ALGORITHMIC SPECIFICATIONS
OF ABSTRACT DATA TYPES

Jacques Loeckx

Fachbereich 10
Universitdt des Saarlandes
D-6600 Saarbriicken

Summary. A new method for the specification of abstract data types is
presented. Being algorithmic it avoids several difficulties of the al-
gebraic specification method.

1. Introduction

The algebraic specification of abstract data types as described in, for
instance, [Zi 74, ADJ 78, GH 78 a, BDP 79] raises several probliems of
theoretical and practical nature. A first problem is the treatment of
partial or ERROR-functions [Go 78, Gu 80, WPP 80]. Furthermore certain
(partial computable) functions cannot be introduced [Mj 79, BM 80] and
there are several problems attached to the enrichment of specifications
[ADJ 78, EKP 78, K1 80]. Next, the verification of an algebraic specifi-
cation requires a proof of its consistency and sufficient-compliete-
ness [GH 78 al. Finally, writing specifications for a given data type
is not necessarily a trivial exercise - as is illustrated by the data
type Set-of-Integers of [GH 78 a, Gu 801; one of the axioms for the
function Delete removing an element from a set is:

130

Delete(Insert(s, Z2), 4) =
if ¢ = 4§ then Delete(s, J)
else Insert(Deletels, 4}, ¢} 3

the then~clause of this equation is Delete(s, J) rather than s because
an element of the data type Set-of-Integers may contain duplicates;
intuitively it is not directly clear why these duplicates may occur nor
where they occur. Other examples of "difficult” specifications are in
[Ka 79] and [Mo 807.

In the present paper a formal specification method for abstract data
types is proposed which avoids these different problems. The basic

idea consists in defining an abstract data type by a formal language -
called term language - , an equivalence relation over the term language
and some external functions taking arguments and/or values in the term
language; the functions are defined constructively using x-abstraction
and minimal fixpoint abstraction. The carrier set of the data type de-
fined by such a specification is, roughly speaking, the set of the
equivalence classes induced by the equivalence relation; the operations
on the data type are derived in the classical way from the external
functions.

Section 2 is concerned with the definition of the term language. Sec-
tion 3 introduces some notations. The definition of algorithmic speci-
fications is in Section 4. The verification of specifications is treated
in Section 5. Section 6 is devoted to comments including a comparison
with related work.

131

2. Term languages

2.1 Definitions

A bagsis is a pair (T, F) where T is a set of t¢types, such as Integer or
Stack; and F a set of comstructors, such as plus or push. With each

f € F are associated an integer n 2 0, an element (Tl,TZ,...,Tn) of In
and an element t of T; one writes:

fo: Ty X Ty X .. X T, > T

for instance:
push: Stack X Integer - Stack.

A basis (I, F) defines for each v € T a term language L, which is the
smallest set defined by:
(1) if f @ >t then f €L

(ii) if f : Ty XeooX T T, N2 1, and if ty €L

tp €Ly then f (ti.....t) el

The elements of LT are called terms (of type T)

Term languages bear similarities with the carrier set of the word alge-
bra of [ADJ 781 and the tree language of [GHM 78 b]l. As an essential
difference constructors are syntactical entities used in the construc-
tion of words of a formal language and are not going to be interpreted
as functions.

Henceforth only bases (I, F) will be considered where T contains (at
least) the type Boolean and F the constructors

true: - Boolean

false: » Boolean

To each type 1 (including T = Boolean) are associated:
(1) a function which expresses the syntactical equality in Er

.42
Equal.t = Lo > L goo1ean

132

{(ii) the function

[f-then-else = Lg o yean ¥ by X Lo > Lot

If-then-e]seT {b, s, t}) = i s if b = true
1t if b= false.

To each constructor f : Ty Xe..X T, > T are associated:
(i) a function which expresses that the Teftmost constructor of a
term is f:

Is.f LT - LBoo]ean

{i1) a function which extracts the iiﬁ component, 1

A
-
A
=

(Arg;.f) : {t € L. [Is.f(t) = true} = L
i

(Argi.f)(f(tl,...,tn)) =t H

(ii1) a function which constructs an element of LT:

(Cons.f) : Ltl Xo.o.x Lo o L
(Cons.f)(tl,...,tn) = f(tl,...,tn),

When no ambiguity results we write If-then-else, t[i] and f(tl,...,t

instead of Ifnthen-elser, (Argi.f)(t) and (Cons.f)(tqy,...,t
tively.

n)

n) respec-

Note the notational convention that constructors start with a lower-
case, functions with an upper-case letter.

2.3 Structural induction
The principle of structural induction ([Bu 69, Au 79]) is applicable in
a proof of a property of a term language. As an example, assume the con-
structors of type 1t to be:

fo R

fl cTx Tt e T

with t' # 13 for proving the property:

for all t € LT : g{t} holds

133

it suffices to prove that:

(i) (base step) q(f,) nolds
(11) (induction step) for all t € L and all theL .

if g(t) holds, then q(fl(t, t'}}) holds.

3. A formalism for computable functions

3.1 The_formalism_chosen

In order to provide a sound theoretical basis we decided to use (pure)
LCF [¥i 72]. In this strongly typed formalism a function is described
as an LCF-term; an LCF-term is build up from constants, variables and
functions by composition, A-abstraction and minimal fixpoint abstrac-
tion. Minimal fixpoint abstraction is expressed with the help of the
operator o: if t is an LCF-term and M a function variable, [aM.t] de-
notes the minimal fixpoint of [AM.t].

A typical definition in this formalism is
Factorial = [ali.[An € Integer.

if Is.zero(n) then suc(zero)
else Mul{(n, M{Pred(n))}1]

For more detailed descriptions of LCF and its foundations the reader
is referred to [Mi 72, Mi 73, St 771.

3.2 The_domains

The interpretation of the LCF-formalism requires the domains to be
complete partial orders and the basic functions to be continuous [Mi 73].
The domains and functions introduced in Section 2 have therefore to be
extended.

To this end we add to each term language ET the elements W, and QT
called the bottom {(or: undefined) element and the top {(or: error) ele-

134

ment of type T(*); thius we define
= 1
_’E LT U {UJT: QTJ

the extended term language cf type t. This language 1 together with the
relation [defined by
===

(01 Ly to) ger (P = wg) or (B = Tp) or {1y =)

constitutes a complete partial order, as illustrated by Figure 1.

FIGURE 1: The cpo (t, [) with L= {t;, t,, ty,...}

The index 1 of w, and QT is omitted whenever no ambiguity arises.

The extension of an arbitrary syntactical function f different from
If-then-else is the doubly strict function fe defined by

e(tl,...,tﬂ) = tj if for some j, 1 < j < n: (tj = Or tj = @) and

(none of the t, is w or @) (**)

J+1"“’tn
f(tl,...,tn) otherwise {(cf. [St 771, p. 178)

(*) Strictly speaking it is sufficient to introduce w_. We moreover
introduce 2, for being able to distinguish betweeh a result w
corresponding to (possibly undecidable) non-termination and a re-
sult Q; corresponding to a (decidable) "meaningiess" computation.

(**) Intuitively this condition corresponds to computing the arguments
from right to left.

135
The extension of the If—then—elseT function is defined by:

If—then—eiseT,e (b, s, t) = {' b ifb = w_ o or b = Q.

If—then—e]seT (b, s, t) otherwise.

This indices e and t,e of the extended functions are omitted when-
ever no ambiguity results.

4. The algorithmic specification method

An algorithmic specification of the data type t consists of
(i} a list of the constructors of type 71;

(i1) the definition of a subset L? of the term language L. by means of
a doubly strict function Is.t, called acceptor function:

e

0
Kk € L peg Is.tlx) = true;

(i1i) the definition of (a doubly strict extension over 12 of) an equi-
valence relation over Lr’ noted Eq.t; (*)

{(iv) the definition of some functions; these functions, together with
the syntactical function If—then-e]seT’e and the equivalience rela-
tion Eq.t constitute the external fumections, viz. the functions
which are at the disposal of the user of the data type;

{v) the definition of some functions called auxiliary or hidden.
Note that none of the external or auxiliary functions has to be doubly
strict.

The constants and functions which may occur in the right-hand sides of
the function definitions in (i1) to (v) are:

(a) the elements of LT U {@}; these elements constitute constants; (**)
{b} the [extended) syntactical functions of type t;

{*) Do not confound Eg.t with the syntactical function Equal.rt.

(**) w is the "result” of a non-terminating computation and is there-
fore not representable as a constant.

136

{c) the external functions of other data types;
{d) the external and auxiliary functions of type 1, provided there
exists no. sequence of external and/or auxiliary functions

Fl’ FZ""’Fn . nz=2

where Ei+l occurs in the (right-hand side of the) definition of

F,

. l1<4i<gn~-1, and Fn = Fl‘

137

(i) Constructors
emptyset : -+ Set
insert: Set X Integer + Set
(i1) Acceptor function
Is.Set = [aM.[xs € Set. if Is.emptyset(s)
then true
else if Memberof(s[1], s{21)
then false
else M(s[1]) 1]

(iii) Equivalence relation
Eq.Set = [Asl, s2 € Set.
if Subset(sl, s2)
then Subset{sZ, sl) else false]
(iv) External functions
Emptyset = emptyset
Insert = [As € Set, 1 € Integer.
if Memberof(s, i) then s else insert(s, i)l
Delete = [aM.{Xs € Set, i € Integer.
if Is.emptyset(s)
then emptyset
else if Eg.Integer(s{2], i)
then sl1]
else insert(M{s[1], 1), s[2]) 1]
Memberof = [aM.[As € Set, i € Integer.
if Is.emptyset (s)
then false
else if Eq.Integer(s[2], 1)
then true
else M(s[1], i) 11
Subset = [aM.[Xsl, s2 € Set,
if Is.emptyset(sl)
then true
else if Memberof(s2, sl{2})
then M(slil1, s2)
else false 11

FIGURE 2: A specification of the data type Set; the data type
Integer is assumed to have been specified. Note that Is.Set avoids
the occurrence of duplicates in the term language and that Eg.Set
identifies sets which differ only by the order of occurrence of
their elements.

138

(i) Constructors
emptystackl: + Staekl
pushl: Stackl x Integer + Stackl
(i1) Acceptor function
Is.Stackl = [As € Stackl. if Depth(s) < 10
then true else falsel

(iii) Equivalence relation
Eq.Stackl = Equal. Stackl
(iv) External functions
Emptystackl = emptystac':i
Pushl = .[As € Stackl, i € Integer.
if Depth(s) < 10 then pushl(s, i) else Q]
Popl = [xs € Stackl.
if Is.pushi(s) then s{1] else Q]
[xs € Stackl.
if Is.pushi(s) then s{2] else QI
Isnewl = [As € Stackl.
if Is.pushi(s) then false else true]

I

Topl

(v) Auxiliary function
Depth = [oM.[xs € Stackl.
if Is.pushl(s) then M(s[1]) + 1 else 0 11

FIGURE 3: A specification of the data type Stackl (*); the data
type Integer (with the functions "<", "<", etc.) is assumed to
have been specified. The stack can not contain more than ten

integers.

(*) In Bavarian "Stackl" means "little stack”

139

Examples of specifications are in Figure 2 and 3. More elaborate
examples - including the traversable stack of [Mj 79] and the Turing
machine may be found in [Lo 811.

For the data type Set of Figure 2 one has for instance

Delete(insert(insert{emptyset, zero), suc(zero)), zero)
= insert(Delete(insert(emptyset, zero), zero), suc(zero))

because of the fixpoint property

= insert{emptyset, suc{zero)})

For the data type Stackl of Figure 3 one has for instance
Push1(Popl(Emptystackl), Zero)
= Push1(Popl{emptystackl), Zero)
= Pushl (9, Zero)
if Depth (@) < 10 then ...

av

= if (if Is.pushl (@) then ...) <10 then ...
= if @ < 10 then ...

because Is.pushl is doubly strict
= Q if we assume that in the specification of Integer "<"

has been defined as a doubly strict function.

4.2 Two more definitions

The specification of a data type 1 is said to depend on a data type t',

Tt # 1t, if it makes use of an external function of t'.

A {finite) set of specifications is called Aierarchical if it is
possible to order its elements

S1s 555 S35 e s Sn
such that
- the specification Si depends only on types specified by
Si» 52, e s Si-l’ for all i, 1 <1 < n;

- the specification S1 is a specification of Boolean.

140

The data types defined by a hierarchical set of specifications consti-
tute a heterogeneous algebra. This algebra is defined by its carrier
sets CT {(viz. one carrier set QT for each type t) and its operations

F (viz. one operation F0

op for each external function F).

P

For each t € 52 let [t] denote the equivalence class of t induced by
Eg.t on the set 52. Then the carrier set for type 1 is

_ 0
C,r = {[t] | te ET} U {UNDEFINEDT, ERRORT}

where UNDEFINEDT and ERRORT are two new elements.

Let ¢ be the function

. o .
¢ g (51 U {wT, QT}) > U ET'

T
o(t) = (It] if t € L7 for some T

UNDEFINEDT if t = W, for some Tt

ERRDRT if t = QT for some T

To each external function

Fogyp X oo x> 1 s, =20 ,

corresponds an operation

FOp : ng X vue X ETn -+ QT

Fople{ty)seens o(ty)) = O(F(tys---5t,))

Note that for the definition of FOp to be consistent the function F must
satisfy certain conditions; roughly speaking, F has to preserve the pre-
dicates Is.t and Egq.T; the study of these conditions is the subject of

Section 5.

Note that the operation (Eq.r)op is the equality in the carrier set
QT or, more precisely, is an extension of the equality in
ET - {ERRORT, UNDEFINEBT} (*).

(*) The difference between (Eq.t)yp and the equality "=" in € may be
illustrated as follows : ERRORT = ERRORT but, if Eq.t is doubly

strict, (Eq.r)op(ERRORf, ERRGRT) = ERRORT

141

Note that ¢ may be viewed as an epimorphism from the (heterogeneous) al-
gebra constituted by the (extended) term languages and the external
functions into the algebra defined by the specifications.

The purpose of the acceptor function Is.t is to eliminate some elements
of the term language from consideration. For instance, in the data type
Set of Figure 2 the attention is restricted to terms without duplicates.

The 1introduction of the equivalence relation Eq.t allows one to "iden-
tify" terms which are syntactically different. In the data type Set of
Figure 2 terms are defined to be equivalent if they are syntactically
equal or if they differ only by the order of occurrence of their ele-
ments.

In general there exist several possible algorithmic specifications for

a given data type which are more or less "natural”. These specifications
differ by the choice for the constructors and the acceptor function;

for instance, replacing the acceptor function in Figure 2 by

Is.Set = [As € Set. truel

{and modifying the definition of Eq. Set and of the external functions
accordingly) leads to a specification with duplicates defining the same
data type Set.

It is important to distinguish between the equivalence relation Eq.rt,
the equality relation (Eq.r}op in the carrier set QT, the equality re-
lation Equal.t in the term language ET and the relation ®=" used in the
definitions of the functions in the specification; "=" expresses the
equality of (possibly O-ary) functions having arguments and values in
the extended term languages. (*)

{*) More precisely, "x = y" stand for *x ir y" and "y LT x"; while
Equal.t is doubly strict, "=" is not even monotone [Mi 72].

142

4.5 Proofs

For proving a property of a data type it is, roughly speaking, suffici-
ent to prove the corresponding property of the term language; in the
latter poof one may use structural induction - as indicated in Section
2.3. As a precise description and formal justification of this proof
methodology is beyond the scope of this paper, we illustrate it by an
example.

For proving the property of the data type Set of Figure 2:

ied

for all s € C Cinteger

=Set ?
if s and i have defined, non-error values

then Memberofo (De]eteO (s, i), i) = fa]se0

Y p p

one proves:

iel

for all s € L ~Integer

—Set ?
if Is.Set(s) = Is.Integer(i) = true
then Memberof (Delete (s, i), i) = false
Structural induction on s leads to:

- (base step) s = emptyset:
Memberof (Delete(emptyset, i), i)
= Memberof{emptyset, i) = false
- (dinduction step) s = insert (s', j):
lrst case: Eq. Integer (i, j) = true

Memberof (Delete(insert(s', j), i), 1)
= Memberof (s', 1)
= Memberof (s', J)
because Eq.Integer (i, j) = true (see also Section 5)

false
as may be deduced from Is.Set(insert(s', j), i) = true
2nd case: Eq.Integer (i, j) = false
Memberof (Delete{insert(s', j), i), 1)
= Memberof (Delete(s', i), i)
- false
by induction hypothesis

143

5. The verification of a specification

The verification of a specification consists in verifying the consisfen-
cy of the definitions of Section 4.3.

The verification of a specification does not include a proof of the syn-
tactical correctness which should, among other things, make sure that
the right-hand sides of the function definitions are correctly typed
LCF-terms. It is also different from a (semantical) "correctness proof"
checking that the data type defined corresponds to the "intended" one -
whatever this means.

The definitions of Section 4.3 are consistent provided the following
three conditions hold:

(i) Eq.7 is an equivalence relation, i. e. Eq.1 is a total, reflexive,
symmetric and transitive relation; this condition has to be veri-
fied because the definition of Eq.t merely guarantees that Eg.t
is a (possibly partial) function with values of type Boolean;

(ii) each of the external functions preserves the equivalence relation,
i. e. equivalent arguments lead to equivalent values;

(i11) each external function preserves the property Is.t, i. e. the
function value satisfies Is.t if the arguments do.

More formally the verification conditions of a specification of the
data type 1 are:
(1) if Is.1{t) = Is.t(ty) = Is.t{t,) = Is.t(tz) = true
then:
{a) either Eq.r(tl, tz) = true or Eqg.t(
(b) Eq.T(t, t) = true
{c) Eq.r{tl, tz) = Eq.r(tz, tl}
(d) if Eq.r(tl, ty) = Eq.1(t,, t3) = true
then Eq.r(tl, t3) = true

tys tz) = false

(i) for each external function, say

Fooory Xooux 1.0 T s nx=0

144

one has
for all terms ty and t% of type Tys 1 <4 <n:
if IS'Ti{ti) =true or t, = w or t; =q for all i, 1<1isn,
and if Is.ri(t;) = true or t% = or t% = foralli, 1<1is<n,

1 1 = =t = =f!= i i
and if Eq'ri(ti’ti) true or ti ti w or ti ti Q for all i, I<isn,

then EQ.T(F(tl,..., tn}, F(ti,..., té}) = true
or F(ty,..os tp) = F(t],eoes) =0
or F(tys.eny t) = F(t]s.ous t)) = @

{iii) for each external function, say

F : Tp XeeX Ty > T, n=x=0

one has:
for all terms ti of type Tio 1 €4 <n:
if IS'Ti(ti) = true or ti = @ or ‘c_i =Q for all i, 1 <1
then Is.t(F(ty,..., t)) = true
or F(ty,..., tn) = 1w
or F(tl,..., tn) =Q

A

n

These verification conditions are very similar to those of [GHM 78 b].

The verification of the specification of the data type Set of Figure 2
has been performed mechanically with the AFFIRM-System [Mu 80, Th 79];
the proofs may be found in [Lo 80 al.

6. Concluding remarks

Algorithmic specifications have been shown to provide an elegant way for
handling partial and ERROR-functions; they allow to define any data
types with recursively enumerable carrier sets and partial computable
functions; they do not require proofs of consistency and sufficient-
completeness; finally, enrichment, i. e. the addition of external func-
tions raises no problems. In [Lo 80 ¢] it is shown that the specifica-
tion method leads to a simple definition of the implementation of ab-
stract data types.

145

Similar constructive approaches are in [Ca 80, K! 80]. As a main diffe~
rence these authors do not use a formal language such as the term langu-
age introduced here. [K1 80] moreover only considers primitive recur-
sive functions.

In simple cases it is easy to tranform algorithmic specifications into
algebraic ones. The main idea consists in deriving from the function de-
finitions relations between their values; the values have to be chosen
such that the syntactical functions - except If-then-else - are elimi-
nated. For more details the reader is referred to [Lo 80 a, Lo 80 bi.

Proofs of properties of data types may be performed mechanically either
by first transforming the specifications into algebraic ones and by then
using a system such as AFFIRM [Mu 80, Th 79, Lo 80 al, or directly by
using a system based on the LCF-calculus [Mi 72, GMW 791.

The specification of parameterized data types and of data types with
non-deterministic operations has not yet been examined.

Acknowledgment

The author is indebted to one of the referees for his detailed and
helpful comments,

References

[Au 79] R. Aubin, "Mechanizing structural induction, part 1",
Theoretical Computer Science 9, 3, pp. 329 - 345 (1979)

[BDP 79] M. Broy, W. Dosch, H. Partsch, P. Pepper, M. Wirsing,
"Existential quantifiers in abstract data types", Proc. ICALP,
Lect. Notes in Comp. Sc. 71, Springer-Verlag, pp. 71 - 87 (1979)

[BM 801 M. Broy, M. Wirsing, "Partial recursive functions and abstract
data types", EATCS Bull. n® 11, pp. 34 - 41 (June 1980)

[Bu 69] R. M. Burstall, "Proving properties of programs by structural
induction”, Comp. J. 12, pp. 41 - 48 (1969)

[Ca 80] R. Cartwright, "A constructive alternative to axiomatic data
type definitions”, Internal Report TR 80 - 427, Cornell Universi-
ty, June 1980

[EKP 781 H. Ehrig, H. J. Kreowski, P. Padawitz, "Stepwise specification
and implementation of abstract data types", Proc. ICALP, Lect.
Notes in Comp. Sc. 62, pp. 203 - 226, Springer-Verlag, 1978

146

[ADJ 78] J. A. Goguen, J. W. Thatcher, E. 5. Wagner, "An initial al-
gebra approach to the specification, correctness and implementa-
tion of abstract data types", in "Current Trends in Programming
Methodology IV" (R. Yeh, ed.), pp. 80 - 149, Prentice-Hall, 1978

[Go 781 J. A. Goguen, "Abstract errors for abstract data types" in
E. J. Neuhold (ed.), "Formal description of programming concepts"”,
North-Holland, 1978

[GMW 791 M. Gordon, R. Milner, C. Wadsworth, "Edinburgh LCF", Lec-
ture Notes in Computer Science 78, Springer-Verlag, 1979

[GH 78 al J. V. Guttag, J. J. Horning, "The algebraic specifications
of abstract data types", Acta Informatica 10, 1, pp. 27 - 52 (1978)

[GHM 78 b] J. V. Guttag, E. Horowitz, D. R. Musser, "Abstract data types
and software validation", Comm. ACM 21, 12, pp. 1048 - 1064

[Gu 801 J. V. Guttag, "Notes on type abstraction”, IEEE Trans. on
Softw. Eng. SE-6, 1, pp. 13 - 23 (1980)

[Ka 791 D. Kapur, "Specifications of Majster's traversable stack and
Veloso's traversable stack", SIGPLAN Notices 14, 5, pp. 46 ~ 53
(1979)

[K1 803} H. Klaeren, "A simple class of algorithmic specifications for

abstract software modules"”, Proc. ICALP, Lect. Notes 1in Comp. Sc.
88, pp. 362 - 374, Springer-Verlag, 1980

[Lo 80 a] J. Loeckx, "Proving properties of algorithmic specifications
of abstract data types in AFFIRM", AFFIRM-Memo-29-JL, USC-ISI,
Marina del Rey, 1980

[Lo 80 b] J. Loeckx, "Algorithmic specifications of abstract data
types", Internal Report A 80/12, Fachbereich 10, Universitdt
des Saarlandes, Saarbriicken, 1980

[Lo 80 ¢l J. Loeckx, "Implementations of abstract data types and their
correctness proofs", Internal Report A 80/13, Fachbereich 10, Uni-
versitdt des Saarlandes, Saarbriicken, 1930

[Lo 811 J. Loeckx, "Algorithmic specifications of some non-trivial
data types®, Internal Report, Fachbereich 10, Unijversitdt des
Saarlandes, to appear

[M3 791 M. E. Majster, "Data types, abstract data types and their
specification problem", Theor. Comp. Sc. 8, 1, pp. 89 - 127 (1979)

[Mi 721 R. Milner, "Implementation and application of Scott's logic
for computable functions", Proc. ACM Conf. on Proving Assertions
about Programs, SIGPLAN Notices 7, 1, pp. 1 - 6 (1972)

(Mi 731 R. Milner, "Models of LCF", Stanford University Memo AIM-186,
January 1973

[Mo 801 A. Moitra, "A note on algebraic specifications of binary
trees", SIGPLAN Notices 15, 6, pp. 64 - 67 (1980)

[Mu 801 D. R. Musser, "Abstract data type specification in the
AFFIRM System", IEEE Trans. on Softw. Eng. SE-6, 1, pp. 24 - 32
(1980)

[St 771 J. E. Stoy, "Denotational semantics: The Scott-Strachey
approach to programming language theory", MIT-Press, Cambridge
(Mass.) 1977

[Th 79] D. H. Thompson (Ed.), "AFFIRM Reference Manual", Internal
Report, USC-ISI, Marina del Rey, 1979

147

[WPP 80] M. Wirsing, P. Pepper, H. Partsch, W. Dosch, M. Broy, "On
hierarchies of abstract data types", Internal Report TUM-I 8007,
Technische Universitdt Minchen, Mai 1980

[Zi 743 S. N. Zilles, "Algebraic specifications of data types",
Comp. Struct. Group Memo 119, Lab. for Comp. Sc., MIT, 1974

