
CP0-2/K-202:

A UNIVERSAL DIGITAL IMAGE ANALYSIS SYSTEM

by

Zenon KULPA, Janusz DERNALOWICZ,
k

Henryk ~. NOWICKI *), Andrzej BIELIK

Polish Academy of Sciences

Institnte of Biocybernetics and Biomedical Engineering

Department of Picture Recognition and Processing

00-818 WARSAW, Poland

*)Presently at:

Monument-Hospital "Center of Child's Health"

Department of Genetics

WARSAW-MI~DZYLESIE, Poland

170

Abstract

Great universality and flexibility of an automatic picture
analysis is most easily reached by the use of a computer-based
picture processing system. A digital picture processing system
designed, built up and utilized in the Institute of Biocyberne-
tics and Biomedical Engineering is an example of such a system.
It is very useful as a research tool to investigate methods of
an analysis of pictures as well as it is used for many practical
applications of this methods in science and technology.

The CPO-2/K-202 system consists of a minicomputer system and
a special picture input/output device. The special pictorial pe-
ripheral, named CPO-2, for digital image conversion and for in-
put/output of pictures to/fromthe com~uter system contains:
a TV-camera and TV monitors, A/D and D/A converters, and an ima-
ge buffer memory. The computer system comprises PolishK-202 mini-
computer, a standard set of I/O peripherals and an appropriate
software system for image processing. The software includes an
assembler, a large library of image processing subroutines called
PICASSO, and a PICASSO-SHOW family of interactive programming
languages for picture processing.

Several application programs were written for the system, e.g.
for analysis of pictures of leukemia cells, radar cloud covers,
chromosome banding patterns as well as for measurement of limb
joints angles for locomotion research.

I. Introduction

Great universality and flexibility of an automatic picture

analysis is most easily reached by the use of computer-based

picture processing systems. From the theoretical point of view,

any picture processing algorithm can be realized by some program

for a universal digital computer. A digital picture processing

system designe~, built up and utilized in our Institute in De-

partmentJ of Picture Recognition and Processing since 1974 repre-

sents an example of such a universal and flexible system EI-5].

It serves as a very useful research tool to investigate methods

of picture analysis E23-29] as well as it can be used for many

practical applications of these methods in science and technolo-

gy E~-23, 33].
As the input information to the system any kinds of pictures

can be given: natural scenes, photographs, drawings, negatives,

diapositives, microscope pictures, and so on. As a picture pro-

cessing tool serves a digital picture processing system based on

a minicomputer with I/O devices augmented by a digital image

converter. Results of picture processing can be of several

types:

- qualitative results: selection, filtration, feature extraction,

171

recognition, comparison, data compression;

- quantitative results: measurements of length, area and size of

picture objects, counts of their number, and o~ther computable

features (e.g. shape factors);

- processes on picture data banks: collection, searching and re-

trieval, etc.

All elements of the CPO-2/K-202 system can be grouped into

two main groups:

I) the special peripheral, named CPO-2, for digital TV image con-

version and for input/output of TV pictures to/from the compu-

tar system;

2) the computer system comprising the Polish K-202 minicomputer,

a standard set of I/O peripherals and an appropriate software

oriented for progr~mming of picture processing algorithms.

2. System hardware

The block diagram of the system structure is shown in Fig. I

(see also [1, 5]). Main operations and processes performed in the

CPO-2 unit are:

I) Conversion of a physical image into an electrical video-signal

by means of a standard TV-scanning process using a professio-

nal vidicon TV-camera.

2) ~uantizatio n of the video-signal into digital form and its co-

ding to fit a computer-word format. The quantization process

runs with the same speed as TV-scanning. It quantizes:

- the value of gray intensity during every picture line into

16 levels (by the use of fast A/D converter), and

- every picture line into 512 picture elements (by sampling

the quantized video-signal at appropriate time intervals).

3) Storage of the digitized picture in a buffer core memory. The

memory operates both as a refreshing memory for a TV-monitor

and as a picture data store for the computer system.

4) Display of the picture, for visual inspection purposes, on two

TV-monitors (black/white and colour). On the first monitor

either the direct picture output from the TV-camera, or the

signal after gray-levels quantization, or the digital picture

from the buffer memory is shown in black and white, whereas

on the second monitor the digital picture from the buffer me-

mory is shown in artificial colours. For monitoring of inter-

TV

CA
ME

RA

62
5 l

ine
s

25
fr/

s

/
I

]I
Tv

1
MO

NIT
OR

bla

ck
/w

hit
e

QU
AN

IIZA
IION

51

2x
51

2 p
ixe

ls,

DI
GI

TA
L C

OD
ING

16

 gr
ay

 le
ve

ls

I t
hre

sh
old

s

I T
vl

MO
NIT

OR

co
lou

r

I R
GB

 co
de

s
loo

ku
p ta

ble
 I

BU
FF

ER

ME
MO

RY

64
k

16
 b

it

co
ntr

ol

VlA
RK

ER
 I P °t

CP
O-

2 u
nit

 _

v

K-
20

2
MI

NIC
OM

PU
TE

R
44

 k
16

 bi
t o

pe
r, m

em
ory

PIC

AS
SO

 su
bro

uti
ne

s lib
rar

y
PIC

AS
SO

-SH
OW

 int
era

cti
ve

 lan
gu

ag
e

J

I L
INE

 I

_
Mi

nic
om

pu
ter

 sy
ste

m

l~
ig
.
I.

Th

e
C
P
O
-
2
/
K
-
2
0
2

s
y
s
t
e
m

s1

~r
uc

tu
re

173

mediate stages of processing, any pictures can be send from

the computer system to the buffer memory, so that they could

be seen immediately on the screen.

5) On-line communication with the computer system.

The pictures inputted by the CPO-2 device have resolution of

512 x 512 picture elements: a square picture area is divided into

512 lines (a part of the standard 625-line TV-frame is taken) and

then every line is divided into 512picture elements (by appro-

priate sampling). The number of distinguished gray levels of each

picture element is 16. The quantization parameters, i.e. the po-

sition of the lowest level within the whole video-signal range

(from black to white) and the distances between the levels can be

changed either manually or from the computer, and set to one of

256 possible values. The computer can also read the actual ~alues

of these parameters.

The fast A/D converter, providing the quantization of a video

-signal with the speed of TV scanning has been based on a set of

differential comparators working parallelly. Their input thresh-

olds are controlled by the above-mentioned quantization parame-

ters. The 15-line output, corresponding to 16 gray levels (inclu-

ding O-level), feeds an encoder.

In the encoding process the value of gray intensity of every

point is expressed by a four-bit binary number. Then, the digiti-

zed video-signal is sampled and every block of 16 successive pic-

tmre elements, lying along a scan line, is represented by a group

of four 16-bit computer words. The bits placed at the same posi-

tion in every word of the group represent the 4-bit code of gray

intensity of the corresponding picture element. Schematically,

the quantization process, encoding and sampling are shown on the

block diagram in Fig. 2. This method of picture encoding ensures

convenient operation with the picture in one of its 16-, 8-, 4-,

or 2-gray levels versions, simply by taking into consideration

only 4, 3, 2, or I word(s) from the group, corresponding to the

most significant bits of the picture element code.

During the scanning of a new picture, the groups of words can

be stored in the buffer memory one by one in such a manner that

every word of a group is placed in a separate memory block. There

are four such blocks in the memory, corresponding to the four

words in each group. That is, in one memory cycle four 16-bit

TV

vid
eo

sig

na
l

AI
D

CO
NV

ER
-

TE
R TO

 TV
 M

ON
ITO

R
bla

ck
/w

hit
e

-~
 EN

CO
DE

R

TO
 LO

OK
-U

P T
AB

LE

(CO
LO

R T
V M

ON
ITO

R)

16
k

16
k

16
k

x1
6

SA
MP

LIN
G

SH
IFT

RE

GI
ST

ER
S

U
sig

na
l

DU
AL

 PO
RT

 RA
M

BU
FF

ER
 ME

MO
RY

BL

OC
KS

Fi

g.

2.

I
m
a
g
e

q
u
a
n
t
i
z
a
t
i
o
n
,

e
n
c
o
d
i
n
g

a
n
d

s
t
o
r
a
g
e

i
n

th

e
s
y
s
t
e
m

TO
/FR

OM

:CO
MP

UT
ER

INT

ER
FA

CE

175

words are stored or fetched simultaneously. Within a time inter-

val of a single TV-picture frame (I/25s), the whole digitized

picture is stored in the memory. Storage of a new picture can be

made on the request of an operator (pushing an appropriat~ button)

or on the signal from the computer, without necessity of the ope-

rator intervention.

The capacity of memory sections is of I16k words each. It cor-

responds to the number of picture elements (512 lines x 32 groups

of 16 elements). In effect, the total storage capacity is equal

to the amount of information contained in one 16 gray-levels pic-

ture (4 blocks × 16k words = 64k words = ~ 048 576 bits).

Additionally, the CPO-2 unit is equipped with the joystick

point marker, which allows either some intervention into the con-

tents of picture information (correction, drawing of some picture

elements, lines, etc.) or pointing to the computer program the

position of objects chosen by the operator in a processed picture.

A point marker (black or white) of the shape of a right augle

corner pointing to the upper left is superimposed on a digital

picture shown on the screen of the TV-monitor. The movement of

the marker across the picture and its setting to some required

position is usually done by hand, using a joystick manipulator.

Depending on the operation mode, either every position of the

marker and its trace can be memorized (in the buffer memory),

changing therefore the picture contents, or the coordinates of

its position can be send to the computer, as an answer to its

request. The computer can also place the marker at any given po-

sition, sending the coordinates of its position to the marker.

The second TV-monitor of the system is a colour one. The

quantized picture signal from the buffer memory can be seen on

the monitor screen in "artificial colours". The correspondence

of colours to different picture elements codes is determined by

the look-up memory of RGB colour components, updated by the com-

puter, so that to every individual gray-level code different com-

bination of RGB signals may correspond. Every colour component

(R, G or B) can be set individually into one of 16 levels. In

effect, there is theoretically available 163 = 4D96 different co-

lours to represent every picture element code.

The 16 bit Polish K-202 minicomputer performs all image ana-

lysis programs on appropriate fragments (windows) of the input

176

picture, transmitted for this purpose into the operating memory

from the CPO-2 image buffer. The minicomputer operating core me-

mory (1.5Fs cycle time) has two blocks of 16 bit words: the first

(12k words) contains the operating system, and the second (32k

words) contains user's programs and processed picture fragments.

The instruction list includes about 90 basic instructions and

progre~med floating-point arithmetic. The standard set of peri-

pherals consists of a teletype, paper tape reader/punch (IS0-7

code) and a line printer. A floppy-disc memory is being connected

presently.

3. System software

The software for image processing in the CPO-2/K-202 system

consists of the following parts:

1) Operating system SOK-1/CPO-2.

2) Assembler ASSK-3.

3) Library of basic picture processing subroutines PICASSO

[1-6, 14].
4) A family of interactive languages PICASSO-SHOW [1-9, 14].

5) Application programs (usually written in one of the PICASSO-

-SHOW languages) [16-22].

The operating system presently in use is rather primitive -

it is the standard SOK-I system of the machine, augmented with

a few subroutines to handle the CP0-2 device. It does not make

use of the disc memory. The new operating system is under deve-

lopment. It is called COSMOS (COnceptually Simple Modular Opera-

ting System) and will be used with the floppy-disc memory being

connected to the minicomputer (Fig. I). Its structure will be

based in part on the structure of the PICASSO-SHOW language in-

terpreter and it will integrate into a single whole the functions

of the operating system, the assembler and the PICASSO-SHOWin-

terpreter.

The ASSK-3 assembler is also the standard assembler of the

K-202 minicomputer. The library of picture processing subroutines

PICASSO is written in assembly code, to achieve the highest poss-

ible efficiency of execution of these basic processing subrouti-

nes.

The 2ICASS0 library and PICASS0-SHOW language will be descri-

bed in some detail below (Sections 3.1 and 3.2). Some application

177

programs will be briefly described in Section 4.

A new high-level language for image processing (called PAL -

Picture Analyzing Language) has been designed also E11-14] and

will be implemenSed on the system. Meanwhile, some its ideas and

parts of its compiler have been incorporated in the PICASSO-SHOW 3

language [8-10].

3.1. The PICASSO subroutines librar2

The PICASSO (PICture ASSembly-programmed Operations) package

is a rather large set of subroutines for basic operations on pic-

tures [I-6, 14]. It counts now about 170 operations. All opera-

tions assume the same structure of processed data items - numbers,

pictures and number vectors. They are written so as to achieve

maximal efficiency in execution time.

The program listings are standardized in order to become

self-documented. Every subroutine is preceded by a standardized

"comment header", summarizing all informations needed in order to

use properly the subroutine in some program. The header describes

parameters, results, non-local variables and subroutines called

by the given one, machine register usage, error conditions and

signals, and a form of the call. Within a subroutine body several

standard conventions are also usually observed (e.g. in formation

of variable and label names, program structuring) in order to en-

hance readability and facilitate modification and maintenance of

the library. The fact that the library is included into the

PIC~SO-SHOW languages (see Section 3.2) is another reason for

this standardization.

The most important convention adopted here is the form of

basic data structures, namely pictures. The pictures are rectan-

gular matrices of pixels, and to achieve greatest flexibility,

they can have any dimensions and any number of bits of pixel va-

lues representation. In the memory, every picture is preoeded by

a header including the following parameters:

X0, Y0: coordinates of the lowez left corner of the picture

(in some absolute coordinate system),

M, N: width and height of the picture (in pixels),

S: the number of bits per pixel,

L: the length of picture representation (in memory

words).

178

Every picture operation uses this header to organize appropriate-

ly its processing of the picture.

Two different representations of pictures in memory are used,

namely so-called "packed" and "stacked" representations. For the

packed representation, all S bits representing the pixel value

are stored in S consecutive bits of the same memory cell; one

such cell contains usually several pixels. For the stacked repre-

sentation, the picture is stored as S binary "planes", each con-

taining a single bit of the representation of all pixels of the

picture. Every memory cell in the plane contains the given bit of

W consecutive pixels (along a row) of the picture, where W is the

machine word length. The S bits of representation of some pixel

are stored in S different memory cells, placed in the same posi-

tions of different planes. A bins~y picture (S=I) is a special

case of a stacked picture, and consists of a single plane.

Utilizing the above packing of pixels into words and the fact

that computers usually perform most operations with a single in-

struction over the whole word (bit-parallel), many PICASSO sub-

routines implement a semi-parallel processing method, gaining

significantly in speed and efficiency over more serial processing

requiring individual access to every single pixel.

Most of PICASSO picture operations are written in two ver-

sions, one for packed and one for stacked arguments. Some of them

also have simplified versions operating on binary pictures. There

are also operations processing only binary pictures (e.g. many

propagation operations). The whole library is actually divided

into 14 groups which are summarized (with examples of the most

important operations in every group) in the table below. The

greek letters a and ~ occuring in some names of operations s~and

for letters S or P (for a) or B, S or P (for 8)- These prefixes

distinguish similar operations differing only by types of their

arguments (i.e. Binary, Stacked, or Packed pictures, respective-

ly).

I) CP0-2 device input/output

SCA~, DISP

SPOINT, DPOINT

COMPR, ENLARG

PUT, NEG

input/output of a picture window,

input/output of single pixels,

input/output of windows with linear scaling~

putting to a given value or negating win-

dows in image buffer,

179

2) Changing picture form in memor2

TOSTACK, TOPACK, PACK changes between stacked and packed

aSCAL, a~OV

3) Single-pixel operations

aP~AD, aWRITE

SFIPO, SLIST

SLINE & NEXPLI

CIRC & NEXPCIR

RING&NEXPRI

ARC &NEXPAR

BAPROX

form of pictures,

changes gray value scale of a picture,

read/write of single pixel,

finding and listing of pixels with given

values,

generate discrete lines, circles, rings

and arcs (point by point) [24-26],

approximate binary contour with discrete

straight line segments,

4) Input/output operations (to/from paper tape, to printer)

aDUMP, aLOAD print/load: a number of different versions

depending on the form of pictures on

external medium,

HIST print a histogram (also many versions),

5) Global features calculation

aWEIGHT, aCENTER sum of gray values and center of gravity,

aHIST gray level histogramming,

BAREA, BPERIM, I area and perimeter (corrected [24]) of blob,
VARPER J

BAXIS main axis of inertia,

BWDOW minimum window containing a blob,

NORMHI, MO~LIS histogram normalization and moments,

FACSBL, FACSMA,~ different global shape factors [18-20, 27],
FACSDA, FACSHA J

HIMA, HIPMA, WYMA determination of local masks for texture

filtering [28],

6) One-argument (pointwise) 0perati0n~

aPUT

aNEG

a COPY

SDIVC
STHRC

put all pixels to a given value,

negate a picture,

copy a picture,

divide all pixel values by a given number,

thresholding,

180

7) Two-argument ,(,pointwise) operation s

~OR, BAND, ~DIF

#ADD, SUB, #DIV
STHR

8) Picture shifts

aSHI~, SSHID, SSHIX

9) Tests
cEQ

logical,

arithmetic,

thresholding with pointwise different

thresholds [18, 19],

are two pictures equal?

aVAL, aBLACK, aWHITE have all pixels the specified value?

BORDO, BORDI does the white/black component touch

the boundary of a picture?

10) Local operations (3 × 3 neighbourhood usually)

BCLEAN "salt & pepper" noise removal,
BCONT contour extraction,

BLINEND, BLICOS line ends and intersections extraction,
SAV local averaging,

BCURV local line curvature determination,

11) Propagation operations (on binary pictures)

BPR04, BPR08, 1
BPR048, BPR084

BCON, BCC 0~, }

BCOMPS & NEXCOM

BFILL, BFILLG
BTOUCH

BLOB, BLOBCI, BLOBR
BTHINL

BARC, BLIC &NEXLI

basic propagation operations,

connected components extraction,

hole filling,

extraction of components touching
a boundary,

blob extraction [18, 19],

thinning (ACL algorithm [30]),

extraction of discrete arcs,

12) Object ,extract%on operati9ns

HUECK simplified Hueckel operator [31, 32],
HZTHR, LOCTHR, THR dynamic thresholding [18, 19],

SPILTT extraction of objects of a given texture
[28] (see operations in 5th group),

181

13) Object-~eneration operations

BFRAM, SZER, SMAX

SCIRC

BLINSEG

14) Correction operations

CORSHW, CORSHB

setting values on the boundary,

circular disk generation [25, 26],

straight lines drawing E24],

additive shading correction.

3.2. The PICASSO-SHOW languages

The PICASSO-SHOW languages comprise a family of interactive,

command-oriented picture processing languages for a minicomputer-

-based picture processing systems. Earlier languages of the fami-

ly, called PICASSO-SHOW [1, 6, 7], PICASSO-SHOW 1.5 and PICASSO-

-SHOW 1.6 E2-5, 141 have been working for about 4 years as a basic

programming tools for the CPO-2/K-202 picture processing system.

Basing on experience gained with these versions, design principles

of the new version, called PICASSO-SHOW 3 [8, 9, 14] have been

developed (the PICASSO-SHOW 2 version has been proposed also, al-

though not implemented).

The PICASSO-SHDW 3 language is oriented towards picture pro-

cessing operations from the PICASSO library [1-6, 14]. Individual

operations can be executed in the way of interaction between a hu-

man operator and the interpreter, or they can bee grouped into

programs, stored in the operating memory and run there. The former

mode of work is called interactive one. The latter one comprises

two distinct modes, oriented either toward convenient program de-

velopment and debugging (the so-called interpretative mode) or

towards fast running of debugged programs (the program mode).

The set of operations of the PICASSO-SHOW 3 language is not

fixed. Any user-defined subroutine can be appended to the language

as its normal operation and any subset of the PICASSO library can

be selected as the set of PICASSO-SHOW 3 operations.

3.2.1. The PICASSO-SHOW 3 language

Basic executable units of the language are called statements.

In the interactive mode, the statement is executed immediately

after it has been written. Under the interpretative mode, a se-

quence of statements (optionally preceded by label declarations)

constitutes a program. A labeled statement can be executed under

182

interactive mode as well - in this case the label declaration has

no result. Generally, all statements are legal under all modes,

though sometimes there are minor differences in their results.

Statements of the language are of three types: declarations,

instructions and assignments. A declaration generates some object

the instructions are to deal with, supplying the interpreter with

parameters of the object (e.g. size). An instruction evokes, via

the system vocabulary of operations, some operation from the sys-

tem library, passes to it its parameters and starts its execution.

An assignment fixes the numerical value of a symbolic number of

an object.

Objects processed by the PICASSO-SHOW 3 instructions are of

five general types: pictures, numerical vectors, numerical varia-

bles, atoms and vectors of atoms.

The structure of pictures in memory is the same as that ac-

cepted by the PICASSO subroutines library (see Section 3.1). Be-

sides "stacked" and "packed" types of pictures, a "binary" type

is introduced which corresponds to pictures of two possible gray

levels (black or white only). Pictures of these three types have

different names. As a parameter of PICASSO operation, a binary

picture is a special case of a stacked one; the distinction is

made because some PICASSO subroutines operate on binary pictures

only, what should be made visible in program texts.

Numerical vectors are one-dimensional sequences of memory

cells. Their elements can be interpreted also as numerical varia-

bles of any numerical type.

Numerical variables are of three types: integer, long integer

and real. There is ten predefined standard numerical variables

for every type - they need not be declared.

Atoms are sets of fields (dynamic records). Fields are ordered

pairs consisting of a field selector (see below) and a field va-

lue. A field has a type attached to it, which determines the type

of its value. An atom as a whole has also a type assigned to it.

Atom types are significant only when the atom is used as a field

selector (see below), othervise the atom type has no significance

at all. The atom type allows building hierarchical data structu-

res of any complexity, for structural picture description and

processing. The atom concept has been borrowed from the PAL lan-

guage [9, 11-14].

183

Objects used as instruction arguments are referred to by na-

mes. Only some fixed set of object names can be used and their

form is also standard. Generally, there exist ten different names

for objects of every type, e.g. ten different static numerical

variables of every numerical type, ten numerical vectors, ten

stacked pictures, etc. For numerical variables and atoms this

restriction does not limit a programmer because appropriate vector

elements can be used as well. For other objects the restriction

on the number of the object names does not affect the number of the

objects themselves. An object can exist without a name as a value

of some atom field (where it is accessible by a name of the

field), or as an auxiliary parameter of an instruction (where it

is created by a "generator", see below). By a field name the ob-

ject may be referenced to in atom-dealing instructions, but it

must be assigned to an object name before it is used in other

instructions.

The fixed form of object names simplifies argument reading

subroutines, which is important especially when working under

interactive or interpretative modes (no need for any identifier

tables). It also simplifies manual translation of PICASSO-SHOW 3

programs into assembly code and makes the programs more "seman-

tically legible", because standard object names indicate ~mmedia-

tely their types.

An object name consists of a letter (specifying the type of

the object), a digit (specifying the number of the object) and,

eventually, a vector element index (if needed). The digit may be

replaced by a symbolic number (a single letter). The use of this

device simplifies linking of different program fragments, because

all used object numbers may be symbolic, so that changing the

number requires only changing appropriate assignment (see below)

instead of changing many names.

A declaration generates an object, allocates a space for it

in operating memory and assigns to it a name. The declaration

consists of a list of names of generated objects and a list of

parameters of the objects. Objects generated in the same declara-

tion must be of the same type (except for stacked and packed pic-

tures which may be declared together). The parameters may be

written explicitly or by a reference to some existing object of

the same type. E.g. the stacked picture $3 may be declared in two

184

ways:

*S3: (100, 200, 128, 64, 4), or

*$3: $5,

In the first case the size of the generated picture is given ex-

plicitly by the parameter list (in parentheses), while in the

second one the parameters of the existing $5 picture are used.

Another examples, in this case of the atom declaration:

*AII: (FI01:5, FS21:$3),

*AR2 : A1,

The parameters of an atom define the initial set of its fields.

Field selectors consist of the letter F, the type indicator, and

a pair of digits.

An object without a name can be also generated. The form of

such an "object generator" is similar to that of a declaration,

but it does not contain the object name, and it can be used only

as argument of an instruction. The aim of using the generator is

to provide an instruction with an auxiliary object, some interme-

diate results of the instruction can be kept in. The contents of

such auxiliary objects are not important before and after the exe-

cution of the operation, so there is no need of assigning any na-

mes to them. Examples of possible forms of generators of auxilia-

ry packed pictures are:

*P(IO, 50, 100, 100, 2) < a picture with given parameters>

*P3 <the same parameters as in the P3

picture >

Instructions perform operations on objects. The operation is

defined by a subroutine attached to the instruction in the in-

struction module of the system library (see below). Instruction

name is a typical alphanumerical character sequence. As arguments

of an instruction, objects, arithmetical expressions and texts

can be used. In order to avoid unnecessary declarations of tempo-

rary arguments or to shorten the notation of some arguments, two

additional conventions were introduced: generators (described

above) and "windows".

When working under interactive mode, one often encounters the

need of executing a sequence of operations consisting of scanning

an image from input device, performing some image operation (e.g.

from PICASS0 package) and displaying the result immediately on

the screen. The "window" allows to condense the notation of this

185

sequence of actions into one statement. A window is a picture na-

me placed as an instruction argument together with a command for

transmitting the picture to/from the image buffer memory. In the

following example, one instruction with windows replaces four

normal instructions. The upward-pointing arrow symbol denotes

"display" command while the left-pointing arrow denotes "scan"

command. The window may also contain some parameters, describing

the place in the buffer (coordinates on the screen) to/from where

the transmission would take place. For instance:

AND, SI~, $2~, $37,

is equivalent to the sequence of instructions (simplified):

SCAN, $1,

SCAN, $2,

AND, $I, $2, $3, <the result is on the picture $3 >

DISP, $3,

After that instruction the result of the AND operation is immedia-

tely seen on the TV-monitor screen.

Arithmetical expressions may be used anywhere as numerical

arguments. Four arithmetical operators are allowed as well as

parentheses (with arbitrary nesting). Two-argument operators deal

with pairs of operands of the same type (integer, long integer,

or real). To convert an operand to appropriate type, conversion

operators are used.

An object name consists of a letter and a digit. The letter

defines the type of the object and the digit - its number. How-

ever, it is often convenient to use symbolic names of objects. In

a symbolic name, the digit is replaced by a letter. The letter

obtains its value by means of an assignment, having the form:

letter = digit,

Using actual values of lettlers (as defined by assignments) the

interpreter (in the course of loading a program) changes all sym-

bolic names into explicit ones.

Labels are of two kinds: global and local. Label denotations

consist of the symbol "~" and a name. The names of global labels

have the same form as instruction names. Local labels names con-

sist of two digits. Global labels are accessible everywhere in a

program while the scope of local labels is restricted to the pro-

gram segment between pairs of consecutive global label declara-

tions.

186

Comments, having the form of strings of characters enclosed

in angle brackets "< " and ">", can be placed anywhere, even

within instruction names.

3.2.2. Instructions repertoire

The set of instructions available in the language consists of

the so-called "system instructions" and any set of other instruc-

tions (usually a subset of the PICASSO library, see Section 3.1)

chosen by a programmer in the phase of assembling "instruction

modules" into the system vocabulary (Section 3.2.3).

The system instructions are permanently resident in the sys-

tem. They can be classified into the following groups:

- jumps and testing instructions,

- loop organization instructions,

- subroutines organization instructions,

- editing instructions,

- execution control instructions,

- list processing instructions,

- other.

Each jump instruction has a label as an argument. For condi-

tional Jumps there is another argument (sometimes implicit) which

decides whether the jump is to be performed or not. There are six

jump instructions:

GOTO (unconditional); GOKEY (if some key is on);

GOL, GOE, GONE, GOG (if the value of the IO variable is less,

equal, not equal or greater than O, respectively).

Closely connected with jumps is a set of testing operations. This

set contains arithmetical comparison instruction COMP and some

PICASSO operations of the same character. They set the variable

IO to -1, 0 or +I, depending on the fulfilment of some conditions.

The IO variable is accessible for a programmer as any other varia-

ble, and can be set to any value with the SET instruction as

well.

Loopsin a program are organized by using pairs of BEGLOOPi -

- ENDLOOPi instructions, where the letter "i" denotes a digit.

The digit is a number of the loop. The full form of the BEGLOOPi

instructions is:

BEGLOOPi, anl, an2, an3,

where anl, an2, are numerical arguments setting boundaries of the

187

loop counter of standard name Ki, and the an3 numerical argument

is the step of the counter. Thus the BEGLOOPi instruction is

roughly equivalent to the ALGOL 60 construction:

for Ki := anl step an3 until an2 d__oo begin

and the ENDLOOPi instruction is equivalent to the end instruction

closing the loop body. An important difference is that the body

is always executed at least once. Loops can be nested, but then

they must have different numbers.

Subroutines are implemented by means of two operations: the

operation CALL that puts on a stack a return address (of the sta-

tement following the CALL) and jumps to some label (starting la-

bel of the subroutine), and the operation RETURN that pops up the

stack and jumps ~o the statement the popped stack element was an

address of. Thus recursive calling of subroutines is possible.

Nevertheless, there is no special mechanism for passing arguments

to and results from the subroutine - they have to be transferred

within global variables and objects. It should be explained that

the subroutine on the language level has nothing in common with

the instruction subroutine realizing some language instruction.

The latter is written in assembly language as a part of some in-

struction module (see the next Section). For example, the PICASSO-

-SHOW 3 program below computes recursively the factorial of a

number given in the variable LI, puts the result into L2, then

prints it out and returns to the interactive mode:

SET, L2, L1,

CALL, ~1,

PRL, L2,

DO, 3, < EXIT TO INTERACTION WITH TELETYPE >

~1 : < A FACTORIAL SUBROUTINE >

SET, LI, L1-I,

COMP, L1, 1, GOL, ~2,

SET, L2, L2*L1,

CALL, ~I, < RECURSIVE CALL OF PACTORIAL >

~2 : RETURN,

To execute this program, one should place a number into L1

(say, the number is 5) by writing on the teletype:

SET, LI, 5,

and activate the program:

DO,,

188

After a while the system responds with the factorial of the num-

ber 5:

120

and waits for the next command to be written on the teletype.

The LOAD instruction reads the text of a program from an in-

put device, places it in the system memory and numbers its lines.

The PRINT instruction outputs the required fragment or the whole

program to an output device. The INS and REPL instructions insert

or replace fragments of a program respectively.

The DO instruction switches the mode of work between inter-

active and interpretative modes. The COMPILE instruction trans-

lates a program to the intermediate code allowing its fast inter-

pretation, and the RUN instruction runs this code, i.e. sets the

program mode.

The STOP instruction halts program execution if a special key

is on, otherwise it has no result. To restart a program after the

STOP or other interruption (e.g. an error), the GO instruction

can be used.

The ON instruction changes the reaction of the interpreter

after an error has been detected in a program. The standard reac-

tion is the printout of an error message and halting the program,

i.e. returning to the interactive mode. Once the ON instruction

has been executed, the interpreter does not halt the program after

an error message (of the error specified by the parameter of the

ON instruction), but resumes its execution from the point marked

by a label given by another argument of the ON instruction.

List processing instructions allow dynamic extension and com-

pression of vectors (either numerical vectors or vectors of atoms)

and access to atom fields. The dimension of a vector is changed

by the ALTER instruction. Access to a field of an atom is given

by instructions OF (reading) and ASSOC (assigning); with the

latter instruction a new field can be also added to the atom,

whereas the FREE instruction removes a field from it. The ISF

instruction tests the existence of a given field in an atom.

There are some other system instructions, e.g. input/output

ones (dealing with numbers, characters and texts), CPO-2 device

control, etc. Some of them are closely dependent on the hardware

of the system, others are more general and rather typical for

many programming languages.

189

3.2.3. Structure of the interpreter

The main concept of the interpreter is the idea of operation

vocabulary. The vocabulary consists of entries describing all

instructions legal in the system. Instructions are organized into

"instruction modules". A module of a single instruction (or a set

of closely related instructions) consists of a subroutine (or sub-

routines) performing the operation (or several related operations),

some entries of the operation vocabulary, and possibly some en-

tries of the linker vocabulary (if the subroutine calls another

subroutines). The modules are constructed in such a way that in-

struction can be added to the system library with the use of a

special linker as well as with the standard assembler.

An entry of the operation vocabulary consists of a sequence

of characters (the six initial characters of the instruction na-

me), an address of an entry point in the subrotine body, an add-

ress of the next vocabulary entry, a sequence of descriptions of

arguments (operation parameters) and the end marker. Because ar-

gument descriptions simply name subroutines to be activated for

the arguments reading and setting, the entry provides a "procedu-

ral" description of types of arguments and their sequence.

Every argument reading subroutine reads an argument of a defi-

ned type, checks it for its correctness, changes to the form of

a parameter of the main subroutine which performs the operation,

and passes it to that subroutine. Some subroutines which appear

in the operation vocabulary entries do not read any arguments but

perform some auxiliary actions. For example, the HELP subroutine,

used in order to facilitate a dialogue with an uninitiated user,

prints on the monitor any prescribed text, giving the user addi-

tional informations, e.g. about the type and meaning of subsequent

arguments to be written. There is also a set of subroutines con-

trolling checking of argument parameters, e.g. which pictorial

arguments should have the same size.

All PICASSO-SHOW 3 declarable objects as well as some tables

of the interpreter (e.g. the table of global label names) are

administered by the SETSYS dynamic storage allocation system EIO].

The SETSYS is an autonomous system of storage allocation procedu-

res, and its use in the PICASS0-SHOW 3 interpreter is one of its

possible applications.

Basically, SETSYS consists of two levels: semantic (or user)

190

level and memory (or implementation) level. The user level essen-

tially coincides with the list processing capabilities of PICASSO-

-SHOW 3. I.e., it allows:

- creation and deletion of objects,

- attachment and detachment of elements to/from objects,

- getting and putting values from/to elements of objects.

There are four types of objects: simple, vector, atom, pictu-

re. Simple objects correspond roughly to PICASSO-SHOW variables

except that they may contain references to other objects and are

dynamic (may be deleted from the computation). Vectors behave

like double-ended queues and, additionally, indexed access to

their elements is possible. Atoms are sets of named values which

can be freely accessed, added to and deleted from the atom by

means of their names. Picture is a problem-oriented data type.

Elements of composite objects (vectors, atoms) are of simple type.

Morphology of the above objects and operations on them is

realized in terms of memory level of SETSYS. The memory level ope-

rates on the so-called "sets". Sets are blocks of consecutive

memory cells placed in a predetermined pool of memory cells,

called a heap. A set consists of the useful part (used for sto-

ring elements of objects it represents) and the spare part (used

for eventual future extensions).

Possible operations on sets are: creation, deletion, exten-

sion and contraction. Deletion simply releases block of cells

occupied by the set, which thereafter becomes the so-called hole.

Contraction of the set reduces the number of its elements, adding

the cells occupied by them to the spare part of the set. Creation

and extension in their turn both consist of allocating new free

storage (in the case of extension, the possibility of using the

spare part of the set to be extended is tried first). If the

spare part was not sufficient to complete the required extension,

a sufficiently large hole is searched for and the sets and holes

between the extended set and the found hole are shifted in order

to use the hole to enlarge the set. Similarly, for creation of

a new set, the multistage strategy of acquiring necessary amount

of free cells is adopted. In each subsequent stage the complexity

of the algorithm increases, until the success is achieved:

I) try to seize a hole,

2) try to allocate free storage from the heap,

191

3) repeat (2) after hole merging,

4) repeat: (2) after spare parts retrieval and merging,

5) perform garbage collection (i.e. recovery of sets which

are not referred to by any other set accessible directly

or indirectly from the actual program).

Conceptually, SETSYS is an elaborated version of the so-

-called MINIPAL/SET system [15]. It was initially intended for

use in the PAL language compiler [10-14].

4. Applications

The CPO-2/K-202 image processing system has been used for se-

veral practical applications. Application programs (mostly writ-

ten in ~oov-onv,, ±~ig~g~j~ ~ 1 ~ v ~ ~ u ~ ~u±- processing of

various kinds of pictures, mainly biomedical. More important

realized programs include:

a) calculation of blood vessels width ratio in eye-fundus photo-

graphs [2, 17],

b) calculation of areas and shape descriptors of the optic disc

and cup in eye-fundus images [2, 16, 17],

c) ERG curves digitization [23],

d) analysis of copper ore samples,

e) blood groups precipitation data recognition,

f) quantitative measurement of shape changes of moving leukemia

cells [1 8 - 2 0] ,

g) measurements of radar pictures of cloud covers,

h) calculation of limb joints angles for animal locomotion re-

search [21-23],

i) determination of banding profiles of chromosomes [33],

j) muscle tissue analysis.

One of the most elaborated programs is that for cells shape

changes measurement ((f) above). The program (strictly speaking,

several its versions, called CSC-I, ..., CSC-4) has been used in

investigations of leukemia cells motility and adhesiveness pro-

perties (in connection with cancer research [20]). The time-lapse

films of a cell culture have been analyzed off-line, frsme by

frsme, on the CPO-2/K-202 system. In every frame usually several

cells were analyzed. Various quantitative features (about 20 dif-

ferent quantities) have been measured for every cell image. Pre-

192

liminary analysis of the biological significance of obtained para-

meters has been attempted in [20].

The first stage of analysis is aimed for extraction of cell

outline from the background (Fig. 3a-e). The image, quantized

into 16 gray levels by the CPO-2 device, is then binarized by

dynamic thresholding method [18, 19]. By this method, the image

is thresholded with different thresholds in different parts of

the image. These local thresholds are determined from analysis of

gray-level histograms calculated for small windows of the image.

If the histogram is markedly bimodal, the threshold is set to the

gray level value corresponding to the minimum between the modes.

Otherwise, the threshold is undetermined for this window, and it

receives its default value by some iterative interpolation process

involving thresholds of nearest "good" windows. The binary pic-

ture thus obtained (Fig. 3c) is then filtered out to remove the

background components touching the boundary and filling holes

within the cell component (Fig. 3d). In this stage, the image can

be edited by the operator (using the joy-stick point-marker of

the system, Fig. I), e.g. in order to cut off eventual "bridges"

joining the cell component to the background (due to minute cell

contour imperfections). The main component representing the cell

is then extracted and subjected to some boundary-smoothing opera-

tion and its contour is extracted finally (Fig. 3e).

The second stage consists of measuring various quantitative

features of the extracted cell. Among others, the program calcu-

lates:

- coordinates of the center of gravity,

- area and perimeter,

- various global shape factors (see [18-20, 27] for details),

- direction of main axis of inertia,

- length (along the axis) and width (perpendicular to the

axis),
- cross-sections for several positions along and perpendicu-

lar to the axis.

Then, the cell is decomposed into the cell body and extensions.

The body is extracted by iterative circular propagation with the

center shifted after every iteration to the center of extracted

"candidate body" [18, 19, 25, 26]. Usually from 2 to 4 iterations

suffice to obtain the final result, as in Fig. 3f. Parts of the

193

(a)

cell image from

the camera

(b)

cell image after

quantization

(16 gray levels)

Fig. 3. Leukemia cells analysis example

194

(c)
cell image binarized

by dynamic thresholding

(d)
cell image after gap-

-filling & border-

-touching component

removal

(e)
final cell image

(contour)

Fig. 3. (continued)

195

(f)
c e l l body

e x t r a c t i o n

(g)

five candidate

extensions

(h)
two true extensions

superimposed

on the contour

Fig. 3. (continued)

196

cell protruding from the body (Fig. 3g) are then examined as even-

tual extensions. True extensions are distinguished by the dimen-

sions (should be large enough) and the percentage of that part of

their perimeter which touches the body to their whole perimeter

(Fig. 3h). Several so-called structural features are then calcu-

lated, among others:

- radius of the body (the number of circular propagation

steps),

- number of true extensions,

- ratio of areas of the largest extension and the body,

- position of the largest extension (relation of centers of

gravity of the body and the extension),

- direction of the extension main axis (also with relation to

the cell axis).

The whole analysis of the cell by the CSC program takes seve-

ral minutes of the system run-time, depending on the quality of

the image (which affects the cell-extraction process) and comple-

xity of the cell structure (which affects the decomposition pro-

cess). The programs written for the system were (and still are)

used to process and analyze many thousands of pictures.

Acknowledgments

The research reported here was supported by the Research Pro-

gramme No. 10.4.

References

I. Z. Kulpa, J. Derna~owicz, H.T. Nowicki et al., System cyfrowej

analizy obraz6w CPO-2 (CPO-2 digital pictures analysis system,

in Polish), Institute of Biocybernetics and Biomedical Engi-

neering Reports, Vol. I, Warsaw 1977.

2. Z. Kulpa, J. Derna~owicz, ~. Raczkowska, M. Piotrowicz, Digital

picture processing system CPO-2 and it~ biomedical applica~

tions, In: Selected Papers of the Ist Natl. Conf. on Biocyber-

netics and Biomedical Engineering, Polish Scientific Pabl.

(PWN), Warsaw 1978.

3. Z. Kulpa, J. Derna~owicz, Digital picture processing system

CPO-2 and its biomedical applications, Proc. BEONIKA'77 Conf.,

vol. 3, Bratislava, Sept. 1977, 288-293.

197

4. Z. Kulpa, M. Sobolewski, Obrabotka i raspoznavanye izobrazhe-

nyi s pomoshchyu universalnoy systiemy CPO-2/K-202 (Image

processing and recognition using universal system CPO-2/K-202,

in Russian), Proc. BIONIKA'78 Conf., vol.1, Leningrad, Oct.

1978, 182-192.

5. Z. Kulpa, J. De~na~owicz, Digital image analysis system

CPO-2/K-202, general hardware and software description, Proc.

IV Polish-Italian Bioengineering Symp. on "Pattern Recogni-

tion of Biomedical Objects", Porto Ischia/Arco Felice, Oct.

1978.

6. Z. Kulpa, H.T. Nowicki, Simple interactive picture processing

system PICASSO-SHOW, Proc. 3rd Inter. Joint Conf. on Pattern

Recognition, Coronado, Calif., Nov. 1976, 218-223.

7. Z. Kulpa, H.T. Nowicki, Simple interactive picture processing

system PICASSO-SHOW, Proc. Inter. Seminar on "Experiences of

Interactive Systems Use", Szklarska Por9ba, Oct. 1977, Wro-

c~aw Tech. Univ. Press, Wroc~aw 1977, 101-115.

8. H.T. Nowicki, Interactive picture processing language PICASSO-

-SHOW 3 and its interpreter, as in [5].

9. Z. Kulpa, Propozycja podjgzyka przetwarzania list do systemu

PICASSO-SHOW (A proposal of a list-processing sublanguage for

the PICASSO-SHOW system, in Polish), Institute of Biocyberne-

tics and Biomedical Engineering Internal Reports, Warsaw 1978.

10. A. Bielik, Z. Kulpa, System dynamicznej rezerwacji pami¢ci i

przetwarzania listowego SETSYS/K-202 (Dynamic storage alloca-

tion and list processing system SETSYS/K-202, in Polish),

ibid.

11. Z. Kulpa, An outline description of the picture analyzing lan-

guage PAL, Proc. 9th Yugoslav International Symp. on Informa-

tion Processing (INFORMATICA'74), Bled, Oct. 1974.

12. Z. Kulpa, J~zyk analizy obraz6w graficznych PAL (A graphic

pictures analyzing language PAL, in Polish), Institute of Bio-

cybernetics and Biomedical Engineering Internal Reports,

Warsaw 1977.

198

13. Z. Kulpa, Konstrukcja j~zyka programowania algorytmSw cyfrowe-

go przetwarzania z~oionych obraz6w wizualnych (Design of a

programming language for digital processing algorithms of

complex visual images, in Polish), Ph.D. Thesis, Institute

of Computer Science, Warsaw 1979.

14. Zo Kulpa, PICASSO, PICASSO-SHOW and PAL - a development of a

high-level software system for image processing, Proc. Work-

shop on High-Level Languages for Image Processing, Windsor,

June 1979; Academic Press, 1981 (in press).

~5. Z. Kulpa, System dynamicznego przydzia~u pami¢ci i przetwa~za-

nia listowego NENIPAL/SET 1204 (A dynamic storage allocation

and list processing system N[KNIPAL/SET 1204, in Polish), In-

stitute of Biocybernetics and Biomedical Engineering Internal

Reports, Warsaw 1973.

16. K. Czechowicz-Janicka, K. Majewska, L. Prz~dka, M. Raczkow-

ska, Surface and shape of the optic disc in healthy subjects

in various age groups - application of computer picture pro-

cessing, Ophtalmologica, 674, 1977, 1-4.

17. M. Rychwalska, M. Piotrowicz, Analysis of the eye fundus using

digital image processing system CPO-2, Proc. BIONIY~'77 Conf.,

vol. 2, Bratislava, Sept. 1977, 192-195.

18. Z. Kulpa, A. Bielik, M. Piotrowicz, M. Rychwalska, ~easure-

merit of the shape characteristics of moving cells using com-

puter image processing system CPO-2, Proc. Conf. BIOSIGMA'78,

Paris, April 1978, 286-292.

19. A. Bielik, Z. Kulpa, M. Piotrowicz, M. Rychwalska, Use of

computer image processing in quantitative cell morphology,

as in [5].

20. K. Lewandowska, J. Doroszewski, G. Haemmerli, P. Str~uli, An

attempt to analyze locomotion of leukemia cells by computer

image processing, Computers in Biology and Medicine, vol. 9,

1979, 331-344.

21. Z. Kulpa, A. Gutowska, Measurement of limb movement coordina-

tion in cats using universal computer image processing system

CPO-2, In: A. Morecki, K. Fidelius, eds., Biomechanics VII,

Proc. VIIth Inter. Congress of Biomechanics, Warsaw, Sept.

1979, Polish Scientific Publ. (PWN), Warsaw 1980, 459-465.

199

22. Z. Kulpa, A. Gutowska, Limb movement coordination in cats

measured by universal computer image processing system CPO-2,

Proc. EUSIPCO-80 Conf., Lausanne, Sept. 1980 (Short Communica-

tion and Poster Digest), 85.

23. Z. Kulpa, Errors in object positioning with "centre of gravi-

ty" method, The Industrial Robot, vol. 5, Nr. 2, 1978, 94-99.

24. Z. Kulpa, Area and perimeter measurement of blobs in discrete

binary pictures, Computer Graphics and Image Processing,

vol. 6, Nr. 5, 1977, 434-451.

25. Z. Kulpa, On the properties of discrete circles, rings and

disks, Computer Graphics ~ud Image Processing, vol. 10, 1979,

348-365.

26. M. Doros, Algorithms for generation of discrete circles, rings

and disks, Computer Graphics and Image Processing, vol. 10,

1979, 366-371.

27. Z. Kulpa, M. Piotrowicz, Shape factors of figures in discrete

pictures, In: Selected Papers of the 3rd Natl. Conf. on Bio-

cybernetics and Biomedical ~gineering, Polish Scientific

Publ. (PWN), Warsaw 1980.

28. M. N~odkowski, Texture discrimination using local masks,

as in [5].

29. M. M~odkowski, S. Vitulano, Some experiments with two-dimen-

sional C-transform applied to texture analysis, as in [5].

30. C. Arcelli, L. Cordelia, S. Levialdi, Parallel thinning of

binary pictures, Electron. Letters, vol. 11, Nr. 7, 1975.

31. M. H. Hueckel, An operator which locates edges in digitized

pictures, J. ACM, vol. 18, 1971, 113-125.

32. L. M~r~, Z. Vassy, A simplified and fast version of the

Hueckel operator, Proc. 4th Inter. Joint Conf. on Artificial

Intelligence, Tbilisi, 1975, 650-655.

33. M. Piotrowicz, Z. Kulpa, Determination of profiles of banded

chromosomes using computer image processing system CPO-2,

Proc. EUSIPCO-80 Conf., Lausanne, Sept. 1980 (Short Communica-

tion and Poster Digest), 83-84.

