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Abstract: This paper deals with the layering problem of multilayer PWB 

wiring, associated with single-row routing. The problem to be consid- 

ered is restricted to the special case of street capacities up to two 

in each layer, and it is reduced to a problem of the interval graph by 

relaxing some restrictions in the original problem. Then, a heuristic 

algorithm is proposed for this problem. 

i. Introduction 

The single-row routing [I-4], first introduced for the backboard 

wiring [1] , has been one of the fundamental routing methods for the mul- 

tilayer high density printed wiring boards (PWB's) [5-7] , due to "topol- 

ogical fluidity," that is, the capability to defer detailed wire pat- 

terns until all connections have been considered [6] In the single-row 

routing, it is assumed that the multilayer board has fixed geometries; 

that is, the positions of pins and vias are restricted on nodes of a 

rectangular grid. Associated with this single-row routing the following 

problems are formulated: [Via-Assignment Problem]; to determine which 

vias are assigned for each net [7-9] [Layering Problem]; to decompose 
t .... 

the interconnections on a single-row into the portions of each layer, 

and [Single-Row, Single-LaYer Routing]; to lay out wire pattern on each 

layer [I-4] " 

Recent advance in the technology of microelectronics have changed 

the design rule for PWB's in such a way that the total amount of design 

for PWB's of four or more signal layers tends to grow rapidly, and hence 
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the layering problem is of central importance. However• no specific 

development has been reported on this problem. 

To attack the layering problem, we first have to seek a necessary 

and sufficient condition for a given net list to be realized by the 

single-row single-layer routing with the prescribed upper and lower 

street capacities. Concerning this, a specific development has been 

recently accomplished [3'4], and especially in the case of the upper and 

lower street capacities up to two, a necessary and sufficient condition 

is obtained [4] , which can be easily checked. Noting that the case in 

which four etch paths are permitted to be laid out between two consecu- 

tive pins of an ordinary dual in line package corresponds to the single- 

row routing with the upper and lower street capacities both equal to 

two [7] • we may assume that the upper and lower street capacities are up 

to two in each layer. 

Thus, in this paper• we pay our attention to the layering problem 

such that in each layer the interconnections must be realized by single- 

row routing with the street capacities equal to two. 

2. Difinitions and Formulation 

Consider a set {Vl•V2,-'-•v r} of r nodes on the real line R• each 

of which corresponds to a pin or a via. A set of nodes on R to be in- 

terconnected is referred to as a net, and a set of nets is designated 

as a net list. 

Given a net list L= {NI,N2,...,N n} on R, the interconnection for 

each net N i is to be realized by means of a set of paths on a certain 

number of layers• such that on each layer a path is constructed of hor- 

izontal and vertical line segments according to specifications. For 

example, consider a net list L as shown in Fig. 1 (a), where each net 

is represented by a horizontal line segment and each node denoted by a 

circle (note here that there exist nodes which are not used for any net). 

The interconnections of these nets using one layer are realized as shown 

in Fig. 1 (b). This way of realization for a given net list L on R is 

called single-row (in this example, single-layer) routing [I'2] • where 

upward and downward zigzagging is allowed, bUt not forward and backward 

zigzagging. 

In a realization, the space above the real line R on a layer is 

designated as the upper street on the layer, and the one below R as the 

lower street on the layer. The number of horizontal tracks available in 

the upper (lower) street on a layer is called the upper (lower) street 
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(a) Net list L. 

(b) A realization of L, 
which is transformed 
from (c). 

(c) Interval graphical 
representation. 
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Fig. 1 Single-row single-layer routing. 

capacity on the layer. For example, if both the upper and lower street 

capacities are specified as two, then a net list L of Fig. ! (a) can be 

realized on a sigle layer, as shown in Fig. 1 (b). 

Using these terms, the problem to be considered in this paper is 

stated as follows: Given a net list L defined for r nodes on the real 

line R, and integers K u and K w, find a partition of L into the minimum 

number of subsets LI, L2,--- , LZ such that each L i (i = 1,2,.--,I) can 

be realized by single-row single-layer routing with the upper and lower 

street capacities K u and Kw, respectively. 

2.1 Single-Layer Case 

In order to consider the layering problem stated above, we need a 

necessary and sufficient condition for each such L. to be realized with 
1 

prescribed street capacities on a sigle layer. Let us consider this in 

the following. 

The single-row single-layer routing problem can be formulated with 

the use of the interval graphical representation [3'4] For example, 

given a net list L of Fig. 1 (a), consider an ordered sequence s of nets 

of L and nodes not used for any net, then the interval graphical repre- 

sentation associated with s is dipicted as in Fig. 1 (c), where each 

horizontal line segment represents the interval covered by a net, and 
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such line segments and nodes not used for any net are arranged according 

to the order in s. 

In an interval graphical representation, let us define the refer- 

ence line [3] as the continuous line segments which connect the nodes in 

succession from left to right. For example, in Fig. 1 (c), the refer- 

ence line is shown by broken lines. 

Now, let us stretch out the reference line and map it into the real 

line R. Associated with this topological mapping, let each interval 

line be transformed into a path composed of horizontal and vertical line 

segments so that the portions above and below the refernce line corre- 

spond to paths in the upper and lower streets, respectively. Then, this 

topological mapping yields a realization of a given net list. For ex- 

ample, by this topological transformation for the interval graphical 

representation of Fig. 1 (c), we obtain a realization as shown in Fig. 

1 (b). 

Let I = [vi,vj] (i ~ j) denote a closed interval between nodes v i and 

vj. Given an interval graphical representation, let us draw a vertical 

line at an inner point on interval [vi,vi+l], and let us define the den- 

sity d(vi,vi+l) as the number of interval lines cut by the vertical 

line [I'2]. Similarly, draw a vertical line at a node vi, then define 

the cut number c(vi) as the number of interval lines cut by the vertical 

line, ignoring the one to which v. belongs [2'3] 

Let an interval I = [vi,vj] such that C(Vk) a h for all v k on I and 

c(vi_ I) =c(vj+ I) =h- I, be referred to as an h-interval. For an inter- 

val I = [vi,vj] , let ~(I) denote a set of nets which have no node on I, 

but have two nodes v a and v b such that a < i and j <b; and let L(I) re- 

present the union of L(1) and a set of nets having nodes on I. 

By using the interval graphical representation, we can obtain nec- 

essary and sufficient conditions for a given net list to be realized 

with the upper and lower street capacities K u and Kw[3'4] However, 

only in the case of both K and K up to two, a simple necessary and 
u "4" w 

sufficient condition is known [ ], which is derived on the assumption that 

(i) every net of a given net list contains at least two nodes, 

(2) every nodes belongs to a net, and 

(3) any net does not contain a pair of consecutive nodes v. and 
l 

vi+ 1 - 

However, in the layering problem, there may possibly exist a node 

which does not belong to any net of subset L.. Thus, the assumption of 
1 

(2) is not satisfied in this case, and hence it should be removed. 

Based on the necessary and sufficient condition derived in [4] on 

the assumption of (i), (2), and (3), we can describe another one when 
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assumption (2) is removed, as follows. 

THEOREM: A necessary and sufficient condition for a given net list 

L to be realized with the upper and lower street capacities K and K 
u w 

is as follows: 

CASE - -< 2 (0 -< Ku, K w-< i) . A: 0 < K u + K w 

The maximum density d M =A l_<j<rmaX [ d (vj,vj+ l) ] is not greater than 

K u + K w • 

CASE B: 3-<Ku+Kw-<4 (l-<Ku, Kw-<2). 

i) d M -< K u + Kw. 

ii) For any (Ku+Kw-l)-interval I, l~(I) I >- Ku+K w- 2. 

iii) There do not exist two (Ku+Kw-l)-intervals I 1 and 1 2 such that 

I~(I l) I = I~(I 2) I = ~u +Kw-2" 
IL(I I) nL(I2) I = Ku+Kw-I, and 

L(I I) # L(I2). 

Proof: The condition in CASE A can be easily verified, and hence- 

forth we shall consider CASE B. The necessity of the conditions (i), 

(ii), and (~) can be proved in a similar way as in [4]. Thus, the 

sufficiency is to be shown in the follwoing: 

Let L be a net list satisfying conditions (i), (ii), and (J/i), and 

let L(2 ) be a net list obtained from L by applying the following two 

operations repeatedly as far as possible. 

[I] Delete every node not belonging to a net. 

[If] Delete any one of two consecutive nodes which are contained 

in the same net. 

Then, we can see that L(2 ) satisfies the assumption (i), (2), and (3), 

and also satisfies the necessary and sufficient condition for the real- 

izability derived in [4]. Therefore, L(2 ) can be realized with the up- 

per and lower street capacities K u and Kw, respectively. Thus, the re- 

maining task that we have to show is that from any realization of L(2 ) 

with the street capacities K u and Kw, we can construct a realization 

of L with these street capacities, by adding nodes and nets deleted in 

the transformation from L to L(2 ) . However, this can be easily done 

through the use of the condition (i), and the details are ommitted. 

q.e.d. 

For example, the net list shown in Fig. 1 (a) has three 3-intervals 

I I, I2, and I3, and satisfies this necessary and sufficient condition. 

Thus, it has a realization with both the upper and lower street capaci- 

ties equal to 2, as depicted in Fig. 1 (b). 

2.2 Layering Problem 
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As can be verified from this theorem, it is easy to partition a 

given net list L into LI, L2,''" , L£ so that each L i can be realized 

with the upper and lower street capacities up to one. Thus, we shall 

pay attention to the layering problem in the case of K u = K w = 2, as fol- 

lows. 

[Layering Problem]: Given a net list L defined for r nodes on the 

real line R, find a partition of L into the minimum number of subsets 

L I, L2,''', L£ such that each L i (i=1,2,---,£) satisfies the following 

conditions; 
i 

Cl: the maximum density d M ~ 4, 

C2: for each 3-interval I, ILi(I) I a 2, and 

C3: there do not exist two 3-intervals I 1 and 1 2 with ILi(Ii) I = 

ILi(I2) I =2, ILi(I I) nni(I2) I =3, and Li(Ii) ~ Li(I2), 

where Li(I) and Li(I ) are defined for net list L i similarly to L(I) and 

L(I), respectively. 

Note here that the discussion for the case of K u =Kw= 2 can be ap- 

plied to the case of K u = 2 and Kw= 1 with a slight modification, since 

the realizability condition in both cases are quite similar. 

Let d M be the maximum density of a given net list, then from con- 

dition Cl, we have £ ~ [dM/4] where Fx] denotes an integer not less than 

x. On the other hand, if we partition a given net list L into subsets 

L i such that each L i has the maximum density equal to or less than 3, 

then each L i satisfies C2 and C3 automatically. Thus, we have 

[dM/4] ~ i ~ FdM/3]. 

Namely, at least [dM/4 ] layers are necessary, and at most [dM/3 ] layers 

are sufficient to realize a net list under the constraint that both the 

upper and lower street capacities in each layer are equal to 2. 

3. Simplifications of the Problem 

Since this Layering Problem seems too hard to be solved in its o- 

riginal form, we may have to simplify the problem. In the folowing, we 

relax conditions C2 and C3 so that the Layering Problem can be reduced 

to another one in terms of the so-called interval graph [I0] 

SIMPLIFICATION I: We first transform a given net list L into an- 

other L' such that each net of L' contains exactly two nodes, as follows: 

For each net N a of L with more than two nodes val, Va2, ,vak (a i < aj 

v + for i < j), split each Va'3 (i < j < k) into two nodes Vaj and aj such that 

Va[ is located at an inner point on [Vaj_l,Vaj] and v + is located at 
3 aj 
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,Va.+l], and replace N a by k-i nets ,'--, an inner point on [Va3 3 Nal' Na2 

Nak_l such that Na.3 = { Va['3 va~3 +1 } (let val- =val and Va~=Vak). 

By this transformation, we can disregard condition C3 in the Layer- 

ing Problem, since any such L' does not have two 3-intervals I 1 and 12 

such that IL'(II ) n L'(12) I = 3. Note here that the maximum density d~ 

of L' increases by at most one from the maximum density d M of L, i.e., 

d~ ~ d M + i. Moreover, we have the following proposition. 

Proposition i: If a subset L! of L' satisfies conditions C1 and 1 
C2, then the subset L i of L, which is obtained from LI by merging every 

pair of splitted nodes vq _ and v~ ~ into the original node vj, satisfies 

conditions CI, C2, and C3. 

Proof: To prove the proposition, we have only to show that the 

subset L i of L can be realized with the upper and lower street capaci- 

ties both equal to two. Since a subset L! of L' satisfying conditions 
1 

C1 and C2 satisfies condition C3 automatically, LI can be realized with 
1 

the upper and lower street capacities both equal to two. Therefore, 

there exists an interval graphical representation of L~, which yields 

a realization of L! with these street capacities by means of the topol- 1 
ogical mapping stated in Section 2.1. From this interval graphical rep- 

resentation, we can construct an interval graphical representation of 

L i which yields a realization of L i with the upper and lower street ca- 

pacities both equal to two, as follows. 

[a] In the case of d(v~,v~) = 2, the interval graphical representation 

of L~ can be divided into two portions as illustrated in Fig. 2 (a) 1 
M e r g e  v a n d  v j ,  a n d  we c a n  o b t a i n  a r e q u i r e d  i n t e r v a l  g r a p h i c a l  r e p r e -  

s e n t a t i o n  o f  L . .  
1 - + 

[b ]  I n  t h e  c a s e  o f  d ( v j , v j )  = 3 ,  s u p p o s e  t h a t  t w o  n e t s  c o n t a i n i n g  v~ a n d  
+ 

v. are adjacent in the interval graphical representation of L!. Then, 
3 + 

merge v[ and v. as illustrated in Fig. 2 (b), and we can obtain a re- 
3 3 

quired interval graphical representation of L.. ! 
[c] In the case of d(v~,v~)= 3, suppose that two nets containing v~ 

+ JJ 3 
and vj are not adjacent in the interval graphical representation of L!.l 

Turn upside down the sequence of nets in the right-hand portion and 

merge vq and v~, as illustrated in Fig. 2 (c). Then, we can obtain a 

required interval graphical represenation of L.. 
_ ~ 1 

[d] In the case of d(v4,v~) = 4, there exists an interval graphical rep- 
J J + 

resentation of L! in which two nets containing vq ~ and vj are adjacent, 1 _ + 
as illustrated in Fig. 2 (d). Merge vj and vj, and we can obtain a re- 

quired interval graphical representation of L i. q.e.d. 

Thus, our problem is to find a partition of L' into subsets L! such 
1 

that each subset L~ satisfies conditions C1 and C2. Henceforth, unless l 
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L: L' 
l 

v vj vj 

Fig. 2 

- + 

(a) The case of d(vj,vj) = 2. 

(b) The case of d(v~,v3)= 3. 

(c) The case of d(vj,v ) =3. 

(d) The c a s e  o f  d ( v j , v ~ . )  = 4 .  

o 

The transformation from an interval graphical 
r e p r e s e n t a t i o n s  o f  L~ i n t o  t h a t  o f  L i -  

1 

otherwise specified, a given net list L j is assumed to contain only nets 

with exactly two nodes. 

SIMPLIFICATION ~: Let us now consider a relaxation of condition 

L' C2 as follows: Given a subset L!l of L', let J( i ) be a set of intervals 
! [ V a , V b ]  s u c h  t h a t  v a a n d  v b a r e  c o n t a i n e d  i n  s o m e  n e t s  o f  L i .  I f  L ~ ( I )  

1 
for I E J(L~) , where L!(I)I for I is defined just as L(I) for I, is max- 

imal and I is minimal, i.e., there does not exist an interval I' ~ J(L~) 

such that L!I(I') aLl(I), or L!I(I') =L~(I) and I' $ I, then interval I e 

J (L:)±r is called a zone of L!. As can be readily seen from the defini- 
1 

t i o n ,  a n y  t w o  d i s t i n c t  z o n e s  do  n o t  o v e r l a p  e a c h  o t h e r .  By u s i n g  t h i s  

concept, we can introduce a condition C2' stronger than C2, as follows. 

C2': For any two consecutive zones Z~ and Z~+ 1 of L~ 
i' J 

ILI(Z j) n LI(Zj+I) I ~ 2. 
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Proposition 2: If a net list L~ satisfies conditions C1 and C2' 1 w 

then L~ also satisfies condition C2. 
1 

Proof: Let Z = [Vp,Vq] be an arbitrary zone of L~.l 

(i) If ILl(Z) I ~ 2, then there exists no 3-interval of L!I which over- 

lapps with zone Z. 

(~) If ILl(Z) ] = 3, then even if there exists a 3-interval I of L!l which 

over!apps with Z, we have I c Z, and moreover each node on I does not 

' =Li(Z) and hence belong to any net of L!. Therefore, we have Li(I) 1 

ILi  l t = 3. 
(iii) In the case of ILl(Z) I =4, consider eight nodes belonging to four 

nets of LI(Z), and denote them by v a, Vb, v c, Vp, Vq, Vx, Vy, and v z 

(a < b < c < p < q < x < y < z). Then, we can see from condition C2' that in- 

terval I = [Vc+l,Vx_l] must be a 3-interval of L! Moreover, among three 
i" 

nets which cover node Vc+l, at most one net has node Vq on I. There- 

fore, there holds ILl(I) I a 2. q.e.d. 

Thus, through these simplifications I and ~ stated above, the 

Layering Problem can be reduced to the following problem. 

[Simplified Layering Problem (SLP)]: Given a net list L' such that 

every net has exactly two nodes, partition L' into the minimum number 

Z' of subsets so that each subset satisfies conditions Cl and C2' 

For example, Fig. 3 shows a partition of a given net list L' into 

L{ and L~ each of which satisfies C1 and C2', where zones of L', L~, 

and L~ are also depicted. It can be seen from the reference lines drawn 

in the figure that both L~ and L½ are realized with the upper and lower 

street capacities equal to two. 

Considering that condition C2' is concerned only with zones, to 

check whether or not C2' is satisfied, it is sufficient to know how many 

zones there are and which nets cover each zone. Thus, we define a zone 

representation, which indicates which nets cover which zones. For ex- 

ample, the zone representations associated with the net lists L', L~, 

and L~ of Fig. 3 are illustrated in Fig. 4. 

Now, construct an interval graph G(L') from a given net list L' 

such that each vertex corresponds to a net and there exists an edge be- 

tween vertices v and w if and only if the nets corresponding to v and 

w overlap each other. As can be readily seen, each zone and the maxi- 

mum density of a given net list L' correspond to a maximal clique and 

the clique number [I0] of G(L'), respectively. Therefore, problem SLP 

can be restated as a problem of the interval graph. 
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Fig. 4 Zone representations. 

4. Lower Bound to the Number of Layers 

Now, let us consider a lower bound to the minimum number i' of sub- 
! sets into which L' is partitioned in problem SLP. Let d M be the maxi- 

mum density of a given net list L', then as can be readily seen from 

condition CI, we have [d~/47 as a lower bound to i'. Moreoverr let qM 

be the maximum number of nets which are common to two consecutive zones 
! 

Zj and Zj+I, i.e,, qM ~ max[ IL'(Zj) n L' J (Zj+I) I ]. Then, we have the 

following proposition. 

Proposition 3: There holds the following inequality. 

max[ Fd~/47, [(qM' + 2)/47 ] _< ~' . 

Proof: Since Fd~/4] ~ ~' can be readily verified, we have only to 

' A 4k + ~, where k is a non-negative integer show F(qM' + 2)/47 ~ i'. Let qM= 

and e= 0, i, 2, or 3. 

d M ' + 1 = ' there holds ' > qM (i) If e ~ 2, then from the difinition of qM' 

4k +i + ~. Thus, £' a Fd~/47 = k + 1 = [(q~+ 2)/47. 

(~) In the case of ~= 3, let Z 1 and Z 2 be zones of L' such that q~= 

IL' (Z I) n L'(Z2) I = 4k+ 3. From the definition of a zone, we can see that 

L' (Z I) - L'(Z 2) # ~ and L' (Z2) - L! (ZI) ~ ~. Therefore, for any partition 

of L' into k+l subsets L! such that each L! satisfies CI, there exists 
1 h and h 1 ~ 

a subset L h' which has zones Z 1 Z 2 satisfying IL'(Z ) n L' (Z)I = 3 

Thus, Z' ~k + i. Moreover, similarly to (i), we have £' ~ k + i. Hence, 

Z' >- k + 2 = F(qM' + 2)/47. q.e.d. 

Now, to obtain another lower bound, consider the case where the 

maximum density df is a multiple of four, i.e., d~=4k (k : integer). 
4k 4k Mz4k 

-~et Z 1 , Z2 ''''' m be zones of a net list L' arranged from left to 

right in this order such that IL, (z~k) I" = 4k (I ~ j ~ m). For these zones, 

let us define 
Z 4k" L' i k) - TR( j ) ~ (Z3 L'(ZJ +l)'4k 
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4k Z 4k, _ L'(Zj_I) , TL(Z~ k) ~ L'( j ) 

where let L'(Z k) =L,(Zm+I) = %. 

' ' = 4k has a zone Z~ k such that ITR(z~k)I = If a net list L with d M 3 

2 or 3, then in order to partition L' into subsets L~, L~,--., L~ each 

of which satisfies conditions C1 and C2', all the nets of TR(Z~ K) have 

to be contained in a subset L!. In other words, if L' has such a zone 
l 

z~k and can be partitioned into k subsets each of which satisfies C1 
3 

and C2', then such a partition contains all the nets of TR(Z~ k) in a 

single subset. The reason is as follows: Assume that the nets of 

TR(Z~ k) such that ITR(Z 4k" j )I = 2 or 3 are partitioned into two or more 

subsets. Then, there exists a subset L~ which contains exactly one net 
1 

of TR(z~k), say Nh, and hence we have two consecutive zones Z a ( ~ Z~ k) 
3 4k 

and Z b (=Z9+I) of LI such that Nhe LI(Za), Nh/LI(Zb), and ILi(Za) n 

L!(Zb) l l  = 3, which do not satisfy C2' 

Noting this fact, let us introduce a binary relation ~* into a 

set L* of nets defined by 
m z4k. L* A U L'( 

=j=l J)" 

such that Nx~*Ny if and only if nets N x and Ny in L* have to be con- 

tained in the same subset, so that L' can be partitioned into k subsets 

each of which satisfies conditions Cl and C2'. 

In the following, we list up cases in which we can easily find a 

pair of nets in relation ~*. 

i°: If there exist zones Z~ k and 4k 3 Zj+ 1 such that ITR(Z k)I = ITL( 
4k 

Zj+I) I = 2 or 3, then as discussed above, we have Nx~*Ny for any pair 
4k 

of nets N x and Ny in TR(Z k) u TL(j+I). 

Similarly to 1 °, we can find a pair of nets satisfying relation 

~* in the following. 

2°: If there exists a zone Z~ k such that ITR(z~k)I = 4 and Na~*N b -- ] 

for N a and N b e TR(z~k), then we have Nx~*Ny for N x and Ny ~ TR(Z 4k) - 

{Na,Nb}- 

3_~°: The case similar to 2 ° with TR(Z~ k) replaced by TL(z~k). 
J J 

4°: If there exists a zone Z~ k such that ITR(z~k)I = 5 and there 

hold N ~*N_ and N_~*N for N , 3 4k 3 N_, and N e TR(Z= ), then we have 
a D D c 4k a D c 3 

Nx~*Ny for N x and Ny e TR(Zj ) - {Na,Nb,Nc}. 

5_~°: The case similar to 4 ° with TR(Z~ k) replaced by TL(z~k). 
J j 

Let N~*N for any net N e L*, then we can readily see that relation 

~* is an equivalence relation. Thus, we can partition L* into equiv- 

alence classes S i (i = 1,2,---) by ~*. Using these equivalence classes, 

we can find other pairs of nets, for which there holds relation ~*, as 

in the following. 
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6°: If there exists a zone Z! k satisfying the following conditions; 
-- J 
i) there exists exactly one equivalence class S x such that 

ITR(z~k)A n Sxl ~- 1f 

ii) there exists exactly one equivalence class S v other than S x 

such that TR(Z~ k) n Sy~ ~ and IL' (Z 4k) n Sy I <~4- IL' (Z 4k) n Sxl, 

and 

iii) for any equivalence class S i exclusive of S. and S. such that 

TR(z~k) n S ifl ~, there holds IL' (z~k)n S il >~4- IL'~z4k)n Sxl, 

then we have Nx~*Ny for any pair of nets Nx ~ S x and Ny c Sy. 

The case similar to 6 ° with TR(Z 4k) replaced by TL(z~.k) .A 7_[°: 

8°: If there exists a zone z3k- satisfying J the following conditions; J 

i) there exist exactly two equivalence classes, say S x and Sy, 
z4k. such that ITR(Z~ k) nSxl = ITR( j ~ nSyI=l, and 

ii) there do not exist two equivalence classes S a and S b other 

than S x and S,, such that TR(Z 4k) n S ~ ~, TR(Z 4k) n S_# ~, 
i . ,  3 a - ~ 3  D 

IL' (Z 4k) n S I ~ 4 - IL' (Z~. K) n S I, and IL' (Z~. K) n S-I -< 4 - 
J a j x 3 o 

I T.'(z4k) n s I, 
3 Y 

then we have N ~*N for any N e S and N. e S... 
x y x x x.. i .. 

9°: The case similar to 8 ° with TR(Z~ K) replaced by TL(Z~ K) . 
4k J ] 10 : If there exists a zone Z. satisfying the folloiwng conditions; 
J 

i) there exist exactly three equivalence classes, say S , S , 

and St, such that ITR(Z~ k) nSxl = ITR(Z~ k) nSyl = ITR(z~k)YSz 1 

= i, and 

ii) there does not exist an equivalence class S. different from 
Z 4k" S " i ~k) n 

S x, Sy, and S z such that TR( J4k n iF ~ and ]L' (Z SiI < 

4-A, where A ! min [ IL'(Zj ) nShl ], 
h=x, y, z 

then we have Nx~*Ny and Ny~*N z for any N x ~ Sx, Ny ¢ Sy, and N z ¢ S z. 
z4k. II°: The case similar to i0 ° with TR(Z k) replaced by TL( j ). 

Now, given a net list L' , check whether or not L' satisfies any 

condition of 1 °- ii °, and seek as many pairs of nets in relation ~* 

as possible. Let S* (i=I,2,---) be equivalence classes thus obtained 
l 

(namely, S* are the equivalence classes associated with the coarsest 
1 

partition of L* by ~* through the use of 1 °- ii°). From the definition 

of ~*, and S*, we can easily verify the following proposition. 
! = Proposition 4: Given a net list L' with d M 4k, if there holds 

one of the following conditions I, ]I, and ]I[, then we have Z' _> k + i. 

I: There exist an equivalence class S* and a zone Z (not neces- 
-- l 

sarily IL' (Z) I = 4k) such that In, (z) n S* I >_ 5. 
l 

II: There exist an equivalence class S* and zones Z (not necessa- 
-- 1 

rily IL'(Z)I =4k) and Z 4k such that IL'(Z) nS*I =4 and IL'(Z)uS* nL'( 
3 z z4k. j,l=3. 
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IE: There exists a zone Z~ k such that 

i) there exists an equivalence class S* satisfying IL,( z k) n S < 4, 
x 

and 

~) for any equivalence class S[ with L'(Z~ k) n S~ ~ ~ exclusive of S~, 

, 4k , (z~ k) n e l l .  there holds ]L (Zj) n Si] > 4 -]L' 

For example, zone representations of net lists which satisfy con- 

ditions I, Z, and IE are shown in Figs. 5 (a), 5 (b), and 5 (c), re- 

spectively, and we can see that for these net lists, we have £' z k + 1 

=3. 

(a) 

Condition I. 

S * . _ _  Z 

i . . . . _  ~ ~ . ,, , ' - r - - ~  

i I 

• ~ 

- i  

(b) 

Condition ]I. 
IIIIII 

III II 

IIIII 

z4k 
J 

: ! 
.: ! 

S*. ~ Z  

• I i 

f'  

E 

: . . . .  { 
: { 
.: ".. 

• i 

(c) 

Condition I~. 

IIII 

z4k 
J 
p. ! 

• ! 

Fig. 5 Examples of net lists with £' > 2. 
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5. Outline of Algorithm 

In what follows, we describe a heuristic algorithm for problem SLP. 

The algorithm tries to seek subsets L! of a given net list L' 
1 

through a number of stages such that at each stage a subset L! satisfy- 
l 

ing C1 and C2', is taken out from L' In this process, relation ~* 

is made use of in such a way that if the current subset L! contains any 
1 

net in an equivalence class S~, then let L!I contain all the nets in S*'h, 

if the union of L!I and S~ does not satisfy condition C1 or C2', then 

let any net of S~ be not added to L!.l 

Before describing the algorithm, let us consider the case in which 

any pair of nets in relation ~* have not been found. Then, let us pro- 

vide p ( ~ d~) tracks, and allocate all nets of L' on these tracks with- 

out overlapping. If we can choose four tracks among them such that a 

set L~ of nets allocated on these four tracks satisfies condition C2', 

then this L~ can be a subset L!I of L'. Thus , the problem here is how 

to find such four tracks, on which we touch in the following. 

First, construct a d__irected bipartite graph G = [T,B;E,D] such that 

i) each vertex t i c T corresponds to a track, 

~) each b~ b~ of track ti, where a break 3 e B corresponds to a break 3 

of a track indicates an interval [Va,V b] such that there are two nets 

on the track; one starting at v a to the left and the other starting at 

v b to the right, and there is no net on the track between v a and Vb, 

iii) E ~ { (b~,t i) }, where (b ,t i) denotes an edge incident from 

b~ into ti, and 
3 

~) there exists an edge (th'b~)3 e D if and only if on track t h 
there does not exist any net passing over break b~. 

I 

For a set X of vertices on this graph G, let F+(X) ~ { v I (x,v) ~ E u D, 

x c X ~ and F-(X) ~ { v I (v,x) ~ E u D, x ~ X }. Then, a subset T O c T such 

that IT0] = 4 and F-(T0) ¢ F+(T0 ) , yields desired four tracks, and hence 

a set of nets on these four tracks satisfies conditions C1 and C2' 

<ALGORITHM> 

Input : A net list L' with the maximum density d~. 

0utput : A subset L~ of L' satisfying conditions Cl and C2'. 

Step i: Using Propositions 3 and 4, seek a lower bound k to Z'. If 

d M 4k, then go to Step 2; else go to Step 4. 

Step 2: If there exists an equivalence class containing more than one 

net, which is generated in Step 1 to find a lower bound by Proposition 

4, then go to Step 3; else go to Step 4. 

Step 3: Define a weight w(S[) of each equivalence class S~ by an or- 
1 

dared pair such that w(S~) A ( Is~I, max[ IL' (z) n S~l ] ), and a weight 
= Z 
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W(Nh) of each net N h in L' - L* by the length of the interval covered by 

N h, i.e., w(N h) ~ la- b I for N h = (Va,Vb}. Then, let L~ be an equiva- 

lence class with a lexicographically maximum weight. While L~ satisfies 

' as many equivalence classes as possible conditions Cl and C2', add to L 0 

in lexicographically descending order of weight. After this, conduct 

the similar process for nets in L' - L* according to the weight w(N h) of 

N h e L' - L*. Then, go to Step 9. 

Step 4: Provide 4k tracks, and assign all the nets in L' to these 

tracks, so that the nets assigned to a track do not overlap each other. 

This assignment is done as follows: Pick out a net with the leftmost 

node among unassigned nets, and assign it to the one among 4k tracks 

such that the rightmost node of nets on it is located at the leftmost 

position. In case there exist any tracks to which no net is assigned, 

choose one of them arbitrarily. 

Step 5: Construct a directed bipartite graph G= [T,B;E,D] mentioned 

above, and define a weight of each vertex t e T by an ordered pair such 

that 

( rain [ IF-(b)I ], [ Z IF-(b) ]]/IF-(t)I ); 
bcF- (t) bcF-(t) 

W(t) ~ if F-(t) ~ ~, 
( ~, ~ ); otherwise. 

Let t o c T be a vertex with a lexicographically minimum weight W(t0). 

Then, set T O ÷ {to} , and add vertices in T to T 0 in lexicographically 

ascending order of weight, until T O satisfies IT01 ~ 4 and F-(T0) c F+(T0 ) . 

If such T O can be found, then go to Step 7; else go to Step 6. 

Step 6: Choose three vertices of T in ascending order of weight, and 

let L~ be a set of nets contained in the corresponding three tracks. 

Then, go to Step 8. 

Step 7: If IT01 = 4, then let L~ be a set of nets contained in the 

tracks corresponding to the vertices in TO, and go to Step 8. Other- 

wise, try to find a set T~ such that T O c T~ c T, IT61~ 4, and t-(T6) c 
F+(T~), similarly to Step 5. If IT~I < 4 and there exists a vertex t 

of weight ( ~, ~ ), then add each such vertex to T~, unless [T~I = 4. 

i) If IT~[ = 4, then let L 6 be a set of nets contained in the 

I tracks corresponding to the vertices in T0, and go to Step 8. 

~) If IT61 = 3, then conduct (9). 

- , ' the vertices in T- T O iii) If ITS1 < 2 then add to T O ' with a lexi- 

cographically minimum weight, unless [T~I = 3. 

9) Let L~ be a set of nets contained in the tracks corresponding 

to the vertices in T 6, then go to Step 8. 

Step 8: Add to L 6 as many nets in L' as possible in descending order 

of weight defined for nets in L'- L 6 similarly to W(Nh) for N h e L'- L*, 
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while L' satisfies conditions C1 and C2' 
0 

Step 9: Terminate by setting L' ÷ L' - L 6. 

By repeated applications of this algorithm, we can partition a 

given net list L' into subsets satisfying conditions C1 and C2'. More- 

over, it should be noted that we can introduce into Steps 3 and 5 - 7, 

a procedure to find pairs of nets in relation ~* by using 6 ° - Ii °, so 

that the current execution of the algorithm may not decrease the possi- 

bility in the next execution that the remaining net list L' may be par- 

titioned into a minimum number of subsets. 

6. Concluding Remarks 

In this paper, we have described an approach to the layering prob- 

lem in multilayer PWB wiring. We have paid attention only to the case 

of K u=K w= 2, since the discussion on it can be applied to the case of 

K u = 2 and K w = 1 with a slight modification. However, there still re- 

main a number of problems, among which of primary importance is a nec- 

essary and sufficient condition (or non-trivial sufficient condition) 

for a net list to be realized with a given number of layers. 

In what follows, we point out another approach to problem SLP, 

which is applied only to the case of K =K = 2. 
U W 

A set of pairwise disjoint pairs of distinct nets is called a 

matching M of a given net list L' For two nets N 1 = {Va,V b} and N 2 = 

{Vc,Vd}, the following operation is called a merqing of nets N 1 and N2: 

Replace two nets N 1 and N 2 by a new net NI2 = {Vx,Vy} defined by x = min 

[ a,c ] and y=max[ b,d ]. Given a net list L' and a matching M of L ~, 

the net list L" obtained from L' by merging every pair of nets in M is 

denoted by L' [M]. Let p be the maximum density of L" =L'[M], and con- 

sider a partition of L" into [p/21 subsets LI, L~,--" L~ ' p/21 such that 

each subset L~ has the maximum density not greater than 2 Based on 
1 

this partition, we can generate a partition of the original net list L' 

into subsets L i' such that each L!l of L' is obtained from LUI by decom- 

posing every merged net in L'2 into two original nets. Then we can 
l 

readily see that each subset L! satisfies conditions Cl and C2', and 
1 

hence we can use such a partition of L' as an approximate solution to 

problem SLP. Noting that it is easy to find a partition of L" into 

[p/23 subsets, in this approach, the following problem has to be solved. 

[Matching Problem]: Given a net list L', find a matching M of L' 

such that the maximum density p of L' [M] is minimized. 

With respect to this problem, we have the following propositions; 



37 

Proposition 5: If there holds ~(Nj)= ~(N h) for two distinct nets 

N. and Nh, then there exists an optimum matching M* containing pair 
3 

{ Nj, N h }, where ~(N) is a set of zones which have net N, i.e., 

~(N) ~ { z IN~L'(z) }. 

Pro~sition 6: The Matching Problem is polynomially transform- 

able [II] to problem SLP. 
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