degree 6 

or less possibly together with the identification of its several 

neighbors. 

i. Introduction 

A coloring of a graph is an assignment of colors to the vertices 

in such a way that adjacent vertices have distinct colors. Although 

the problem of coloring a graph with the minimal number of colors has 

practical applications in Some schedulings [i], it is known to be 

NP-complete even for the class of planar graphs [3]. 

We present here a linear algorithm for finding a coloring of a 

planar graph with at most five colors, that is, 5-coloring. We denote 

by n the number of vertices of a graph throughout this paper. Based 

on the well-known Kempe-chain argument, one can easily design an 

O(n 2) time algorithm for the purpose by employing a simple 

recursive reduction of a graph involving the deletion of a vertex of 

degree 5 or less possibly together with the interchange of colors in 

a two-colored subgraph. Lipton and Miller have given an O(nlogn) 

algorithm for the problem by removing a "batch" of vertices rather 

than just a single vertex [4]. Their algorithm and its proof are a 

little complicated. In this paper we give a simple linear algorithm 

for the purpose. The algorithm does not use the Kempe-chain argument, 

but uses a recursive reduction of a graph involving the deletion of a 

vertex of degree 6 or less possibly together with the identification 
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of several neighbors of the vertex. We prove that the algorithm runs 

in O(n) time. Hence the computational complexity of our algorithm is 

optimal within a constant factor. 

2. Outline of the algorithm 

We first define some terms. Let G=(V,E) be a graph with vertex 

set V and edge set E. We consider only a simple graph G, that is, a 

graph with no multiple edges or loops. A graph G is planar if it is 

embedable in the plane without edge crossing. The neighborhood N(v) 

of a vertex v is the set of all vertices which are adjacent to v. The 

degree d(v) of a vertex v of G is the number of vertices adjacent to 

v. The deletion of a vertex v is an operation on G which delete v 

together with all the edges incident to v, and the resulting graph is 

denoted by G-v. Let u and v be two vertices of a graph G. A 

vertex-identification (or simply identification) (u,v> is an 

operation on G which identifies u and v, that is, removes u and v and 

adds a new vertex adjacent to those vertices to which u or v was 

adjacent. Our algorithm frequently uses these operations in recursive 

reductions of graphs. 

The outline of the algorithm is as follows. Suppose that G is a 

given planar graph. We construct a new planar (simple) graph G' from 

G by deleting a vertex v of degree 6 or less possibly together with 

some other modifications, and then color G' with 5 colors by 

recursively applying the algorithm. We extend the 5-coloring of G' to 

a 5-coloring of G by assigning to v a color not used to vertices in 

N(v). In order to guarantee that there remains such a color, we 

construct G' so that G' contains only four vertices in N(v), as 

follows. If v is of degree 4 or less, then we simply set G'=G-v. If v 

is of degree 5, then we construct G' from G-v by identifying a pair 

of nonadjacent vertices in N(v). Note that there exist such a pair of 

vertices since G is planar (see Lemma i), and that the resulting 

planar graph G' has no loops. The pair of vertices of G will be 

assigned the same color as the vertex substituting for them in G' 

Finally, if v is of degree 6, then we construct a planar graph G' 

from G-v by identifying either three pairwise nonadjacent vertices in 

N(v) or two pairs of nonadjacent vertices in N(v). Lemma 2 in Section 

3 guarantees that there exist such vertices. Note that we must select 

two pairs of vertices appropriately so that G' is planar. 
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We use adjacency lists to represent a graph G. All the operations 

in the algorithm, other than vertex-deletions or 

vertex-identifications, require O(n) time in total. Clearly the 

deletion of a single vertex v requires O(d(v)) time. Therefore all 

the vertex deletions used in the algorithm require at most O(n) time 

in total, since Zvevd(v) ! 6no Hence we should implement the 

algorithm so that all the vertex-identifications require O(n) time in 

total. One can easily execute the single identification of vertices u 

and v in O(d(u)+d(v)) time, that is, one can modify the adjacency 

lists of G in that amount of time so that the resulting lists 

represent a new graph obtained from G by identifying u and v° However 

the same vertex may appear in identifications O(n) times, so a direct 

implementation of the algorithm would require O(n 2) time. As we 

describe the detailes in the following section, the algorithm runs in 

several stages, in each of which we do the recursive reductions as 

far as any vertex would not be involved in more than two of 

identifications, so that the stage requires at most O(n) time. An 

argument in Section 4 will show that the resulting graph G' at the 

end of a stage has a positive fraction of vertices at the beginning 

of the stage. From these facts it will be shown that the algorithm 

requires O(n) time in total. 

Remark We have given a simple "on-line" algorithm to execute any 

sequence of vertex-identifications of a graph G=(V,E) in O(IElloglVl) 

time, by using adjacency lists together with an adjacency matrix [2]. 

It yields an +alternative simple O(niogn) 5-coloring algorithm of 

planar graphs. 

3. 5-coloring algorithm 

In thi& section we present the linear algorithm for coloring 

planar graphs with at most five colors. We first have the following 

lemmas. 

LEMMA i. Let a planar graph G=(V,E) contain a vertex v of degree 5 

with N(v)={Vl,V2,V3,V4,V5}. Then, for any specified 

vieN(v), there exists a pair of nonadjacent vertices vj and Vk, 

j,k~i. Furthermore one can find such a pair in 

O(MINveN(v)_vid(v)) time if the planar embedding of G is given. 
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Proof. We can assume without loss of generality that vi=vl, and 

that the vertices Vl,V2,V3,V 4 and v 5 in N(v) are labeled 

clockwise about v in the plane embedding of G. Consider the case in 

which d(v2) is minimum among d(v2), d(v3), d(v4) and d(v5). 

Scanning all the elements in the adjacency list for v2t one can 

know whether (v2,v4)eE or not. If (v2,v4)~E , then 

(v3,v5)#E. Thus one can find a pair of nonadjacent vertices in 

O(d(v2)) time. The proof for all the remaining cases is similar to 

above. Q.E.D. 

Lemma 1 implies that for a vertex v of degree 5 one can always 

find a pair of nonadjacent vertices vj and v k in N(v) both of 

which have not been involved in vertex-identifications even if N(v) 

contains a vertex v i involved in a vertex-identification so far. 

LEMMA 2. Let a planar graph G=(V,E) contain a vertex v of degree 6 

with N(v)={Vl,V2,...,v6}. Then N(v) contains either 

(i) three pairwise nonadjacent vertices, 

or (ii) two ~airs of nonadjacent vertices vi,v j and Vk,V Z 

such that the identification (vi,v j ) together with 

(Vk,V £) does not destroy the planarity of G-v. 

Furthermore one can find these vertices in 

O(MINl(s(t(5[d(Vs)+d(vt)]) time if the planar embedding of G is 

given. 

Proof. Assume that the vertices Vl,V2,...,v6 in N(v) are 

labeled clockwise about v in the plane embedding of G. The 

identifications of two "cross-over" pairs of vertices in N(v), such 

as v2,v 5 and v3,v 6, may destroy the p!anarity of G-v, since 

v 3 and v 6 possibly donot lie on the boundary of a common face 

when v 2 is identified with v 5 in G-v. However the identifications 

of two "parallel" pairs, such as v2,v 6 and v3,v5, necessarily 

preserve the planarity of G-v. We establish our claim only for the 

case in which d(Vl)+d(v 2) is minimum among all the sums of 

degrees of two vertices in N(v), since the proof for all the 

remaining cases is similar. Scanning all the elements of the 

adjacency lists for v I and for v 2, one can know whether the edges 

(Vl,V5) and (v2,v4) exist or not. If exactly one of them, say 

(Vl,V5) , exists, then v2,v 4 and v 6 are the required three 

pairwise nonadjacent vertices. Otherwise, v2,v 6 and v3,v 5 (if 

both (Vl,V5) and (v2,v 4) exist) or v2,v 4 and Vl,V 5 (if neither exists) 
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are the required two "parallel" pairs of nonadjacent vertices in 

N(v). Thus one can find the required vertices in O(d(Vl)+d(v2) ) 

time. Q.E.D. 

As a data structure to represent a graph G, we use an adjacency 

list L(v) for each veV. Each adjacency list is doubly linked. The two 

copies of each edge (u,v), one in L(u) and the other in L(v), are 

also doubly linked. In addition to L, we use four arrays FLAG, COUNT, 

DEG and DP together with three queues Q(i), 4(i(6. An element DEG(v) 

of array DEG contains the value of d(v), v~V. FLAG(v) has an initial 

value "false" at the beginning of each stage of the algorithm, and 

will be set to "true" when v is identified with another vertex. 

COUNT(v) contains the number of vertices weN(v) with FLAG(w)=true, 

that is, the number of vertices in N(v) involved in vertex- 

identifications in the current stage so far. The queue Q(i), 4(i(6, 

contains all the vertices which are available for the recursive 

reduction of the stage, defined as follows: 

Q(4) ={ vIDEG(v)~4} ; 

Q(5)={v~DEG(v)=5,COUNT(v)!I}; and 

Q (6) ={ v lDEG (v) =6, COUNT (v) =0 }. 

That is, Q(4) is the set of all the vertices of degree 4 or less, 

Q(5) the set of all the vertices of degree 5 with at most one 

neighbor involved in an identification in the stage, and Q(6) the set 

of all the vertices of degree 6 with no neighbors involved in any 

identification in the stage. DP(v) has a pointer to an element "v" in 

Q(i) if v is contained in Q(i). We are now ready to present the 

algorithm. 

procedure FIVE; 
comment The procedures DELETE and IDENTIFY are for 
vertex-deletion and the vertex-identification, respectively; 
procedure COLOR(G); 

be@in 
if IvI(5 then assign IV~ colors to IVl vertices 
else 
be@in 
if Q(4)#@ 

then begi n 
take a top entry v from Q(4); 
DELETE(v); 
let G' be the reduced graph 

end 
else 

if Q(5)~@ 
then be@in 

the 



14 

end 
end 

else 

take a top entry v from Q(5); 
choose two nonadjacent vertices 
x,yeN(v) such that 
FLAG(x)=FLAG(y)=false; 
DELETE(v); 
IDENTIFY(x,y) ; 
let G' be the reduced graph 

end 

if Q (6)~@ 
then 

begin 
take a top entry v from Q(6); 
comment By Lemma 2 either 
case (i) or case (ii) holds; 
for case (i) do 

begin 
let x,y and z be the three pairwise 
nonadjacent vertices in N(v); 
DELETE(v); 
IDENTIFY(y,x); 
IDENTIFY(z,x) 

end; 
for case (ii) do 

begin 
let vi,v ~ and Vk,V Z be the two 
"parallel"-pairs of nonadjacent vertices 
in N(v) ; 
DELETE (v) ; 
IDENTIFY (vi, Vj ! ; 
IDENTIFY(Vk,VZ) 

end; 
let G' be the reduced graph 

end 
else 

begin 
comment Current stage is over. Reset FLAG 

and COUNT; 
for vGV do begin FLAG(v):=false; 

COUNT(v):=0 end; 
COLOR(G) 

end; 
COLOR(G'); 
assign to v a color not used in the coloring of N(v), 
and to each identified vertex of G the color of the 
vertex substituting for it in G'; 
comment Note that the number of colors used in the 
coloring of N(v) is at most 4 

begin 
embed a given planar graph G in the plane; 
for veV do 

begin 
calculate DEG(v); 
FLAG(v):=false; 
COUNT(v) :=0 

end; 
COLOR(G) 

end 
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procedure DELETE(v); 
begin 

for weL(v) do 
begin 

delete w from L(v); 
delete v from L(w); 
DEG (w) : =DEG (w) - 1 ; 
if FLAG(v) =true 

then COUNT(w):=COUNT(w)-I; 
end; 

delete L(v) from the adjacency lists and "v" from Q(i), i=4,5 or 
6, if any, and update appropriately the elements in Q(i) 
according to the modifications of DEG and COUNT above 

end 

procedure IDENTIFY(u,v) ; 
comment This procedure executes the identification (u,v) of two 
nonadjacent vertices u and v such that either FLAG(u) or FLAG(v) 
is "false". We assume FLAG(u)=false without loss of generality. 
The vertex v will act as a new vertex substituting for u and old 
v; 
begin 

if FLAG(v)=false 
then begin 

FLAG (v) :=true ; 
for w~L (v) do COUNT (w) :=COUNT (w) +i 

end; 
for wGL(v) do mark w with "v"; 
for wEL(u) do 

begin 
delete w from L(u); delete u from L(w); 
if w has no mark "v" 

then begin 
comment w is adjacent to u, but not to 
v; 
add w to L(v); add v to L(w); 
DEG(V):=DEG(v)+I; 
COUNT(w):=COUNT(w)+I; 
if FLAG(w)=true 

then COUNT(v) :=COUNT(v)+1 
end 

else begin 
comment w is adjacent to both u and v; 
DEG(w):=DEG(w)-I 

end 
end; 

dele£e L(u) from the adjacency lists and "u" from Q(i), 
i=4,5 or 6, if any, and update appropriately the elements in 
Q(i), i=4,5,6, according to the above modifications of DEG 
and COUNT 

end 

In the algorithm above we omit the detail of the method for 

obtaining the planar embedding of G' from that of G, since clearly 

the time required for the purpose is propotional to that for the 
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vertex-deletions and identifications. 

4. Time complexity 

In this section, we establish the following theorem. 

THEOREM. The procedure FIVE colors a planar graph G=(V,E) with at 

most five colors in O(n) time, where n=IVI. 

We first present the following lemma before establishing the 

Theorem. The lemma implies that at the end of each stage of the 

algorithm a positive fraction, say 1/12, of the remaining vertices 

have been involved in vertex-identifications. 

LEMMA 3. Let G=(V,E) be a planar graph with minimum degree 5, and let 

S be a subset of V. If every vertex of degree 5 is adjacent to at 

least two vertices in S, and every vertex of degree 6 is adjacent to 

at least one vertex in S, then ISI ) n/12. 

Proof. Define Vs={Vld(v)=5,veV}, 

V,={vld(v)!7,veV} so that 

p6=IV6 ] , and p,=IV, I. Define 

S,=SNV, so that S=S5US6US,, 

r6=IS6~ , and r,=IS,]. 

By Euler's formula IEI ! 3n, we have 

5P5+6P6+~v~v,d(v) ~ 6(P5+P6+P,) - 

Hence we have 

P5 i ZveV, (d(v)-6) i P*" 

Since n=P5+P6+p,, we have from (i) 

p5+P6 ! n/2. 

We furthermore have from (I) 

V6={vld(v)=6,veV}, and 

V=V5uV6uV,, and let ps=]V5 I , 

S5=SNV5, S6=SDV 6 and 

and let r5=[S51, 

(i) 

(2) 

P5 --> Zves,d(v)-6r*" (3) 
Since every vertex of degree 5 is adjacent to at least two vertices 

in S, and every vertex of degree 6 is adjacent to at least one vertex 

in S, we have 

ZveS d(v) _) 2P5+P6. (4) 

On the other hand we have 

Zvesd(V) (_ 6(r5+r6)+Zves,d(v). (5) 

Combining (4) and (5), we have 
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2P5+P 6 (_ 6(r5+r6)+Tves,d(v). 

By (3) and (6), 

2Ps+P6 ( 6(r5+r6)+P5+6r,=6~SI+P5, 

and hence 

I SI ) (p5+P6)/6. 

Therefore we have ISI ) n/12 by (2), as desired. 

(6) 

Q.E.D. 

We are now ready to prove the Theorem. 

Proof of the Theorem. Noting that the reduced graph G' of a planar 

graph G is a planar simple graph smaller than G, we can easily prove 

by induction on the number of vertices of a graph that the algorithm 

correctly colors a planar graph G with at most 5 colors. Hence we 

shall show that the algorithm runs in O(n) time. 

We first show that the first stage of the algorithm requires at 

most O(n) time. One can easily verify that the procedure DELETE 

executes the deletion of a vertex v in O(d(v)) time, and that the 

procedure IDENTIFY does the identification of two nonadjacent 

vertices u and w in O(d(u)+d(w)) time since it simply scans the 

elements of L(u) and L(w). The algorithm calls DELETE for a vertex in 

each reduction. Since every vertex appears in at most one 

vertex-deletion, all the vertex-deletions in the stage require O(n) 

time in total. Consider a reduction around a vertex v of degree 5 or 

6, in which IDENTIFY is called in addition to DELETE. If v is in 

Q(5), the algorithm finds two neighbors v i and vj of v with 

FLAG(Vi)=FLAG(vj)=false, and then calls IDENTIFY(vi,vj). The 

identification requires O(d(vi)+d(vj)) time. Lemma 1 implies that 

one can find v i and vj in that amount of time. If v is in Q(6), 

the algorithm finds either three pairwise nonadjacent vertices x,y 

and z or two pairs of nonadjacent vertices vi,v j and Vk,V£, 

and then calls IDENTIFY(y,x) and IDENTIFY(z,x) or IDENTIFY(vi,vj) 

and IDENTIFY(Vk,V£), respectively. These two identifications 

together require O(d(x)+d(y)+d(z)) or 

O(d(vi)+d(vj)+d(Vk)+d(vz) ) time, respectively. Lemma 2 

implies that one can find these vertices in that amount of time. Of 

course, FLAG's for these vertices are all "false", since COUNT(v)=0. 

That is, all these vertices have not been involved in any 

vertex-identification in the stage. Thus every vertex is involved in 

at most two identifications in the stage. (The vertex x above is 

possibly involved in two identifications.) Therefore all the 

identifications in the stage require O(n) time in total. Clearly the 
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book-keeping operations required for the four arrays and three queues 

need O(n) time in total. Note that one can directly access "v" via a 

pointer in DP(v). Hence we can conclude that the stage requires O(n) 

time. 

We next show that at the end of the first stage the reduced graph 

G'=(V',E') contains at most 8n/9 vertices. Suppose that IV'i=n'~0. 

Then the minimum degree of G' is 5, and COUNT(v) > 2 for every vertex 

v of degree 5, and COUNT(v) > 1 for every vertex of degree 6, since 

Q(4),Q(5) and Q(6) are all empty at the end of the stage. Let 

S={vlFLAG(v)=true, vEV'} so that the subset S of V' satisfies the 

requirement of Lemma 3, then we have ISI ) n'/12. Clearly at least 

iS1 vertices disappear from the graph G by vertex-identifications. 

Since each reduction produces at most two vertices in S, there must 

occur at least IsI/2 graph reductions around vertices of degree 5 or 

6 in the stage. Therefore at least ISI/2 vertices are deleted from G 

by vertex-deletions in the stage. Hence at least 3{SI/2 vertices 

disappear from G in the stage. Therefore we have 

n-n' ) 31Si/2 

Since tSl > n'/12, we have 

n' < 8n/9. 

Using the two facts above, we have the following equations on 

T(n) the number of steps (or time) needed to 5-color a planar graph G 

of n vertices: 

T(n) ~ c I if n ! 5; 

T(n) ! T(8n/9)+c2n otherwise, 

where c I and c 2 are constants. Solving these equations, we have 

T(n)=O(n). Q.E.D. 
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