NONDETERMINLSM IN ABSTRACT DATA TYPES

P. A. Subrahmanyam
Department of Computer Science
University of Utah
Sait Lake City, Utah 84112

ABSTRACT

A nondeterministic operation is characterized by the fact that its application to a
given set of paramete.s can yield any one of several possibie outcomes. This paper
discusses ways to specify, implement, and reason about nondeterministic operatiomns
in the context of abstract (algebraic) data types. The notion of an implementation
of a data type that includes nondeterministic operations is formalized, and the
criteria for judging the "correctness" of such implementations are specified. The
formalism developed allows implementations of nondeterministic operations to embody
varying degrees of the full extent of nondeterminism alliowed by the semantics of a
type; in particular, deterministic implementations of nondeterministic operations
are allowed.

Keywords nondeterminism, nondeterministic operations, abstract data types,
correctness, implementations, extraction equivalence, observable behavior.

1. Introduction

Although the importance of the notion of abstract data types {11, {21, [4], [6] has
by now gained almost ubiquitous acceptance, several problematic issues still remain
unresoived. Two of the factors that have significantly impeded experimentation are
the lack of effective mechanisms for specifying and reasoning about (1)
nondeterminism and {ii) exceptional conditioms. In this paper, we outline a method
for dealing with nondeterminism in the context of abstract algebraic data types.
Specifically, we are interested in being able to

- specify (i.e., give semantics for) nondeterministic operations;

- state and prove properties about nondeterministic operations;

- define the notion of implementations of data types that involve noundeterministic
operations, and specify criteria for judging the “correctness” of such

impiementations;

- characterize the notion of the "degree" of nondeterminism embodied in an
implementation of a type;

- develop techniques to prove the correctness of implementations in the presence
of nondeterminism.

Further, we are here interested in being able to achieve the above objectives by
using deterministic characterizations of nondeterministic operations in so far as

149

this is possibie.1 Although there are several reasons for adopting this route, our

major ratiomale here is twofoid (i) to preserve the machinery for reasoning about
deterministic operations and {(ii) to avoid the additional complexity we might incur
by introducing a completely different uotation for talking about nondeterministic
operations.

It is desirable to be able to continue to make statements about nondeterministic
operations, their implementations, and the correctness of such implementations in
the normai fashion -- by writing (logical) expressions involving them, It will turn
out that the only parts of such expressions that have to be carefully interpreted
are those that contain the equality symbol: the interpretation of equivalence we
adopt is therefore central to our enterprise, In order to achieve the objectives
enumerated above, it is therefore necessary to

- define a notion of equivalence of instances of a type in the presence of
nondeterministic operations;

- detail how expressions involving nondeterministic operations are to be
interpreted.

In the rest of this paper, we flesh out the plan outlined above.

2. Preliminary Definitions

In this section we introduce some needed terminology relating to abstract data types
and nondeterministic functions.

2.1. Abstract Data Types, Nondeterministic Operations, Characteristic Predicates

Intuitively, the abstraction of a problem can be viewed as consisting of an
appropriate set of operations that manipulate associated sets of objects of various
sorts. An abstract .data type is nothing but a formal characterization of such a
viewpoint, as is reflected by the following definition.

Definition 1: An abstract (algebraic) data type consists of a set X of sorts, a
set F of function symbols, and a set of equations relating terms generated by F
and containing free varlables. Each f in F has an assoc1aced arity that is an
element (xlxz...xn,xn+1) of X % X, We also write f: 1K sXgyeaesX

-> X (for an
example, see figure 2-1.)

o

loi course, a different way of approaching this problem (and one which may very

well provide a better alternative!) is to develop methods that are entirely
independent of those in the deterministic domain. We do not do this here.

180

Type Set-of-Integer

Syntax
EMPTYSET: () -> Set
INSERT: Set, Integer -> Set
DELETE: Set,Integer ~> Set
ISEMPTY: Set -> Boolean
MEMBER: Set, Integer -> Boolean
CHOOSE: Set ~-> Integer U {UNDEFINED}
-~ CHOOSE is nondeterministic.

Semantics
for ail s in Set, x,y in Integer,

DELETE(EMPTYSET,x) = EMPTYSET
DELETE(INSERT(s,x),y) = if x=y then DELETE(s,y) else INSERT(DELETE(s,y),x)

ISEMPTY (EMPTYSET) = TRUE
ISEMP.Y(INSERI(s,x}) = FALSE

MEMBER(EMPTYSET,x} = FALSE
MEMBER({INSERT(s,x),y) = if x=y then TRUE else MEMBER(s,y)

CHOOSE(EMPTYSET) = UNDEFINED

End Set

Figure 2-1: Definition of the Type Set-—of-Integer2

2For the purposes of this paper, we igunore the techmicalities arising out of the
presence of parameterized types and functions returning "exceptional” values (see
{21, 191, I[11}). However, the reader’s intuition will not lead him astray in his
comprehension of this paper.

151

We permit the “"functioms” in ¥ to be nondeterministic.3 In the context of abstract
data types, nondeterminism implies that there is an element of choice in the outcome
of the operation. Whenever it is necessary to highiight the fact that an function £
is nondeterministic, we will use a distinguishing font: f. The function CHOOSE
defined on a Set is a common example of a nondeterministic function: intuitzagi§:
CHOQSg(s) returns a random element picked from the non~empty set s. In general, if
E:Tl:...,Tn -> T is a nondeterministic function, and if t; € Ti’ i=1,.0, then
g(tl,...,tn) can be any element from some set of T which we shall henceforth denote
{g(tl,...,tn)}; such a set is invariably circumscribed by a deterministic predicate.
We will presume that that the characteristic predicate of this set is always
deterministic and we wiil henceforth refer to it as the characteristic predicate of
the function g, and denote it Pf.

Definition 2: The characteristic predicate of a nondeterministic function
f:Tl,...,Tn->T is a deterministic predicate

P Tl’““’Tn’T -> Boolean

£
L

that is defined by

Pg(tl""’tn't) = TRUE iff t ¢ {g(tl,.,.,tn)}

. e \ .]
i,e. if g(tl,...,tn) can evaluate to t (sometime).

The introduction of Pf enables us to explicitly state that a specific application of
a nondeterministic function f(tl,...,tn) resulted in a valuwe ¥, and what is
important, to refer to this value r in more than one place., Quite often, we will
specialize P. to a fixed set of arguments of f, i.e. we will use P et 3T~

t
- - ¥
>Boolean as the characteristic predicate of the set {I(tl""’tn)}' ﬁencefo?th,

whenever there is no cause for confusion, we will abbreviate Pf t ¢ as Pf.

3 ls-"an
As an example, MEMBER(s,gygggg(s)) is the characteristic predicate of the
nondeterministic function CHOOSE; it states that all of the possible outcomes of
CHOOSE must be contained in s, That is, PCHOOSE:Set,Integer ~> Boolean, and
[CHOOSE(s)=x => MEMBER(s,x)=TRUE], D

2,2, Terms of a Type

The "words" or terms of type x generated by the (set of) functions F and the (set
of) variables V, consist of the set of syntactic terms of sort x that are obtained
by composing the functions in F, This set of terms, denoted WX[F,V], can be defined
inductively as the union oif the sets W;n)[F,V], n = (0,l,2... where the superscripts
indicate the level of "nesting" in the function compositions; WéO)[F,V} contains all
the variables and constants of type (or sort) x. The algebra obtained by

3. ; : : . AP .

Since it is quite common (albeit erroneous!) to term nondeterministic operations
as "nondeterministic functions", we shall interchangeably use the words function and
operation here.

152

interpreting the functions F over the terms {wx[F,V] | x ¢ X} is called the word
aigebra defined by F, V.

The data type Set-of~Integer can be viewed as consisting of

- the set of sorts X, X = {Set, Integer, Boolean}, the sorts themselves being Set,
Integer, Boolean;

- the set of function symbols F°°C = (EMPTYSET, INSERT, DELETE, ISEMPTY, MEMBER,
g§99§§}, with associated arities as shown in figure 2~1, FB°° €an . (FALSE,
TRUE}, etc.;

- the set of terms iu the word algebra generated by this set of functions consists
of

wset[Fseta {Xa}'a .. -}] =
{EMPTYSET, INSERT(EMPTYSET,x),
INSERT(EMPTYSET,y), ..., INSERT(INSERT(EMPTYSET,X),X}, +..,
DELETE(EMPTYSET,y), ... } etc.;

wlnteger[FSet, (%,¥,...}] = {CHOOSE(INSERT(EMPTYSET,x)), ...} etc.

- the equations are those shown in figure 2~1.

Figure 2-2: Terms generated by FSet

2.3. Some Notational abbreviations

FT denotes the set of functions defined on the data type T; Vo denotes the
(countable) set of variables of type T. Often, when defining a type T (e.g., Set-of-
Integer,) other types like Integer and Boolean are presumed to be 'known" or
“siobal"” types -~ we will denote this set of types by G. To improve readability, we
often abbreviate W,[F U FG,VI to WT[F}. (That is, the functions ¥© defined on the
"known™ or "global' types G are omitted.) When F = FT, t.e., F is the entire set of
functions defined on type T, we further abbreviate WT[FT] to WT.

3. Characterizing Externally Observable Behavior

The functions Fl defined on an abstract data type T can be categorized into Base
constructors (BCT), which spawa new instances of the type (e.g. EMPTYSET),
Constructors (CT), which form new instances of the type from existing ones (e.g.
INSERT, DELETE), and extraction functions or extractors (E*), which return members

We adopt the viewpoint that any object representing an instance of a type is
completely characterized by its "externally observabie" properties; such properties

153

are just those that are obtained as results of applibations of extraction functions
defined on the type. This is made precise in the notion of extraction equivalence
of instances of the type.

Informalily, two terms tl and t, are said to be extraction equivalent [8] if every
sequence of function applications that terminates with the application of an
extraction function yields the same (or "equivalent") results on the two terms.

However, care is required when dealing with expressions involving nondeterministic
functions, since g(t ,...,tn) may, in general, yield any element in a jset
{g(tl,...,tn)}. If we want to preserve the ability to reason inductively using the
structure of terms in the word algebra, it is imperative to adopt a notion of
equivaience that preserves the “substitution property“ {3}. For example, given thac

of possible outcomes of the two sides of the expression are extraction equivalent,
and not that the specific elements each side evaluates to are always identieal.

We therefore adopt the following definition: two terms ty and ty of type T are
extraction equivalent, denoted ty=pty if the sets {tl} and {tz} are (extraction)
equivalent; in the case that 5y and ty do not contain any nondeterministic
functions, these sets contain only one element,

As an example, two instances of the type Set (say, sy and s) are extraction
equivaient iff the applications CHOOSE(SI) and CHOOSE(sz), QHOGSE(DELETE(S ’YI)) and

§§99§E(DELETE(S »¥y))s «..» CHOOSE(INSERT(s,x;)) and CHOOSE(INSERT(SZ,XI)), cees
XSEMPTY(SL) and ISEMPTY(SZ), ISEMPTY(DELETE(Sl,y }) and ISEMPTY(DELETE(sz,y)y eves
ISEMPTY(INSERT(sl,x)) and ISEMPI‘Y(INSERT(SZ,XI)); ceus MEMBER(sl,zl) and
MEMBER(sz,zl), MEMBER(DELETE(Sl,yI),zl) and MEMBER(DELETE(SZ,yI) ’zl)’ caoy
MEMBER(INSERT(SI,xi},zl) and MEKBER(INSERT(sz,xl),zl), ...y yield equivalent results
pairwise. Specifically, equivalent results should obtain when the variables (the

x’s, y's, and z’s) are substituted with Integers.

We now formalize the notion of extraction equivalence. For any term t, we denote by
tiv|t”] the term obtained from t by replacing each occurrence of v in t by the term
t’. (For this to be well defined, it is necessary that the sorts of t° and v be the
same.) We denote by t[vaVTlt'] the term obtained by substituting t° for all
occurrences, in t, of variables that are contained in Voo

Definition 3: tl and t, are said to be extraction equivalent in T, denoted
ty=7ty if and only if

either (i} t1 = tz {(i.e. the terms are syntactically equivalent),

or (i1) (Vg ¢ G)(Vtg € W) (cplvevple)] =t lvevyle,D).

8

where G is the union of all "known types" that are returned by extraction
functions defined on T.
-

To avoid ambiguity, the = sign has been labeled to apply over the type domain of its
arguments. As we have already stressed, and will further elaborate upon below, the
equality in (ii) has to be properly interpreted in the case when Eg. involves

154

nondeterministic functions. However, two important observations immediately follow
as a result of this definition:

1. When G is the empty set, extraction equivalence becomes identical to syntactic
equivalence, B

2. Syntactic equivalence implies extraction equivalence. Thus,
»

t, = t, => t

2 171 b2

4, Deterministic Equivalents oi Nondeterministic Expressions

If expressions involving nondeterministic functions can be translated into
equivalent expressions involving only deterministic functions, then we can benefit
from the techniques that are aiready avaiiabie for dealing with deterministic
expressions, In this section, we indicate how logical expressions that involve the
connectives /\, v, =, =, the quantifiers V and 3, and nondeterministic function
symbols can be interpreted deterministically. (Here, the "=" in a logical
expression is being to denote equality interpreted as observable equivalence in the
appropriate domain; this usage should cause no confusion as it obvious from the
context whether equality is being interpreted as syntactic equivalence or observable
equivalence.) We shall denote by D the function that computes the determinmistic
equivalent of a nondeterministic expression.

4 little reflection will reveal that the only logical symbol that needs to be given
special attention is =, We therefore first consider an expression of the form
£ty where tl’ t2 € WT’

If neither of Ly, ty invoives any nondeterministic functions, then no translation is
needed, since the expression is already deterministic; thus Qﬂt1=Tt2) is ty=1ts-.

In the case that one or both sides of such an equation contain nondeterministic
functions, we interpret ty= t, to mean that for every possible outcome r of t; there
is a possible outcome of ty that is extraction equivalent to r, and vice versa.
There are two possible ways to effect a formal tramslation of ty=ptsy that captures
this interpretation. The first is to introduce an artifact that enables us to refer
to the value T of a single application of a nondeterministic function f(tl,...,tn)
at two or more places in an expressionm: note that this is distinct from writing
several instances of the subterm f(tl”"’tn)’ as the nondeterministic nature of £
then allows the various occurrences to evaluate to different values. An alternative
way is to characterize the sets implied associated with nondeterministic expressions
and reason in terms of these sets.

Using the defimition of a characteristic predicate introduced in sectiom 2, it is
quite straightforward to detail a procedure that, given a term t, replaces all the
occurrences of subterms t; that involve nondeterministic functions by (existentially
quantified) variables v;, and tacks on a conjunct that states that the specific
evaluations of the t, resulted in the values v;. For example, to represent the fact
that CHOOSE(s) returns the value Vs CHOOSE(s) may be converted into [PCHOOSE(S,VI)

/\CH09§§(S)=V1]. We will denote this transformation by § (for 8pecify); fi5t&"that S
will introduce new variables into an expression.

155

We can now define D on ClzTCZ when tl or t2 involve nondeterministic functions.

Let {él""’gn}’ {gl,...,gm} be the nondeterministic function symbols occprring in
the terms t,, t, respectively, Let {ul,...,un}, {Vl""’vm} be all of the new
variables introduced when the nondeterministic function symbels in tys respectively
t2, are eliminated as above, i.e., when 8§ is applied to tl’ t2. Then, if fi is ki-
ary, g; 1is gy-ary, and t{t’|t"} represents t with occurrences of t’ substituted by
t", we have

?_{t=t

1T 2)

LWy sennsu) [Pgl(s{ 811(1 s up AA Pgn(sr{,...,s{:n,un)] =>
(3v1,...,vm)inl(ri,...,rél,vl) f\.../\ Pgm{r?,...,rﬁm,vm)]
A eptgslhe st lep i) = t2<gj<r1,...,rl;ljlvj}§2T>1
A\

N m
(Vvl,...,vm)[P

V) =>
9 m)

(el vy AL P (Rt
g 1 971 By !

[(Juyseenouy) [Pfl(si,...,sil,ul) AYERTAR S C IRPRRL WD

£ (st T i i i=
A\ (ep{Eg(spsee s g 2ic) = tz{gj(rl.---,rqj!vj}j=1)]

As noted previously, the other logical symbols are quite transparent to D:

p(ey A ty) = Deep) A DGty
B(ry V) &) = DLey)\/ D(ky)
D(st;) =7D(ty)

PROPOSITION 1

D{t) is semantically equivalent to t.

Proof Immediate by induction on the structure of a formula. Note that all logical
symbols other thanm "=" are unaffected by D.

The tra.sformation D can always be used to deterministically interpret/translate all
of the nondeterministic expressions dealt with in the rest of this paper. We will
therefore not elaborate on such traaslations for the most part, but will instead
phrase our argements using the sets underlying nondeterministic terms. Our
motivation in doing this is to convey greater intuition and to improve readability.

5. Implementations of Nondeterministic Operations

Intuitively, an implementation of one data type, the type of interest TOI, in terms
of another, the target type TT, is a map from the functions and the objects of TOIL
to cthose of TT which preserves the 'observabie behavior" of the type of interest.
(See figure 5-1 for an example.) That is, whenever extractors are applied to
objeets of TOIL, yielding instances of known types, the corresponding computations in

156

the implementation domain should yield equivalent resuits.

The presence of nondeterministic operations calls for a closer examination of the
above interpretation, however, since we wish to allow implementations of
nondeterministic functions that do not necessarily preserve the full extent of
nondeterminism implied by the original specificatioms. In particular, we wish to
ailow fu. deterministic implementations of nondeterministic functions. This
introduces a further nuance -- since there might be several distinct instances tty,
cves tty din the target type that represent the same instance of the type of
interest, a deterministic implementation of a nondeterministic function in TOIL might
yield observably distinct resuits when applied to tt,, ..., te . For example,
aithough <ASSIGN(ASSIGN(NEWARRAY,1,x),2,y),2> and <ASSIGN(ASSIGN(NEWARRAY,1,y),2,x),
2> represeat ‘"equivalent" sets {x,y} and {y,x}, the implementation of CHOOSE in
figure 5-1 would return different results on the two representative instances. Such
behavior is considered quite acceptable, and is fairly common in several
implementations of nondeterministic functions. We term such implementations (or
behavior) pseudo-nondeterministic to connote the fact a deterministic implementation
evidences apparent nondeterminism. Finally, it is possible to have nondeterministic
implementations of deterministic functions -~ in such a case, the nondeterministic
results produced by the implementation must obviously be all extraction equivalent,

We now formalize the notion of an implementation. We can do this with greater
precision by introducing the uotion of a (restricted) derivor [11]; this is done in
Definition 4 below. However, we first need to introduce the notion of a term being
viewed as a derived function: informally, a term "DELETE(INSERT(s,x),y)" can be
viewed as an function (say INSERT-DELETE) with arity INSERT~
DELETE:Set,Integer,Integer->Set, that maps the arguments (s,x,y) to the Set
"DELETE(INSERT(s,x),y)". INSERT-DELETE is called a derived operation {("derived"
from the term "“DELETE(INSERT(s,x),y)" where s, x and y are variables). When we
explicitly want to indicate the funmction derived from a term t, we shall denote it
d-(t).

Definition 4: A derivor d consists of the following pair of maps

(a}) a map da from ({TOL} U G) to ({TT} U G); we shall be concerned only with the
case where da maps TOI to IT and is the identity function on all of the global
sorts g in G. That is,

d,(T0r} = TT, and

(Vg € 6) [d,(8) = 8]

(This merely embodies the fact that we compute with TT-objects in place of TOI-
objects and that everything else is unchanged.)

{b) a map 8 from FTO1 to HTT that preserves arity: if f:xl...xn~>x (f in FTGI),
then d-(8[f]), (a term in Wpp) when viewed as a Yderived function" wmust have
arity

d=(BIE]) ¢ dy(xp)...d (%) => d (x).

1567

By virtue of the simplification in (a), this arity is simply LR g S with any

occurrences of TOI being replaced by TT. -

Henceforth, we simply write 8(f) for d-8(f). The map 8 which is of interest to us
acts as the "identity" for functions f in F°. Thus, the non-trivial part of 8 is
the one that transforms the functions defined on the type of interest to terms in
the target type. This map wiil henceforth be referred to as the implementation map
(or simply the implementation 6), and in essence, defines an implementation of the
type TOL in terms of the type TT.

Definition 5: The d-derived algebra dTT defined by a derivor d is an algebra
with functions {d-8(f) | £ in FTOI} that is, the function corresponding to £ is
the term O8(f) viewed as a derived function., The equations of dTT are identical
to those of TT. ="

Example Ii we consider the implementation of a Set in terms of an Indexed~Array (see
Figure 5-1), the maps comprising the derivor are: da{Set) = Indexed-Array,
d,(Integer) = Integer, d,(Boolean) = Boolean. The type Indexed-Array is a tuple
consisting of an Array and an integer; the map & is detailed in figure 5~1.

It is straightforward to extend the domain of 8 from FTOI to WX(FTOI U FG,V], x in
{TOI} U G: variables of sort TOL are mapped to variables of sort TT, while
variables (and functions) of all other sorts remain unchanged. Then, if t =
f(tl,..tn), we define

8(t) = 8(£1h)(B(t)),..,8(t).

5.1. The Correctness of an Implementation

We are now in a position to formaily state what constitutes an implementation that
is consistent with the specifications of the TOI i.e. a "correct" implementation.
However, in order to satisfactorily account for pseudo-nondeterministic
implementations, we need to treat the implementations of deterministic functions and
nondeterministic functions separately.

Intuitively, we view an implementation defined by 8 to be correct iff the result (or
set of results) yielded by the implementation of a (nondeterministic) function are
result(s) that are admissible under the semantics of TOI, and if the implementation
produces at least one such result whenever possible., Note that this implies that
observable behavior is preserved by the implementations of deterministic functions.

All of the implementations 8, 91, and 82 described earlier (see figures 5-1, 5-2)
are correct implementations of the type Set, although we do not give detailed proofs
of this here. Definition 6 formally characterizes this notion of correctness.

We denote by D-FT the determimistic functions defined on T, and by ¥p-¥T the
nondeterministic functions defined on T.

158

The map @ defining an implementation of a Set using an Indexed Array is defined
below. Let 8(s) = <a,i>, 1 is an Integer Index, SUCC(i) is the Successor of the
integer i (=i+l), PRED(i) is the Predecessor of the integer i (with the semantics i*
1 for monus). DATA(a,i) accesses the value previously ASSIGNed to the i-th element
of the Array a; ASSIGN(a,i,x) simply "stores" the value x as the i~th element of a.

B(EMPTYSET) = <NEWARRAY, ZERO>
§{INSERT(s,x)) = if MEMBERIT(8(s;,8(x))
then <a,i>
else <ASSIGN(a,SUCC(i),x), SUCC(i)>
8(ISEMPTY(s)y) = [i = ZERO]
8{MEMBER(s,x)} = MEMBERTT(8(s),8(x)}

where
MEMBERTT(<a,i>,x) = if i=ZERO
then FALSE
else if DATA(a,i)=x
then TRUE

else MEMBERTT(<a,PRED(i)>,x)
8(CHOOSE(s)) = DATA(a,i)

8 is a pseudo-nondeterministic implementation of the nondeterministic function

8 (DELETE(s,x)) = if ~O(MEMBER(s,x)}
then s
else DELETETT(<a,i>,i,x)
where
DELETETT(<a,i>,j,x) = if DATA(a,j)=x
then COPY(<a,i>,j}
else DELETETT(<a,i>,PRED(j},x)

-~ DELETETT(<a,i>,j,x) first locates the index associated with the value x and then
invokes COPY to actually "delete" this element from the Array a.

COPY(<a,i>,j) = if j=PRED(i)
then <ASSIGN(a,j,DATA(a,i)),PRED(i)>
else COPY(<ASSIGN(a,i,DATA(a,SUCC(3)),i>,SUCC(1))

- COPY{(<a,i>,j) deletes the j-th element in the array a and shifts the values at
j+l,...,i~th positions to §,...,i-1.

Figure 5-1: THE THAPLEMENTATION OF A SET USING AN INDEXED ARRAY

159

Gl(CHOOSE(a,i)) = MAX(a,1i)

- MAX(a,i) is function defined on the type Array that returns the maximum of the
first 1 values in the Array a. 8, is a deterministic implementation of the
nondeterministic function CHOOSE.

GZ(CHOOSE(S)) = [x | x=DATA(a,i) x=DATA(a, SUCC(ZERO))]

ez is a nondeterministic implementation of CHOOSE that does not preserve the full
extent of its nondeterminism.

Figure 5-2: ALTERNATIVE IMPLEMENTATIONS OF CHOOSE

Definition b: A map @ defines a correct implementation of TOI in terms of TT
iff
‘) [« < = -
(Vg « G)(Vtg € W) [te(th} —g{tg}}/\ [{eg? #0=> {8(ty)} # 0] (¢)
=

Thus, (C) implies that

(Vg € 6) (Ve & Wg[D—FTOI])[e(tg) =gtg] (1)

i.e. that observable behavior is preserved by the implementations of deterministic
functions, since in this case, {8(t)} and {t_} both have a cardinality of 1.4 The
first conjunct in (C) is to preclude any erroneous values being returned by the
implementation of a nondeterministic function, whereas the second conjunct ensures
that at least one value is returned whenever possible. The above definition allows
for nondeterministic iwplementations of deterministic functions: in such a case, it
is required that every element of {e(tg)} be equivalent (in type g) to tg‘
It is important to note that the definition of correctness given above implies that
any "information"‘that is contained in the elements in {t_} - {8(t_}} is unimportant
-- in that it is ignored -- unless it is manifest in a deterministic term. For

yielded the result 1 when applied to the sets INSERT(EMPTYSET,1) and
INSERT(INSERT(EMPTYSET,1),2), then the above definition of correctness would imply
that these two sets are equivalent. Usually, however, MEMBER is an integral part of
the semantics specification of Set; in such a case MEMBER(s,2) is a deterministic
term that yields distinct results when s 1is instantiated with the two sets in

4This cardinaiity couid be <1 if partial functions are allowed.

160

question.

5.2, Degrees of Nondeterminism

Since we do not mandate that the implementation of a nondeterministic function
preserve the full extent of nondeterminism implied by the specifications, it is
possible to conceive of various implementations of the same type that differ in the
extent to which they embody the nondeterminism implied by the initial specifications
of the type.

Definition 7: If 8 and 8, are both correct implementations of a type, then we
say that 61 igs more nondeterministic¢ than 92, denoted 91>92’ if

(Vg € &) (Yt € W,) {0, (£))2,{6,(t))

where

{8,(¥)r2{8,(t)} <=>
Iy € 9, By > 13y 1y ¢ 8, () Aty =g?)1]
(32105 ¢ o ROMVANE g 2 € 8,(0) A(2"=,2)11

This states that if e1 consistently produces more results than 92 does, then 91 is
more nondeterministic than 85. Note that the quantification over the known types G
ignores any expansion and contraction of the sizes of the sets of any intermediate
computations; it is, however, possibie to accommodate such an interpretation if
desired. Also note that the above inmterpretation of {8;(t}} g{GZ(t)} is different
from

(8)(£)3(0,(6)) <=> [y € 8,(6) => y € 8 ()] N lFzlze 8;(t) \z ¢ 0,(t)]

in that definition 7 precludes a superfluity of extraction equivalent values of type
g from couatributing to 8 being "more" nondeterministic than 9,-

Example The implementation 92 in figure 5-2 is (strictly) more nondeterministic than
8 defined in fig 5-~1 i.e. 62 > 9. The implementation defined by 91 in figure 5-2 is
incomparable with both the impiementations 8 and 8,.

It is possible to define a weaker notion of the above ordering where only the
cardinalities of the sets {8 (t)} and {9 {(t)} are considered, but not their
contents. That is, it 91 and 82 are both correct implementations of a type, then we
may define 91 > 62, if

(Vg ¢ G) (Yt ¢ W) 148, €(t) 2 > [{8,(e) 2.

161

5.3. Equivalence Classes Induced on the Representation Type

An implementation map @ serves to partition the terms in the derived algebra 4TT
(i.e. the representation type) into equivalence classes. The equivalence relations
that arise most naturally in this context are:

- the extraction equivalence induced on terms in W by the extraction functions
gl defined on TT. We denote the equivalence classes induced by this relation by
WTT,ETT, and its restriction to 41T by WdTT/E T,

- the extraction equivalence induced on the ‘"reachable" terms in the
representation type i.e. the terms in dIT by the extraction functions EdTT, the
partition wdTT/E IT induced by this relation on dTIT is coarser than the
partition WdTT/ETI;because it merges those classes that cannot be distinguished
by operations in F T (but could be distinguished by operations in FTT).

TOL dTT

If F contains only deterministic functiens, then WdTT/E is the partition that
is of primary interest to us [8], since its characteristics determine whether 8 is a
correct implementation. Specifically, if 6 indeed defines a correct lmplementation
then it can be shown that there exists a surjective homomorphism from WdTT/Ed T onto
Wrop/E TOL [8]; this homomorphism is referred to as the abstraction function by Hoare
in [5] and as the rep functionm in [12].

1f, however, @ contains pseudo-nondeterministic impiementations of nondeterministic
functious, then the partitioning wdTT!E T may often be finer than we strictly
desire, since extraction equivalence under pseudo-nondeterministic implementations
wiii enable a distinction between terms in dTT that represent equivalent instances
of TOL. As an example, the implementation 8 of figure 5-1 enables a distinction
between the representations of INSERT(INSERT(EMPTYSET,x),y) and
INSERT(INSERT(EMPTYSET,y),x). We now define an equivalence relation E on dTT that
serves to merge those instances of dTIT that represent equivalent instances of the
TOL; E induces the partition on dIT that we are interested in.

Definition 8: Let tl, t2 be terms ia Wy which are pre-images under @ of the
terms t,, t2 in WdTT’ i.e. e(tl) tl and B(tz) ty-

Then t) =f t, iff
{tl} =TOI {tz} ~=(4)
i.e. ;1 and EZ are equivalent in TOL, and

Y1 ®p-dTT 2 -=(B)

i.e, t; and t, are extraction equivalent if only the implementations of
deterministic functions of TOT are considered, and

(e} ©{E 3 ALE) # 0 => (£} # 0 and {t,) S (e A (Ep) # 6 => {1y} # H==(0)

i.e. the set of results {tl}’ {tz} yielded by implementations is a subset of

162

those in TOI {El}, {Ez} respectively, and at least on such result is yielded

whenever possible, -

Intuitively, the partition induced by E on dTT is obtained by first merging those
dTT terms that are extraction equivaient under the implementations of the
deterministic functions in FTOI, and then merging those terms that represent
equivalent elements of TOL but may themselves be distinct (but are distinguishable
only by the pseudo~nondeterministic implementations in @).

It may be shown that our interpretation of a correct implementation coincides with
one defining a surjective homomorphism from the extraction equivalence classes
induced by E on dIT to the extraction equivalence classes of TOL; the homomorphism
thus induced rorms the nondeterministic counterpart of the rep function [12]. That
is, a correct implementation map § satisiying the conditions enumerated in 6 implies
the existence of a surjective homomorphism &

. TOL
$ 1 Wypp/ E -> Wpgp / ECU.

It must be stressed that the remark following definition 6 is very important in this
context: it is presumed that any information contained in {t_ }-{@(t)} is irrelevant
unless it is also mirrored in a deterministic form., If this assumption is not true,
then 8 in fact does not induce the above homomorphism.

6. Properties of Implementations of Nondeterministic Operations

We have seen how properties of nondeterministic functions can be expressed as
logical expressions ia the normal manner, provided equality in such expressions is
interpreted appropriately., It is desirable that we have a criterion for deciding
what it means for an implementation of a data type to preserve properties involving
nondeterministic functions that might hoild in the abstract specifications, This is
not altogether' straightforward: as we wili show below, 1if a nondeterministic
function £ has a pseudo-nondeterministic implementation, an equality of the form
t{=ty thag is true in TOL may not be preserved in dTT by an otherwise "correct"
implementation, since § may return observably distinct values on ty and ty-

Again, we need only investigate expressions involving = in detail. If ty and t, are
deterministic, then the criterion for judging whether the property t;=t, is
preserved by the implementation & is that the corresponding terms in the
representation be extraction equivalent, i.e.

8(ty) =gpp 8(ty)-

However, unless & preserves all nondeterminism in TOIL, the above need not
necessarily be true if tl’ tz are nondeterministie., In general, it will the case
that

8¢t} € (e,

and

163

{8(ty)) C {ty).

Thus, although £ty =ror t2 implies that {tl} =101 {tz}, {e(tl)} need not necessarily
be equivalent to {Q(tz)}. We again adopt the interpretation that we chose in
section 5.1 i.e. that ty=torts is preserved by § iff the observable behaviors of &
(tl) and Q(tz} are equivalent under implementations of all of the deterministic
operations in FTOI, and all observable behavior in nondeterministic cases is allowed
by the semantics of TOI.

7. Summary

We have delineated in the preceding sections ways to specify, implement, and reason
about nondeterministic operations in the context of abstract (algebraic) data types.
In essence, nondeterministic operations can be characterized by the possible
outcomes when they are applied to a given set of parameters; the characteristic
predicate of a nondeterministic function, defined 1in section 2, serves o
circumscribe this set. In section 3 we formally characterized the externally
observable behavior of a type that includes nondeterministic fupctions: intuitively,
two terms were defined to be extraction equivalent if the sets of possiblie ocutcomes
they can yield are equivalenc. Expressions involving nondeterministic functions can
be interpreted deterministicaily wusing the characteristic predicates of the
nondeterministic functions: in section 4 we detailed such an interpretation. 1In
section 5 we elaborated on three different kinds of implementations that are
possible for nondeterministic functions: deterministic implementations, pseudo-
nondeterministic implementations, and nondeterministic implementations.
Nondeterministic implementations of nondeterministic functions can embody varying
degrees of the fuli nondeterminism allowed by the semantics of a type; it is
possible to order implementations of types by the extent to which they embody the
original nondeterminism: two such orderings were considered in section 5.2.” In
section 5.1 we developed criteria by which to Jjudge the correctness of
impiementations of types that include nondeterministic functions, while in section 6
we elaborated on what it means for properties of nondeterministic functions to be
preserved by "correct" implementations of a type.

The work described in this paper provides only a first step towards the
understanding of nondeterminism in the context of abstract data types; several
related issues remain to be investigated. Automated deduction systems (e.g. [7]) to
aid in the proofs of implementations of nondeterministic functions need to be
developed, and further experiments in specifying and proving nondeterministic types
need to be conducted.

5 . ; : ; c oz . s
In {10}, we investigate implementations of functions defined on a type that

consist of a number of co-operating processes which may execute in nondeterministic
fashion,

164

REFERENCES

1. 0.J.Dahl, E.W.Dijkstra, C.A.R.Hoare. Structured Programming. Academic Press,
New York, 1972.

2. J.Goguen, J.Thatcher,E.Wagner. An Initial Algebra Approach to the
Specification, Correctness, and Implementation of Abstract Data Types. In R.Yeh,
Ed., Current Trends in Programming Methodology, Vol IV, Prentice-Hall, N.J, 1979,
pp. 80-149.

3. G.Gratzer. Universal Algebra. Van Nostrand, 1968.

4. J.V.Guttag. The Specification and Application to Programming of Abstract Data
Types. Ph.D. Th., Computational Sciences Group, University of Toromnto, 1975.

5. C.A.R.Hoare. "Proof of Correctness of Data Representations.” Acta Informatica

1 (1972), 271-281.

6. B.Liskov, S.Zilles. "Specification Techniques for Data Abstractions." IEEE
Irans. on Soft. Engg. SE-1 (1975), 7-19.

7. David R, Musser. A Data Type Verification System Based on Rewrite Rules.
USC/Information Sciences Institute, October, 1977.

8. P.A.Subrahmanyam. On Proving the Correctness of Data Type Implementations.
Dept. of Computer Science, University of Utah, September, 1979.

9. P.A.Subrahmanyam. A New Method for Specifying and Handling Exceptions. Dept.
of Computer Science, University of Utah, January 1980.

10, P.A.Subrahmanyam. Cooperating Nondeterministic Processes and
Nondeterministically Cooperating Processes. Dept. of Computer Science, University
of Utah, 1980, forthcoming.

11. J.Thatcher,E.Wagner,J.Wright. Data Type Specifications: Parameterization and
the Power of Specification Techniques. Proceedings, Tenth SIGACT Symp. ,
ACM, SIGACT, April 1978, 1978, pp. 119-132.

12. W.A.Wulf, R.L.London, M.Shaw. Abstraction and Verificatiom in ALPHARD. CMU,
1S1, August, 1976.

