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Abstract. Let E be a finite set, R the set of real numbers and 

f: 2 E ÷ R a symmetric submodular function. The pair (E,f) is called 

a symmetric submodular system. We examine the structures of symmetric 

submodular systems and provide a decomposition theory of symmetric sub- 

modular systems. The theory is a generalization of the decomposition 

theory of 2-connected graphs developed by W. T. Tutte. 

i. Introduction 

A decomposition theory of graphs is developed by W° T. Tutte [9]. 

A connected graph G is decomposed into a set of 2-connected subgraphs 

of G and the incidence relation of these 2-connected subgraphs is 

represented by a tree. Moreover, a 2-connected graph G is decomposed 

into a set of 3-connected graphs, bonds and polygons, and their structur- 

al relation is represented by a tree. Also R. E. Gomory and T. C. Hu 

[7] derived a tree structure of the set of minimum cuts of a capacitated 

undirected (or symmetric) multi-terminal network. In extracting these 

tree structures, symmetric submodular functions play a crucial role. 

Related tree representation of a collection of sets was examined by J. 

Edmonds and R. Giles [4]. 

Let E be a finite set and f: 2 E ÷ R a symmetric submodular 

function, whose precise definition will be given in Section 2. The 

pair (E,f) is called a symmetric submodular system. We shall consider 

symmetric submodular systems and provide a theory of decomposition of 

symmetric submodular systems, which is a generalization of the decompo- 

sition theory of 2-connected graphs by Tutte [9]. The decomposition 

theory can be applied to any systems with submoduiar functions such as 

graphs [9], capacitated networks [7], matroids [i0], communication net- 

works [5] etc., where if necessary the underlying submodular functions 

should be symmetrized (see Section 5). 
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2. Definitions and Assumptions 

Let E be a finite set, R the set of real numbers and f: 2 E ÷ 

R a submodular function, i.e., 

f(A) + f(B) > f(AUB) + f(Ar%B) (2.1) 

for any A, B C E. The pair (E,f) is called a submodular system [6] 

and if the submodular function f is symmetric, i.e., 

f(A) = f(E-A) (2.2) 

for any A ~ E, then (E,f) is called a symmetric submodular system. 

If C ~ E satisfies Icl >= k and IE-CI ~ k for a positive 

integer k, we call C a k-cut of (E,f). Let e A ~ E be a new element 

corresponding to a nonempty subset A of E and define 

E' = (E-A) U {eA} , (2.3) 

f' (B) = f(B) if e A ~ B =C E', (2.4a) 

= f((B-{eA})UA) if e A e B ~ E'. (2.4b) 

Then we call the submodular system (E',f') an aggregation o_ff (E,f) b__ Z 

A and we denote it by (E,f)//A. Let P = {A0,AI,-..,A k} be a parti- 

tion of E, i.e., A i / @ (i=0,1,.-.,k), Aif%A j = @ (i~j;i,j=0,1,...,k) 

and AoUAIU "-" UA k = E. For the partition P, let us define 

(E,f)//P = (''' (((E,f)//A0)//A I) "'')//A k. (2.5) 

Note that (E,f)//P does not depend on the order of the Ai's in (2.5). 

If subsets C 1 and C 2 of E satisfy cIU C 2 ~ E, CIr%C 2 ~ @, C 1 - 

C 2 ~ @ and C 2 - C 1 / @, then we say C 1 and C 2 cross. We define 

a partial order ~ on the set of partitions of E as follows. For 

partitions P and P' of E, P ~ P' if and only if for each A ~ P 

there is an element A' s P' such that A C A' 

Throughout the present paper, we assume that (E,f) is a symmetric 

submodular system and 

min{f(C) I C is a 1-cut of (E,f)} = i*. (2.6) 

We denote by Cf the set of 2-cuts C such that f(C) = I*. We shall 

examine the structure of the set Cf and decompose (E,f) based on Cf. 

It should be noted that Cf is complemented, i.e., if C s Cf then 

E-C c Cf. 

3. Main Theorems 

The following lemma is fundamental for the symmetric submodular 
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system (E,f) satisfying (2.6). 

Lemma i: Suppose that subsets C 1 

f(C I) = f(C 2) = I*. 

Then we have 

and C 2 of E cross and satisfy 

(3 .i) 

f(ClVC2) = f(CIAC2) = f(Cl-C2) = f(C2-Cl) = i*. (3.2) 

(Proof) Since 

f(C I) + F(C 2) ~ f(C IUC 2) + f(ClAC 2) (3.3 

and C 1 and C 2 cross, we have from (2.6) 

f(ClU C 2) = f(C IAC 2) = I*. (3.4 

Because of the symmetry of f, Lemma 1 follows from (3.4). Q.E.D. 

Lemma 2: Let el, e2, e 3 and e 4 be four distinct elements of E. If 

{el,e2}, {el,e3}, {el,e 4} ~ Cf, then {e2,e3}, {e2,e4}, {e3,e 4} s Cf. 

(Proof) Since {el,e 2} and {el,e 3} in Cf cross, we have from Lemma 1 

f({el,e2,e3}) = I*. (3.5) 

If E = {el,e2,e3,e4}, then {e2,e 3} = E - {el,e 4} £ Cf. Therefore, 

suppose E ~ {el,e2,e3,e4}. Then, since {el,e2,e 3} and {el,e 4} cross, 

we have from (3.5) and Lemma 1 

{e2,e 3} = {el,e2,e 3} - {el,e 4} ~ Cf. (3.6) 

Because of the symmetry among the elements e 2, e 3 and e 4, this 

completes the proof of Lemma 2. Q.E.D. 

Now, let Rf be a collection of two-element subsets of E defined 

by 

Rf = {C IC sCf, ICl=2}. (3.7) 

Theorem i: Let G = (E,Rf) be a graph with the vertex set E and the 

edge set Rf defined by (3.7). If G is connected, then G is a 

complete graph or an elementary closed path. 

(Proof) By definition, connectedness of G implies that IEI = 1 or 

IEI ~ 4 and thus we assume IEI ~ 4. It follows from Lemma 2 that G 

can be a complete graph, an elementary closed path or an elementary non- 

closed path. Therefore, let us assume that E = {el,e2,''',e n} (n ~4) 

and that {ei,ei+ I} s Cf (i=l,2,.-.,n-l). Then {el,e n} must be in Cf 

because from Lemma 1 we have {e2,e3,--.,en_ I} E Cf. Consequently, G 

cannot be an elementary nonclosed path. Q.E.D. 

Suppose that the graph G = (E,Rf) has at least four vertices. If 

G is a complete graph or an elemenary closed path, then we say (E,f) is 
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of bond type or of polygon type, respectively. We call (E,f) irreducible 

if Cf is empty or (E,f) is of bond type or of polygon type. In partic- 

ular, if Cf is empty, we call (E,f) absolutely irreducible. 

Suppose that, for e* c E, a partition P(e*) = {{e*},AI,A2,o'',Ak } 

of E satisfies 

(i) (E, f)//P (e*) is irreducible, 

(ii) for each i = i, 2, ..-, k, if IAil _> 2, then A i g Cf. 

Then P(e*) is called an irreducibility partition associated with e* 

s E. Let us denote by F(e*) the set of all irreducibility partitions 

associated with e* s E. Note that F(e*) is nonempty for every e* 

g E. 

For partitions P and P' of E given by P = {A0,AI,'--,A k} 
! ! , and P' = {A 0 ,A 1 , -.,Ah'}, let us define a partition PAP' of E by 

I ! PAP' = {hig~i j l i=0,l,...,k;j=0,l,.-.,h;iithh j fi~}. (3.8) 

We shall show Theorems 2 - 5 from which follows the fact that, for 

every e* ~ E, P(e*) is closed with respect to the operation A (Theorem 

6). We need some preliminary lemmas. 

Lemma 3: 

define 

and 

Suppose P H {A0,AI,.-.,A k} (k ~4) 

A%* : U{Aj l j=%,Z+l,--.,k} 

is a partition of E and 

(3.9) 

(3.10) p' = {A0,AI,-.',Az_I,Az*} , 

where 3 < Z < k. Then the following (i) and (ii) hold. 

(i) If (E,f)//P is of polygon type and f(AiUAi+ I) = I* (i=0,1, 

• ..,k), where Ak+ 1 = A 0, then (E,f)//P' is also of polygon 

type and f(Az_I U A~*) = f(Az*UA 0) = i*. 

(ii) If (E,f)//P is of bond type, then (E,f)//P' is also of bond 

type. 

(Proof) From Lemma 1 we have f(Ai*) = I* and f(Az_I U Ai*) = f(Az*U 

A 0) = I*. Because of the assumption and Theorem 1 this implies that 

(E,f)//P' is of polygon type or of bond type according as (E,f)//P is 

of polygon type or of bond type. Q.E.D. 

Lemma 4: Suppose P ~ {A0,A!,.--,A k} (k ~3) is a partition of E such 

that (E',f') H (E,f)//P is of polygon type and that f(AiU Ai+ I) = I* 

(i=0,1,.-.,k), where Ak+ 1 = A 0. Also suppose B s Cf and A 0~B = 

and define 

j = {j I j=I,2,...,k;Aj~B~}. (3.11) 

Then, for any integer i* such that min J < i* < max J, we have Ai, 

B, where min J and max J denote the minimum integer and the 
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maximum integer in J, respectively. 

(Proof) Suppose there were an integer 

max J and Ai, - B i @- Put 

Jl = {j I J sJ,j < i*}, 

J2 = {j I J sJ,j > i*}. 

Also define 

AI* = U {Ajlmin Jl £ j £ max Jl } , 

A2* = U{Ajl min J2 ~ j ~ max J2 } , 

i ~ such that min J < i* < 

3.12) 

3.i3) 

3.14) 

(3.15) 

P' = (P- {Aj I Aj ~ AI*UA2*; j=I,2,---,k})U{AI*,A2*}. 

(3.16) 

It follows from Lemma 3 that the aggregation (E",f") ~ (E,f)//P' is of 

polygon type. Furthermore, put B* = B - Ai,. Then f(B*) = I* and 

we have from Lemma 1 and the definition of Al* and A2* 

f(AI*UA2* ) = f((Al* UB*) U (A2*VB*)) = I*. (3.17) 

This contradicts the assertion that (E",f") is of polygon type. Q.E.D. 

Lemma 5: Under the assumption of Lemma 4, if B and Aj, with j* = 

min J cross, then (E,f)//P' is of polygon type, where 

P' = {A0,AI,''',Aj,_I,Aj,-B,Aj,~B,Aj,+I,--',Ak}. (3.18) 

Furthermore, we have 

f(Aj,_l U (Aj,-B)) = f((Aj,~B) UAj,+I) = I*. (3.19) 

(Proof) Since Aj,_I~B = @ and either Aj,_IUAj,UB = E or Aj,_I 

U Aj, and B cross, we have f(Aj,_IU(Aj,-B)) = f(Aj,~B) = I*. 

Therefore, from the assumption and Theorem 1 (E,f)//P' must be of 

polygon type and the remaining part follows. Q.E.D. 

Theorem 2: Suppose P, P' s P(e*) and IPI ~ 4. If (E,f)//P is Of 

polygon type, then (E,f)//PAP' is of polygon type and, therefore, 

PAP' e P(e*). Moreover, if IP' l ~ 4, (E,f)//P' is also of polygon 

type. 

(Proof) Suppose P = {{e*}=A0,AI,---,A k} (k ~3) and P' = {{e*}=A0', 

, • ' s P' cross, then for the partition A 1 ' ---,Ah'}. If A 1 ~ P and A 3 

P1 obtained from P by dividing A i into A i - Aj' and A i~Aj', 

(E,f)//P 1 is irreducible and of polygon type due to Lemma 5. By repeat- 

ing this process we obtain a partition P* = {{e*}=A0*,AI*,...,Ak**] 

which is minimal, with respect to the partial order ~ , with the 

property: " P* ~ P and A * and A ' do not cross for any A * ~ P* 
i 3 l 

! 
and Aj ~ P'. The obtained (E,f)//P* is of polygon type. 

If there is no Ai* in P* such that Ai* contains at least two 
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A ' 's, then P* = PAP' and this completes the proof. Therefore, 
] 

suppose that some A * is expressed as A.* = U{Aj' I J=tl,tZ,...,t P} 
10 10 

(p~2). Since (E,f)//P* is of polygon type, f(Ai~) = I*. It follows 

that (E,f)//P' must be of polygon type or of bond type. In either 

case, from Theorem i, for some j* ~ {tl,t2,...,tp} and some j' e {0, 

l,--.,h} - {tl,t2,...,t p} there holds f(Aj,' UAj.') = I*. Therefore, 

since Ai0* and Aj,'U Aj, ' cross, we see from Lemma 5 that (E,f)//PI* 

is of polygon type, where PI* is the partition of E obtained from 

P* by dividing A.* into A~* ~(A.,'UA..') = A.,' and ±0 '" ] 3 3 Aim (Aj,' 
A .') = Ai* _ Aj,0 .I By repeating this process we reach the partition U 

PAP ~ for which (E,f)//PAP' is of polygon type. 

Moreover, since PAP' ~ P', if IP'l ~ 4, then (E,f)//P' is of 

polygon type due to Lemma 3. Q.E.D. 

Lemma 6: Suppose P ~ {A0,AI,.'-,A k} (k~3) is a partition of E and 

(E',f') ~ (E,f)//P is of bond type. Also suppose B s Cf and Aj, e 

P cross and A 0~B = @. Then (E,f)//P' is of bond type, where P' = 

{A0,AI,''',hj,_I,ij,-B,Aj,mB,Aj,+I,''',Ak}- 

(Proof) Since B and Aj, cross, there is an Ai, s P such that 

Ai, ~ B # @ and i* / 0, j*. Put B* = Ai,UB. Then we have f(B*) = 

I*. Since B and Aj, cross and B* and Ai, UAj, cross, we get 

f(Aj,~B) = f(Aj,-B) = f(hi, U(Aj,mB)) = l*. (3.20) 

From (3.20) and Theorem i we see that (E,f)//P' is of bond type. 

Q.E.D. 

Theorem 3: Suppose P, m' s P(e*) and lm I ~ 4. If (E,f)//P is of 

bond type, then (E,f)//PAP' is of bond type and, therefore, PAP' s 

P(e*). Moreover, if IP'I ~ 4, (E,f)//P' is also of bond type. 

(Proof) Theorem 3 can be shown by using Lemmas 3 and 6 and Theorem 1 

in a way similar to the proof of Theorem 2. Q.E.D. 

Theorem 4: Suppose e* s E, P : {{e*},AI,A 2} £ P(e*) and P' = {{e*}, 
I ! A 1 ,A 2 } e P(e*). Then PAP' s F(e*). If IPI = 3 for any P s P(e*) 

then IP(e*) I = i. 

(Proof) Suppose P / P' 

First, suppose h I ~ A l' Then IA2 I A 2 and f({e*} UA I) : f(E 

-A 2) = l*. Therefore, for the partition PAP' ~ {{e*},AI,A2AAI',A2-AI'}, 

(E,f)//PAP' is of bond type or of polygon type and PAP' E P(e*). 

Next, suppose A 1 and A I' cross and A 2 and A I' cross. Then 

' = ') = f(A2~AI' ) = f(A2-AI') = l*. It follows f({e*} U(AI-A 1 )) f(A I~A 1 

that, for PAP' ~ {{e*},AI-AI',AI~AI',A2~AI',A2-AI'}, (E,f)//PAP' is 

of bond type or of polygon type and PAP' E P(e*). 

The remaining part of the theorem follows from the fact that, if 
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P, P' s F(e*), P ~ P' and IPI = IP'I = 3, then PAP' s P(e*) and 

IPAP'I ~ 4. Q.E.D. 

Lemma 7: Suppose that P ~ {A0,AI,.'.,A k} (k~3) is a partition of E 

and that (E,f)//P is absolutely irreducible. Then, for any B s Cf 

such that AoAB = @, B and any of A I, --., A k do not cross. 

(Proof) Suppose B and A 1 cross. Let us define 

I = {i I AimB / @, i=l,2,...,k]. (3.21) 

Then IIl ~ 2 and, from Lemma l, A* ~ U{Ai I i ~ I} satisfies f(A*) 

=I*. It follows that I = {l,2,...,k}, since (E,f)//P is absolutely 

irreducible. Put 

B* = (B U( U{A i l i=2,...,k})) - A I. (3.22) 

From Lemma 1 we have f(B*) = l*. Consequently, f(A 0UA I) = i*, since 

B* = E - (A 0UAI). This contradicts the absolute irreducibility of 

(E,f)//P. Q.E.D. 

Theorem 5: Suppose that, for some P ~ P(e*) such that IPI ~ 4, 

(E,f)//P is absolutely irreducible. Then IP(e*) I = i. 

(Proof) Suppose P = {{e*},AI,..-,A k} and there is another P' = {{e*}, 

AI',...,Ah'} in F(e*). It follows from Lemma 7 and the absolute irre- 

ducibility of (E,f)//P that each A ' s P' is included in some A s 
3 l 

P. Suppose that, for some distinct indices Jl' J2 ~ {l,2,...,h}, 

A ' UA ' is included in some A.. Then (E,f)//P' must be of polygon 
31 32 i 

type or of bond type. This contradicts Theorem 2 or 3. Therefore, 

P=P' Q.E.D. 

It should be noted that, if IEI ~ 3, (E,f) is absolutely irreduc- 

ible. Therefore, from Theorems 2 - 5 we have the following. 

Theorem 6: For any e* e E, there is a unique minimal element of the 

partially ordered set (F(e*), ~ ) 

Because of Theorem 6, for each e* s E, we call the unique minimal 

element of P(e*) the minimal irreducibility partition o_ff E associated 

with e* and denote it by P(e*). Moreover, we call A c P(e*) a 

minimal irreducibility component o_ff (E,f) associated with e*. 

Lemma 8: For e*, e e E, if the set {e} is a minimal irreducibility 

component of (E,f) associated with e*, then P(e*) = P(e). 

(Proof) From the assumption, P(e*) ~ P(e). Therefore, P(e) ~ P(e*) 

and 9(e) s F(e*). By the minimality of P(e*), this means 9(e*) = 

P(e). Q.E.D. 

Theorem 7: Suppose a set D ~ E is a minimal irreducibility component 
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of (E,f) associated with e* c E such that IDI ~ 2. Then, for any 

e e D, E- D is included in a minimal irreducibility component of (E,f) 

associated with e. 

(Proof) Let P(e*) = {{e*}=A0,AI,-.-,A k} and P(e) = {{e}=A0',AI',-.., 

Ah'}, where e s A 1 = D and e* s AI'. Suppose that AIUA I' / E. 

Then, since from Lemma 8 we have {e*} & A I' and since from Lemmas 5, 

! o 6 and 7 for each Aj' s P(e) Aj and any of A I, -., A k do not cross, 
T ! both A 1 and E - A I' are unions of at last two A i s of P(e*). 

Therefore, (E,f)//P(e*) is of bond type or of polygon type, and, by 

the same argument, (E,f)//P(e) is also of bond type or of polygon type. 

Similarly as the proof of Theorem 2, this contradicts the minimality 

of P(e) and P(e*). Therefore, AIUA I' = E. Q.E.D. 

4. Canonical Decomposition 

Let us define an equivalence relation R ~ E × E as follows: For 

e*, e s E, (e*,e) s R if and only if P(e*) = P(e). Let K ~ {SlrS 2, 

• -.,Sp} be the partition of E composed of the equivalence classes of 

E relative to R. The partition K is called the canonical 2-cut 

partition, of level i, of E. For any Sj ~ ~, define 

P(Sj) = P(e) (4.1) 

for any e s Sj, where note that P(e) = P(e') for any e, e' s Sj. 

Each A s 9(Sj) with IAI ~ 2 is called a minimal irreducibility 

component o_ff (E,f) associated with Sj. 

Suppose that, for each i = i, 2, -.., k (k ~3), A i is a minimal 

irreducibility component of (E,f) associated with Sj(i) e K and that 

P* ~ {E-AI,E-A2,-..,E-A k} is a partition of E. Then we call the 

partition P* a 2-cut 9ggregatign p~9_rtition, of level i, of E. Denote 

by A the set of all 2-cut aggregation partitions, of level I, of E. 

Moreover, we call the aggregation (E,f)//P* (P* £ A) a 2-cut aggregatio~ 

of level i, o_~f (E,f) b l [ P*. 

Let GI* = (VI*,EI*) be a graph with a vertex set VI* and an 

edge set El* defined as follows: 

VI* = V KUVA, (4.2) 

where V~ = {v S I S 6 ~} and V A = {Vp I P s A}, and 

El* = AI*UBI* , (4.3) 

where 

(i) a ~ AI* if and only if a = {Vs,Vs,} such that S, S' s K 
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and 

and E - A = A' for minimal irreducibility components A and 

A' associated with S and S', respectively, 

(ii) a ~ BI* if and only if a = {vS,v P} such that S e ~, P 

A and E - A = B for a minimal irreducibility component A 

associated with S and a component B of the 2-cut aggrega- 

tion partition P. 

We can easily see from Theorem 7 that the graph GI* = (VI*,EI*) is a 

tree. We call the tree GI* the canonical decompositio n tree, of level 

i, of (E,f). It should be noted that for each vertex v of GI*, if 

v corresponds to an Sj e K, then the vertex v is associated with 

(E,f)//P(Si) and, if v corresponds to a 2-cut aggregation partition 

P*, then v is associated with the 2-cut aggregation (E,f)//P*. Also 

note that there may be more than one 2-cut aggregation partitions of E 

of (E,f). 

If a 2-cut aggregation (E,f)//P* of (E,f) is reducible, then 

further construct the canonical decomposition tree, of level i, of 

(E,f)//P* and repeat this decomposition process until the constructed 

canonical decomposition tree does not contain any vertex which corre- 

sponds to a reducible 2-cut aggregation. If a canonical decomposition 

tree is obtained after k-i repeated 2-cut aggregations, then we call the 

tree the canonical decomposition tree, of level k, of (E,f). 

In this way we can decompose (E,f) into irreducible aggregations of 

(E,f) and extract the tree structures of these aggregations of all levels 

and, at the same time, the hierarchical structure of the reducible 2-cut 

aggregations. 

A canonical decomposition tree of level k +I can be embedded into 

a canonical decomposition tree of level k as follows. Let G * and 

G~* be canonical decomposition trees, of level I, of (E(k) ,~I~)) and 

(ik-!),f(k-l)), respectively, and 

(E(k) ,f(k)) = (E(k-l),f(k-l))//p(k-1), (4.4) 

where p(k-l) is a 2-cut aggregation partition of E (k-l) of (E (k-l), 

f(k-l)). Note that E (k) = {CA i A £ p(k-l)}. Let v* be the vertex in 

Gk* which corresponds to p(k-1). Also let vs(k) be the vertex in 

Gk* which corresponds to a component S of the canonical 2-cut parti- 
E(k-l) that vs(k) is adjacent to v* and E - A = B tion of such 

for a minimal irreducibility component A associated with S and a 

component B of p(k-l). Furthermore, let S* be a component of the 

canonical 2-cut partition of E (k) containing the element e~. Then 

replace the edge {Vs(k),v*} by {vs(k),vs,(k+!)}, where Vs !k+l) is 
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the vertex in Gk+l* which corresponds to S*. In this way we replace 

all the edges, in Gk*, incident to v* and then delete v*, which 

yields a tree composed of Gk* and Gk+l*. 

All the canonical decomposition trees can thus be embedded into 

the canonical decomposition tree, of level I, of (E,f) by repeatedly 

embedding canonical decomposition trees into canonical decomposition 

trees of lower levels. We call the tree composed of all the canonical 

decomposition trees the total decomposition tree of (E,f). 

5. Examples of Symmetric Submodula_r Systems and Their" Decompositions 

Now, let us show some examples. 

Example i: Let G = (V,E) be a connected but not 2-connected graph 

and def fne 

f(A) = IV(A)[ + IV(E-A) I -[V I (5.1) 

for any A C E, where for B __c E V(B) is the set of end-vertices of 

edges in B. Then (E,f) is a symmetric submodular system and satisfies 

(2.6) with X* = i. Any 2-cut aggregations, of level i, of (E,f) are 

of bond type if the ground sets have the cardinality not less than 4, 

so that (E,f) is decomposed up to level i. 

The canonical decomposition tree, of level i, of (E~f) is different 

from, but essentially the same as, the tree representing the incidence 

relation of 2-connected subgraphs of G which is described in [9]. 

See Figure i. 

\ : I ! 12,o\ 

2 o , I ' 4 ,  Z'_ . . . .  
,,. _6_..~ . . . . . . . .  , - - - - ;  - - . ,  

~.'a, ~,~-, :"  . . . . . . . . .  
i C ~,-," 
%%. '{)/ 

(a~ (b) / " ? ; ' \  

Figure 1. (a) A graph G; and (b) the canonical decomposition 
tree of (E,f) defined by (5.1). 
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Remark I: The decomposition of a connected graph into 2-connected sub- 

graphs [9] is determined by the structure of minimum 1-cuts of the symmet- 

ric submodular system (E,f) defined by (5.1). We can develop a decompo- 

sition theory based on the structure of minimum 1-cuts of symmetric 

submodular systems, which is similar to the theory, by Gomory and Hu [7], 

for representing the structure of the set of minimum cuts in a symmetric 

network by a tree. 

2 E Example 2: Let G = (V,E) be a 2-connected graph and define f: ÷ 

R by (5.1). Then (E,f) is a symmetric submodular system and satisfies 

(2.6) with I* = 2. The total decomposition tree of (E,f) is the same 

as the tree representing the structure of the set of two-terminal sub- 

graphs of G described by Tutte [9], where the hierarchical structure 

of the set of two-terminal subgraphs is implicit. 

Example 3: Let M = (E,p) be a 2-connected matroid with a rank function 

p. Let us define 

f(A) = Q(A) + p(E-A) - Q(E) + 1 (5.2) 

for any A ~ E. Then (E,f) is a symmetric submodular system and satis- 

fies (2.6) with i* = 2 (cf. [i0], [ii]). Therefore, we can obtain the 

canonical decomposition trees of (E,f). Note that f defined by (5.2) 

is a symmetrization of the rank function p. It may also be noted that, 

if E with IEI ~ 4 is a circuit of the matroid (E,p), the correspond- 

ing (E,f) is not of polygon type but of bond type. Related works on 

matroid decompositions were made by R. E. Bixby [i] and W. H. Cunningham 

[3]. 

Remark 2: We have not discussed the algorithmic aspects of decomposi- 

tions of symmetric submodular systems. Whether or not there exists an 

efficient algorithm for decomposing a symmetric submodular system 

depends on how the submodular system is represented. See [8] for decom- 

positions of 2-connected graphs and [2] and [3] for decompositions of 

2-connected matroids. 

Acknowledgement 

The author is deeply indebted to Professor Masao Iri of the 

University of Tokyo for his valuable discussions on the present paper. 

References 

[i] R.E. Bixby: Co~0sition and Decomposition of Matroids and Related 
Topics. Ph.D. Thesis, Cornell University, 1972. 

[2] R.E. Bixby and W.H. Cunningham: Matroids, graphs and 3-connectivity. 
Graph Theory and Related Topics (J.A. Bondy and U.S.R. Murty, eds., 



64 

Academic Press, New York, 1979), pp. 91-103. 
[3] W.H. Cunningham: A Combinatorial Decomposition Theory. Ph.D. Thesis, 

University of Waterloo, 1973; also W.H. Cunningham and J. Edmonds: 
A combinatorial decomposition theory. Canadian Journal of Mathematics, 
Vol. 32 (1980), pp. 734-765. 

[4] J. Edmonds and R. Giles: A min-max relation for submodular functions 
on graphs. Annals of Discrete Mathematics, Vol. 1 (1977), pp. 185- 
204. 

[5] S. Fujishige: Polymatroidal dependence structure of a set of random 
variables. Information and Control, Vol. 39 (1978), pp. 55-72. 

[6] S. Fujishige: Principal structures of submodu!ar systems. Discrete 
Applied Mathematics, Vol. 2 (1980), pp. 77-79. 

[7] R.E. Gomory and T.C. Hu: Multi-terminal network flows. J. SIAM, 
Vol. 9 (1961), pp. 551-570. 

[8] J.E. Hopcroft and R.E. Tarjan: Dividing a graph into triconnected 
components. SIAM Journal on Computing, Vol. 2 (1973), pp. 135-158. 

[9] W.T. Tutte: Connectivity i__nn Graphs. University of Toronto Press, 
Toronto, 1966. 

[i0] W.T. Tutte: Connectivity in matroids. Canadian Journal of 
Mathematics, Vol. 18 (1966), pp. 1301-1324. 

[ii] D.J.A. Welsh: Matroid Theory. Academic Press, London, 1976. 


