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ABSTRACT 

A nondeterministic operation is characterized by the fact that its application to a 
given set of paramete~o can yield any one of several possible outcomes. This paper 

discusses ways to specify, implement, and reason about nondeterministic operations 
in the context of abstract (algebraic) data types. The notion of an implementation 
of a data type that includes nondeterministic operations is formalized, and the 

criteria for judging the "correctness" of such implementations are specified. The 

formalism developed allows implementations of nondeterministic operations to embody 

varying degrees of the full extent of nondeterminism allowed by the semantics of a 

type; in particular, deterministic implementations of nondeterministic operations 

are allowed. 

Keywords nondeterminism, nondeterministic operations, abstract data types, 
correctness, implementations, extraction equivalence, observable behavior. 

I. Introduction 

Although the importance of the notion of abstract data types [I], [2], [4], [6] has 

by now gained almost ubiquitous acceptance, several problematic issues still remain 

unresolved. Two of the factors that have significantly impeded experimentation are 

the lack of effective mechanisms for specifying and reasoning about (i) 

nondeterminism and (ii) exceptional conditions. In this paper, we outline a method 

for dealing with nondeterminism in the context of abstract algebraic data types. 

Specifically, we are interested in being able to 

- specify (i.e., give semantics for) nondeterministic operations; 

- state and prove properties about nondeterministic operations; 

- define the notion of~ implementations of data types that involve nondeterministic 
operations, and specify criteria for Judging the "correctness" of such 

implementations; 

- characterize the notion of the "degree" of nondeterminism embodied in an 

implementation of a type; 

- develop techniques to prove the correctness of implementations in the presence 

of nondeterminism. 

Further, we are here interested in being able to achieve the above objectives by 
using deterministic characterizations of nondeterministic operations in so far as 
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this is possible. 1 Although there are several reasons for adopting this route, our 

ma~or rationale here is twofold (i) to preserve the machinery for reasoning about 

deterministic operations and (ii) to avoid the additional complexity we might incur 

by introducing a completely different notation for talking about nondeterministic 

operations. 

It is desirable to be able to continue to make statements about nondeterministic 
operations, their implementations, and the correctness of such implementations in 

the normal fashion -- by writing (logical) expressions involving them. It will turn 

out that the only parts of such expressions that have to be carefully interpreted 

are those that contain the equality symbol: the interpretation of equivalence we 

adopt is therefore central to our enterprise. In order to achieve the objectives 

enumerated above, it is therefore necessary to 

- define a notion of equivalence of instances of a type in the presence of 

nondeterministic operations; 

- detail how expressions involving nondeterministic operations are to be 
interpreted. 

In the rest of this paper, we flesh out the plan outlined above. 

2. Preliminary Definitions 

In this section we introduce some needed terminology relating to abstract data types 

and nondeterministic functions. 

2.1. Abstract Data Types, Nondeterministic Operations, Characteristic Predicates 

Intuitively, the abstraction of a problem can be viewed as consisting of an 

appropriate set of operations that manipulate associated sets of objects of various 

sorts. An abstract ~ata type is nothing but a formal characterization of such a 
viewpoint, as is reflected by the following definition. 

Definition I: An abstract (algebraic) data type consists of a set X of sorts, a 

set F of function symbols, and a set of equations relating terms generated by F 

and containing free variables. Each f in F has an associated arity that is an 

element (xlx 2 ..Xn,Xn+l) of X* • x X. We also write f:xl,x2,.,.,x n -> Xn+ I (for an 
example, see figure 2-i.) 

i 
of course, a different way of approaching this problem (and one which may very 

well provide a better alternative!# is to develop methods that are entirely 

independent of those in the deterministic domain• We do not do this here. 
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T_~eSet--of-lnteger 

Syntax 

EMPTYSET: () -> Set 

INSERT: Set, Integer-> Set 

DELETE: Set,Integer-> Set 

ISEMPTY: Set -> Boolean 

MF~MBER: Set, Integer-> Boolean 

CHOOSE: Set -> Integer U {UNDEFINED} 

-- CHOOSE is nondeterministic. 

{PcHoOsE:Set,lnteger -> Boolean is the characteristic predicate of CHOOSE} 

Semantics 

for aii s in Set, x,y in Integer, 

DELETE(EMPTYSET,x) = EMPTYSET 

DELETE(INSERT(s,x),y) = if x=y then DELETE(s,y) else INSERT(DELETE(s,y),x) 

ISEMPTY(EMPTYSET) = TRUE 

ISEMPIY(INSERT(s,x) ) = FALSE 

MEMBER(EMFTYSET,x) = FALSE 

MEMBER(INSERT(s,x) ,y) = if x=y then TRUE else MFX~BER(s,y) 

C HOOSE(EMPTYSET) = UNDEFINED 

PC}lOOSE (s,x) = MEMBER(s,x) 
...... -- the characteristic pre_dicate of CHOOSE 

End Set 

Figur= 2-1: Definition of the Type Set-of-lnteger 2 

2For the purposes of this paper, we ignore the technicalities arising out of the 

presence of parameterized types and functions returning "exceptional" values (see 

[2], [9], [11]). However, the reader's intuition will not lead him astray in his 

comprehension of this paper. 
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We permit the "functions" in F to be nondeterministic. 3 In the context of abstract 

data types, nondeterminism implies that there is an element of choice in the outcome 

of the operation. Whenever it is necessary to highlight the fact that an function f 

is nondeterministic, we wiii use a distinguishing font: f. The function CHOOSE 
\ . . . . . . .  

defined on a Set is a common example of a nondeterministic function: intuitively, 

CHOO§E(s) returns a random element picked from the non-empty set s. In general, if 

f:TI,...,T n -> T is a nondeterministic function, and if t i ( T i, i=l..n, then 

f(tl,...,tn) can be any element from some set of T which we shall henceforth denote 

{f(t I .... ,£n)}; such a set is invariably circumscribed by a deterministic predicate. 

We wiii presume that that the characteristic predicate of this set is always 
deterministic and we will henceforth refer to it as the characteristic predicate of 
the function f, and denote it P~. 

Definition 2: The characteristic predicate of a nondeterministic function 

f:T 1 .... ,Tn->T is a deterministic predicate 

P~:T 1 ..... Tn,T -> Boolean 

that is defined by 

P~(t I ..... tn,t) = TRUE iff t • {f(t I ...... tn)} 

i.e. if f(t I ..... t n) can evaluate to t (sometime). m 

The introduction of Pf enables us to explicitly state that a specific application of 

a nondeterministic function f(tl,...,tn) resulted in a value r, and what is 

important, to refer to this value r in more than one place. Quite often, we will 

specialize Pf to a fixed set of arguments of f, i.e. we will use P- _ :T- 

>Boolean as the characteristic predicate of the set {f(t I .... ,tn)}. Nencefo~th~ 

whenever there is no cause for confusion, we will abbreviate Pf,tl .... ,t n as Pf. 

As an example, MEMBER(s,CHOO§E(s)) is the characteristic predicate of the 

nondeterministic function CHOO§E; it states that all of the possible outcomes of 

CHOO§E must be contained in s. That is, PcHoOsE:Set,lnteger -> Boolean, and 
[CHOOSE(s)=x => MEMBER(s,x)=TRUE]. ~ ..... 

2.2. Terms of a Type 

The "words" or terms of type ~ ~ generated by the (set of) functions F and the (set 

of) variables V, consist of the set of syntactic terms of sort x that are obtained 

by composing the functions in F. This set of terms, denoted Wx[F,V], can be defined 

inductively as the union of the sets w~n)[F,V], n = 0,1,2... where the superscripts 

indicate the level of "nesting" in the function compositions; W~0)[F,V] contains all 

the variables and constants of type (or sort) x. The algebra obtained by 

3Since it is quite common (albeit erroneous!) to term nondeterministic operations 
as "nondeterministic functions", we shall interchangeably use the words function and 
operation here. 
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interpreting the functions F over the terms {Wx[F,V] 

alsebra defined by F, V. 

I x E X} is called the word 

The data type Set-of-lnteger can be viewed as consisting of 

- the set of sorts X, X = {Set, Integer, Bool~an}, the sorts themselves being Set, 

Integer, Boolean; 

- the set of function symbols F Set = {EMPTYSET, INSERT, DELETE, ISEMPTY, MEMBER, 

CHOO§E}, with associated arities as shown in figure 2-I, F B°°iean = {FALSE, 

TRUE}, etc.; 

- the set of terms iu the word algebra generated by this set of functions consists 

of 

[F Set ' 
Wse t <x,y,...}] = 

{EMPTYSET, INSERT(EMPTYSET,x), 

INSERT(EMPTYSET,y), ..., INSERT(INSERT(EMPTYSET,x),x), ..°, 

DELETE(EMPTYSET,y), ... } etc.; 

W rF Set integer ~ , {x,y .... }] = {CHOO§E(INSERT(EMPTYSET,x)) .... } etc. 

- the equations are those shown in figure 2-I. 

Figure 2-2: Terms generated by F Set 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

2.3. Some Notational abbreviations 

F T denotes the set of functions defined on the data type T; V T denotes the 

(countable) set of variables of type T. Often, when defining a type T (e,g., Set-of- 

Integer,) other types like Integer and Boolean are presumed to be "known" or 

"global" types -- we will denote this set of types by G. To improve readability, we 

often abbreviate WT[F U FG,v] to WT[F]. (That is, the functions F G defined on the 

"known" or "global 'c types G are omitted.) When F = F T, i.e., F is the entire set of 

functions defined on type T, we further abbreviate WT[FT] to W T. 

3. Characterizing Externally Observable Behavior 

The functions F T defined on an abstract data type T can be categorized into Base 

constructors (BcT), which spawn new instances of the type (e.g. EMPTYSET), 

Constructors (cT), which form new instances of the type from existing ones (e.g. 

D~TE), and extraction functions or extractors (ET), which return members 

of other "known" types (e.g. CHOOSE, ISEMPTY, MEMBER). 

We adopt the viewpoint that any obi ect representing an instance of a type is 

completely characterized by its "externally observable" properties; such properties 



153 

are just those that are obtained as results of applications of extraction functions 

defined on the type. This is made precise in the notion of extraction equivalence 

of instances of the type. 

Informally, two terms t i and t 2 are said to be extraction equivalent [8] i£ every 

sequence of function applications that terminates with the application of an 

extraction function yields the same (or "equivalent") results on the two terms. 

However, care is required when dealing with expressions involving nondeterministie 

functions, since f(tl,...,t n) may, in general, yield any element in a set 

{f(t I, .... tn)}. If we want to preserve the ability to reason inductively using the 

structure ol terms in the word algebra, it is imperative to adopt a notion of 
equivalence that preserves the "substitution property" [3]. For example, given that 

Sl=S 2 ~ want to appropriately interpret an equation like CHOO§E(sl)=CHOO§E(s2) ; in 
particular, we desire that CHOOSE(s)=CHOO§E(s) be interpreted to mean that the set 
of possible outcomes of the two sides of the expression are extraction equivalent, 

and not that the specific elements each side evaluates to are always identical. 

We therefore adopt the following definition: two terms t I and t 2 of type T are 

extraction equivalent, denoted tl=Tt 2 if the sets {tl} and {t 2} are (extraction) 

equivalent; in the case that t I and t 2 do not contain any nondeterministic 

functions, these sets contain only one element. 

As an example, two instances of the type Set (say, s I and s2) are extraction 

equivalent iff the applications CHOOSE(Sl) and CHOOSE(s2), CHOOSE(DELETE(Sl,Yl) ) and 
CHOOSE(DELETE(s2,Yl)) ..... CHOOSE(INSERT(Sl,Xl)) and CHOOSE(INSERT(s2,xl) ) ..... 
ISEMPTY(sl) and ISEMPTY(s2), ISEMPTY(DELETE(Sl,Yl)) and ISEMPTY(DELETE(s2,Yl)), .... 
ISEMPTY(INSERT(Sl,Xl)) and ISEMPTY(INSERT(s2,xl)) .... , MEMBER(Sl,Zl) and 

MEMBER(s2,zl), MEMBER(DELETE(Sl,Yl),Z I) and MEMBER(DELETE(s2,Yl),Zl) , ..., 

MIMBER(INSERT(Sl,Xl),Zl) and MEMBER(INSERT(s2,xl),Zl) .... , yield equivalent results 

pairwise. Specifically, equivalent results should obtain when the variables (the 

x's, y's, and z's) are substituted with Integers. 

We now formalize the notion of extraction equivalence. For any term t, we denote by 

t[v~t'] the term obtained from t by replacing each occurrence of v in t by the term 

t'. (For this to be well defined, it is necessary that the sorts of t" and v be the 
same.) We denote by t[V(VTlt'] the term obtained by substituting t" for all 
occurrences, in t, of variables that are contained in V T. 

Definition 3: t I and t 2 are said to be extraction e~uivalent in T, denoted 

tl=Tt 2 if and only if 

either (i) t I = t 2 (i.e. the terms are syntactically equivalent), 

or (ii) (Vg ~ G)(~tg ~ Wg} (tg[VGVTItl] =g tg[V~VTIt2] ). 

where G is the union 
functions defined on T. 

of all "known types" that are returned by extraction 

m 

To avoid ambiguity, the = sign has been labeled to apply over the type domain of its 
arguments. As we have already stressed, and will further elaborate upon below, the 
equality in (ii) has to be ~ .  interpreted in the case when ~ involves 
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nondeterministic functions. However, two important observations immediately follow 

as a result of this definition: 

i. When G is the empty set, extraction equivalence becomes identical to syntactic 

equivaience~ • 

2. Syntactic equivalence implies extraction equivalence. T~us, 
m 

tl = t2 => tl =T t2~ 

4. Deterministic Equivalents of Nondeterministic Expressions 

If expressions involving nondeterministic functions can be translated into 

equivalent expressions involving only deterministic functions, then we can benefit 

from the techniques that are already available for dealing with deterministic 

expressions, In this section, we indicate how logical expressions that involve the 

connectives A, V, ~ , =, the quantifiers ~ and ~, and nondeterministic function 

symbols can be interpreted deterministicaliy. (Here, the "=" in a logical 

expression is being to denote equality interpreted as observable equivalence in the 

ap@ropriate domain; this usage should cause no confusion as it obvious from the 

context whether equality is being interpreted as syntactic equivalence or observable 

equivalence.) We shall denote by D the function that computes the deterministic 

equivalent of a nondeterministic expression. 

A little reflection will reveal that the only logical symbol that needs to be given 

special attention is =. We therefore first consider an expression of the form 

tl=Tt2, where tl, t 2 E W T. 

if neither of tl, t 2 involves any uondeterministic functions, then ~o translation is 

needed, since the expression is already deterministic; thus ~(tl=Tt2) is tl=Tt 2. 

In the case that one or both sides of such an equation contain nondeterministic 

functions, we interpret tl=Tt 2 to mean that for every possible outcome r of t I there 

is a possible outcome of t 2 that is extraction equivalent to r, and vice versa. 

There are two possible ways to effect a formal translation of t1=Tt 2 that captures 

this interpretation. The first is to introduce an artifact that enables us to refer 

to the value r i of a sin$ie application of a nondeterministic function f(t I ..... t n) 

at two or more places in an expression: note that this is distinct from writing 

several instances of the subterm f(tl,...,tn), as the nondeterministic nature of f 

then allows the various occurrences to evaluate to different values. An alternative 

way is to characterize the sets implied associated with nondeterministic expressions 

and reason in terms of these sets. 

Using the definition of a characteristic predicate introduced in section 2, it is 

quite straightforward to detail a procedure that, given a term t, replaces all the 
occurrences of subterms t i that involve nondeterministic functions by (existentially 

quantified) variables vi, and tacks on a conjunct that states that the specific 
evaluations of the t i resulted in the values v i. For example, to represent the fact 

chat CHOOSE(s) returns the value Vl, CHOOSE(s) may be converted into [PcHoOSE(S,Vl) 
ACHO~(s~=vl]. We will denote this transformation by S (for S~ecify);~~g~that 

wiii introduce new variables into an expression. 
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We can now define ~ on tl=Tt 2 when t I or t 2 involve nondeterministic functions° 

Let {~i . . . .  '~n }' {$i ..... Sm } be the nondeterministic function symbols occurring in 

the terms tl, t 2 respectively. Let {u I .... ,Un}, {vl,...,Vm} be all of the new 
variables introduced when the nondeterministic function symbols in t I, respectively 

t2, are eliminated as above, i.e., when ~ is applied to t I, t 2. Then, if fi is k i- 
ary, gi is qi-ary, and t{t'It"} represents t with occurrences of t ~ substituted by 

t", we have 

~(tl=Tt 2) => 

[(Vu I ..... Un~[Pfl(S ~~ ..... Sll , u I) A...A P=~n(S~,± .... S~n,Un)] => 

t A . . . A  m (3Vl . . . . .  Vm)[Pgl(r [ . . . . .  rqt,V 1) Psm(r~ . . . . .  rqm,Vm)] 

~ '''' . ui}i=l =T t2{$j .... r~j [vj 

A 

(Vv 1 . . . . .  Vm)[P l ( r  [ . . . . .  r~l,V I) i . o . i ~  P~m(r~ . . . . .  r~m,V m) => 

• , (Sl,.. ,s k ,Un)] [(~u I .... Un)[Pfl(S~ .... S~l,Ul ) i..,i pf n . n 
~n n 

~ "'''SkilUi}i=l =T t2(~j . . . . .  r~i 

As noted previously, the other logical symbols are quite transparent to D: 

D(tlft 2) = ~(tl)fD(t2) 
~(tlVt e) = D_(t1~V~(t e) 
~(~t I) = .~(t I) 

PROPOSITION i 

D(t) is semantically equivalent to t. 

Proof Immediate by induction on the structure of a formula. Note that all logical 
symbols other than "=" are unaffected by D. 

The tra.~formation ~ can always be used to deterministically interpret/translate all 
of the nondeterministic expressions dealt with in the rest of this paper. We will 
therefore not elaborate on such translations for the most part, but will instead 
phrase our arguments using the sets underlying nondeterministic terms. Our 
motivation in doing this is to convey greater intuition and to improve readability. 

5. Implementations of Nondeterministie Operations 

Intuitively, an implementation of one data type, the type of interest TOI, in terms 
of another, the target type TT, is a map from the functions and the objects of TOI 
to Lhose of TT which preserves the "observable behavior" of the type of interest. 
(See figure 5-1 for an example.) That is, whenever extractors are applied to 

objects of TOI, yielding instances of known types, the corresponding computations in 
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the implementation domain should yieid equivalent results. 

The presence of nondeterministic operations calls for a closer examination of the 

above interpretation, however, since we wish to allow implementations of 

nondeterministic functions that do not necessarily preserve the full extent of 

nondeterminism implied by the original specifications. In particular, we wish to 

allow fv~ deterministic implementations of nondeterministic functions. This 

introduces a further nuance -- since there might be several distinct instances ttl, 

..., tt n in the target type that represent the same instance of the type of 

interest, a deterministic implementation of a nondeterministic function in TOI might 

yield observably distinct results when applied to ttl, .... tt n. For example, 

although <ASSIGN(ASSIGN(NEWARRAY, I,x),2,y),2> and <ASSIGN(ASSIGN(NEWARRAY, I,y),2,x), 

2> represent "equivalent" sets {x,y} and {y,x}, the implementation of CHOOSE in 

figure 5-1 would return different results on the two representative instances. Such 

behavior is considered quite acceptable, and is fairly common in several 

implementations of nondeterministic functions. We term such implementations (or 

behavior) p.seudo-nondeterministic to connote the fact a deterministic implementation 

evidences apparent nondeterminism. Finally, it is possible to have nondeterministic 

implementations of deterministic functions -- in such a case~ the nondeterministic 

results produced by the implementation must obviously be all extraction equivalent. 

We now formalize the notion of an implementation. We can do this with greater 

precision by introducing the notion of a (restricted) derivor [11]; this is done in 
Definition 4 below. However, we first need to introduce the notion of a term being 

viewed as a derived function: informally, a term "DELETE(INSERT(s,x),y)" can be 

viewed as an function (say INSERT-DELETE) with arity INSERT- 

DELETE:Set,lnteger,lnteger->Set, that maps the arguments (s,x,y) to the Set 

"DELETE(INSERT(s,x),y)". INSERT-DELETE is called a derived operation ("derived" 

from the term "DELETE(INSERT(s,x),y)" where s, x and y are variables). When we 

explicitly want to indicate the function derived from a term t, we shall denote it 

d-(t). 

Definition 4: A derivor d consists of the following pair of maps 

(a) a map d a from ({TOI} U G) to ({TT} U G); we shall be concerned only with the 

case where d a maps TOI to TT and is the identity function on all of the global 

sorts g in G. That is, 

da(T01) = TT, and 

(Vg e G) [da(g) = g] 

(This merely embodies the fact that we compute with TT-objects in place of TOI- 

objects and that everything else is unchanged.) 

(b) a map 8 from F TOI to WTT that preserves arity: if f:xl...Xn->X (f in FTOI), 

then d-(@[f]), (a term in WTT) when viewed as a "derived function" must have 

arity 

d-(8[f]) : da(Xl)...da(X n) -> da(X). 
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By virtue of the simplification in (a), this arity is simply Xl~...Xn->X with any 

occurrences of TOI being replaced by TT. 
D 

Henceforth, we simply write 8(f) for d-8(f). The map 8 which is of interest to us 
acts as the "identity" for functions f in F G. Thus, the non-trivial part of 8 is 
the one that transforms the functions defined on the type of interest to terms in 
the target type. This map will henceforth be referred to as the implementation map 

(or simply the implementation 8), and in essence, defines an implementation of the 

type TOI in terms of the type TT. 

Definition 5: The d-derived algebra dTT defined by a derivor d is an algebra 

with functions {d-8(f) I f in F TOI} that is, the function corresponding to f is 

the term 8(f) viewed as a derived function. The equations of dTT are identical 

to those of TT. B 

Example If we consider the implementation of a Set in terms of an Indexed-Array (see 

Figure 5-I), the maps comprising the derivor are: da(Set) = Indexed-Array, 

de(Integer ) = Integer, da(Boolean) = Boolean. The type Indexed-Array is a tuple 
consisting of an Array and an integer; the map 8 is detailed in figure 5-I. 

It is straightforward to extend the domain of 8 from F TOI to Wx[FTOI U FG,v], x in 

{TOI} U G: variables of sort TOI are mapped to variables of sort TT, while 

variables (and functions) of all other sorts remain unchanged. Then, if t = 

f(tl,..tn), we define 

8(t) = 8(f~Ol)(8(tl ) .... 8(tn)). 

5.1. The Correctness of an Implementation 

We are now in a position to formally state what constitutes an implementation that 
is consistent with the specifications of the TOI i.e. a "correct" implementation. 
However, in order to satisfactorily account for pseudo-nondeterministic 

implementations, we need to treat the implementations of deterministic functions and 

nondeterministie functions separately. 

Intuitively, we view an implementation defined by 8 to be correct iff the result (or 

set of results) yielded by the implementation of a (nondeterministic) function are 

result(s) that are admissible under the semantics of TOI, and if the implementation 

produces at least one such result whenever possible. Note that this implies that 

observable behavior is preserved by the implementations of deterministic functions. 

All of the implementations 8, 81 , and 8 2 described earlier (see figures 5-i, 5-2) 
are correct implementations of the type Set, although we do not give detailed proofs 
of this here. Definition 6 formally characterizes this notion of correctness. 

We denote by D-F T the deterministic functions defined on T, and by ND-F T the 
nondeterministic functions defined on T. 
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The map 8 defining an implementation of a Set using an Indexed Array is defined 

below. Let 8(s) = <a,i>. i is an Integer Index, SUCC(i) is the Successor of the 

integer i (=i+l), PRED(i) is the Predecessor of the integer i (with the semantics i" 

I for monus). DA~A(a,i) accesses the value previously ASSIGNed to the i-th element 

of the Array a; ASSIGN(a,i,x) simply "stores" the value x as the i-th element of a. 

@(EMPTYSET) = <NEWARRAY, ZERO> 

@(INSERT(s,x)) = if MF/IBERTT(@(s),@(x)) 

then <a,i> 

else <ASSIGN(a,SUCC(i),x), SUCC(i)> 

@(ISEMPTY(s)) = [i = ZER~ 

@(ME~ER(s,x)} = MEMBERTT(8(s),@(x)) 

where 

MEMBERTT(<a,i>,x) = if i=ZERO 

then FALSE 

else i~ DATA(a,i)=x 

then TRUE 

else MEMBERTT(<a,PRED(i)>,x) 

@(CHOOSE(s)) = DATA(a,i) 

8 is a ~seqdo-nondeterministic implementation of the nondeterministic function 

CHOOSE, i.e., a deterministic implementation that exhibits apparent nondeterminism. 

@(DELETE(s,x}~ = if ~e(MEMBER(s,x)) 

then s 

else DELETETT(<a,i>,i,x) 

where 

DELETETT(<a,i>,~,x) = if DATA(a,~)=x 

then COPY(<a,i>,~) 

else DELETETT(<a,i>,PRED(j),x) 

- DELETETT(<a,i>,j,x} first locates the index associated with the value x and then 

invokes COPY to actually "delete" this element ~rom the Array a. 

COPY(<a,i>,J) = if j=PRED(i) 

then <ASSIGN(a,j,DATA(a,i)),PRED(i)> 

else COPY(<ASSIGN(a,~,DATA(a,SUCC(j)),i>,SUCC(~)) 

- COPY(<a,i>,j# deletes the j-th element in the array a and shiits the values at 

j+l,...,i-th positions to ~,...fi-l. 

Figure 5-1: THE IMPLEMENTATION OF A SET USING AN INDEXED ARRAY 
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eI(CHOOSE(a,i)~ = MAX(a,i) 

- MAX(a,i} is function defined on the type Array that returns the maximum of the 
first i values in the Array a. e I is a deterministic implementation of the 

nondeterministic function CHOOSE° 

e2(CHOOSE(s)) = [x I x=DATA(a,i) x=DATA(a,SUCC(ZERO)#] 

@2 is a nondeterminisLic implementation of CHOOSE that does not preserve the fuji 

extent of its nondeterminism. 

Figure 5-2: ALTERNATIVE IMPLEMENTATIONS OF CHOOSE 

Definition 6: 

iff 
A map @ defines a correct implementation of TOI in terms of TT 

(~g ¢ G)(ytg £ Wg) [{@(tg~} C_g{tg}]A [{tg} # 0 => {8(tg)} # 0] --(c) 

I 

Thus, (C) implies that 

(Vg ~ G)(Vtg~ Wg[D-F TOI]) [e(tg) =gtg] (i) 

i.e. that observable behavior is preserved by the implementations of deterministic 
functions, since in this case, {@(tg)} and {tg} both have a cardinaiity of i. 4 The 

first conjunct in (C) is to preclude any erroneous values being returned by the 
implementation of a nondeterministic function, whereas the second co~unct ensures 
that at least one value is returned whenever possible. The above definition allows 
for nondeterministic ~mpiementations of deterministic functions: in such a case, it 

is required that every element of {@(tg)} be equivalent (in type g) to tg. 

It is important to note that the definition of correctness given above implies that 

any "information" that is contained in the elements in {tg} - {@(tg)} is unimportant 

-- in that it is ignored -- unless it is manifest in a deterministic term° For 

example, if CHOOSE were the only extraction function defined on the type Set, and if 

it were the case that a pseudo-nondeterministic implementation 0(CHOOSE) always 

yielded the result 1 when applied to the sets INSERT(EMPTYSET,I) and 
INSERT(INSERT(EMPTYSET,I),2), then the above definition of correctness would imply 

that these two sets are equivalent, Usually, however, MEMBER is an integral part of 
the semantics specification of Set; in such a case MEMBER(s,2) is a deterministic 
term ~hat yields distinct results when s is instantiated with the two sets in 

4This cardinaiity could be <I if partial functions are allowed. 
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question. 

5.2. Degrees of Nondeterminism 

Since we do not mandate that the implementation of a nondeterministic function 
preserve the full extent of nondeterminism implied by the specifications, it is 

possible to conceive of various implementations of the same type that differ in the 

extent to which they embody the nondeterminism implied by the initial specifications 

of the type. 

Definition 7: If 81 and 82 are both correct implementations of a type, then we 

say that 81 is more nondeterministic than 82, denoted 81>82, if 

(Vg ~ G)(~t & Wg){81(t)>~g{82(t)} 

where 

{et(~)} ~{ez(t)} <=> 
[y ~ 82~t) => [~y'ly" G 81(t) A(y'=gy)]] 
[~zl[z ( 81(t)] A [~z'Iz" E 82(t) A (Z'=gZ)]] 

l 

This states that if 81 eonsistentl~ produces more results than 82 does, then 81 is 
more nondeterministic than 82 . Note that the quantification over the known types G 
ignores any expansion and contraction of the sizes of the sets of any intermediate 

computations; it is, however, possible to accommodate such an interpretation if 
desired. Also note that the above interpretation of {81(t)} g{82(t)} is different 

from 

{81(t)>~g{@2(t)} <=> [Y 6 82(t) => Y E 81(t)] A[~zlz ~ el(t) As ~ 82(t)] 

in that definition 7 precludes a superfluity of extraction equivalent values of type 

g from coa~ributing to 81 being "more" nondeterministic than 82 . 

Example The implementation 82 in figure 5-2 is (strictly) more nondeterministic than 

@ defined in fig 5-I i.e. e 2 > 8. The implementation defined by @I in figure 5-2 is 
incomparable with both the implementations 8 and @2' 

It is possible to define a weaker notion of the above ordering where only the 
cardin~lities of the sets {81(t)} and {e2(t)} are considered, but not their 
contents. That is, if e I and 82 are both correct implementations of a type, then we 

may define 81 > 82 , if 

(Vg ~ G)(~t E Wg) l{@l(t)}l > I{82(t)}I. 
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5.3. Equivalence Classes Induced on the Representation Type 

An implementation map O serves to partition the terms in the derived algebra dTT 

(i.e. the representation type) into equivalence classes. The equivalence relations 

that arise most naturally in this context are: 

- the extraction equivalence induced on terms in WTT by the extraction functions 
E TT defined on TT. We denote the equivalence classes induced by this relation by 
WTT/ETT, and its restriction to dTT by WdTT/ETT. 

- the extraction equivalence induced on the "reachable" terms in the 
dTT h representation type i.e. the terms in dTT by the extraction functions E ; t e 

dTT partition WdTT/E induced by this relation on dTT is coarser than the 

partition W~/E TT because it merges those classes that canno~ b-~ di-~tinguished 
by operation~s~in F dTT (but could be distinguished by operations in FTT). 

If F TOI contains only deterministic functions, then WdTT/EdTT is the partition that 

is of primary interest to us [8], since its characteristics determine Whether O is a 

correct implementation. Specifically, if e indeed defines a correct implementation 

then it can be shown that there exists a surj ective homomorphism from WdTT/E dTT onto 
WToI/E TOI [8]; this homomorphism is referred to as the abstraction function by Hoare 
in [5] and as the rep function in [12]. 

If, however, O contains pseudo-nondeterministic implementations of nondeterministic 
functions, then the partitioning WdTT/EdTT may often be finer than we strictly 
desire, since extraction equivalence under pseudo-nondeterministic implementations 
wiii enable a distinction between terms in dTT that represent equivalent instances 

of TOI. As an example, the implementation O of figure 5-i enables a distinction 

between the representations of INSERT(INSERT(EMPTYSET,x),y) and 

INSERT(INSERT(EMPTYSET,y),x). We now define an equivalence relation E on dTT that 

serves to merge those instances of dTT that represent equivalent instances of the 

TOI; E induces the partition on dTT that we are interested in. 

Definition 8: Let tl, t2 be terms in WT~ I which are pre-images under O of the 

terms tl, t 2 in WdTT, i.e. O(tl)=t I and 8(t2)=t 2. 

Then t I =E t2 iff 

{El} =TOI {t2 } --(A) 

i.e. t I and t 2 are equivalent in TOI, and 

tl=D_dTTt 2 --(B) 

i.e. t I ~nd t 2 are extraction equivalent if only the implementations of 
deterministic functions of TOI are considered, and 

{t I} ~ {E l} A{tl} # 0 => {~I } # 0 and {t 2} C {t2}A {t2} + 0 => {t 2} ~ o--(c) 

i.e. the set of results {tl}, {t 2} yielded by implementations is a subset of 
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those in TOI {El}, {t2 } respectively, and at least on such result is yielded 

whenever possible. • 

Intuitively, the partition induced by E on dTT is obtained by first merging those 

dTT terms that are extraction equivalent under the implementations of the 

deterministic functions in F TOI, and then merging those terms that represent 

equivalent elements of TOI but may themselves be distinct (but are distinguishable 

only by the pseudo-nondeterministic implementations in @). 

It may be shown that our interpretation of a correct implementation coincides with 

one defining a surj ective homomorphism from the extraction equivalence classes 

induced by E on dTT to the extraction equivalence classes of TOI; the homomorphism 

thus induced forms the nondeterministic counterpart of the ~ function [12]. That 

is, a correct implementation map @ satisfying the conditions enumerated in 6 implies 

the exis~=~ice oi a surjective homomorphism 

: WdTT/ E -> WTO I / E TOI. 

It must be stressed that the remark following definition 6 is very important in this 

context: it is presumed that any information contained in {tg)-{@(tg)} is irrelevant 

unless it is also mirrored in a deterministic form. li this assumption is not true, 

then @ in fact does not induce the above homomorphism. 

6. Properties of Implementations of Nondeterministic Operations 

We have seen how properties of nondeterministic functions can be expressed as 

logical expressions i~l the normal manner, provided equality in such expressions is 

interpreted appropriately. It is desirable that we have a criterion for deciding 

what it means for an implementation of a data type to preserve properties involving 

nondeterministic functions that might hold in the abstract specifications. This is 

not altogether ~ straightforward: as we wiii show below, if a nondeterministic 

function f has a pseudo-nondeterministic implementation, an equality of the form 

tl=t 2 that is true in TOI may not be preserved in dTT by an otherwise "correct" 

implementation, since @ may return observably distinct values on t I and t 2. 

Again, we need only investigate expressions involving = in detail. If t I and t 2 are 

deterministic, then the criterion for judging whether the property tl=t 2 is 

preserved by the implementation O is that the corresponding terms in the 

representation be extraction equivalent, i.e. 

@(tl) =dTT @(t2)" 

However, unless @ preserves all nondeterminism in TOI, the above need not 
necessarily he true if t I, t 2 are nondeterministic. In general, it will the case 

that 

{e(tt)>C {tt}, 

and 
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{@(t2)} ~ {t2}. 

Thus, although t I =TOI t2 implies that {tl} =T01 {t2}' {@(tl)} need not necessarily 

be equivalent to {@(t2)}. We again adopt the interpretation that we chose in 

section 5.1 i.e. that tl=TOlt 2 is preserved by @ iff the observable behaviors of e 

(t I) and @(t 2) are equivalent under implementations of all of the deterministic 

operations in F TOI, and aii observable behavior in nondeterministic cases is allowed 

by the semantics of TOI. 

7. Summary 

We have delineated in the preceding sections ways to specify, implement, and reason 

about nondeterministic operations in the context of abstract (algebraic) data types. 

In essence, nondeterministic operations can be characterized by the possible 

outcomes when they are applied to a given set of parameters; the characteristic 

predicate of a nondeterministic function, defined in section 2, serves to 

circumscribe this set. In section 3 we formally characterized the externally 

observable behavior of a type that includes nondeterministic functions: intuitively, 

two terms were defined to be extraction equivalent if the sets of possible outcomes 

they can yield are equivalenL. Expressions involving nondeterministic functions can 

be interpreted deterministicaily using the characteristic predicates of the 

nondeterministic functions: in section 4 we detailed such an interpretation. In 

section 5 we elaborated on three different kinds of implementations that are 

possible for nondeterministic functions: deterministic implementations, pseudo- 

nondeterministic implementations, and nondeterministic implementations. 

Nondeterministic implementations of nondeterministic functions can embody varying 

degrees of the fuli nondeterminism allowed by the semantics of a type; it is 

possible to order implementations of types by the extent to which they embody the 

original nondeterminism: two such orderings were considered in section 5.2. 5 In 

section 5.1 we developed criteria by which to judge the correctness of 

implementations of types that include nondeterministic functions, while in section 6 

we elaborated on what it means for properties of nondeterministic functions to be 

preserved by "correct" implementations of a type, 

The work described in this paper provides only a first step towards the 

understanding of nondeterminism in the context of abstract data types; several 

related issues remain to be investigated. Automated deduction systems (e.g. [7]) to 

aid in the proofs of implementations of nondeterministic functions need to be 

developed, and further experiments in specifying and proving nondeterministic types 
need to be conducted. 

51n [10], we investigate implementations of functions defined on a type that 
consist of a number of co-operating processes which may execute in nondeterministic 
fashion. 
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