
A VIEW OF DIRECTIONS IN R E L A T I O N A L DATABASE THEORY
Jeffrey D. Ullman t
Stanford University

Stanford, Calif., USA

A B S T R A C T

We shall briefly survey what the author believes are some of the most
fruitful directions in relational database theory. These directions in-
clude dependency inferences, support for the universal relation concept,
null value semantics, and an exploration of the properties of acyclic
database schemes.

I. Introduction

We shall assume the reader is familiar with the basic concepts of relational database
theory, at least at the level covered by [U] or [BBG]. These concepts include

1. Relation Scheme. This is a set of attributes, which are names of columns for
relations. We shall use A, B, C , . . . , for at tr ibutes and shall use concatenation for
forming sets of attr ibutes. Thus A B stands for (A , B). We shall use . . . , X', Y, Z
for sets of attr ibutes; concatenation will also stand for union. Thus X Y stands for
X U Y .

2. Relation. A relation is a set of tuples, which, strictly speaking, are maps from the
set of at tr ibutes (relation scheme) for tha t relation, to the corresponding domains,
or da ta types for the attr ibutes. It is normal to display relations as tables, where
the at tr ibutes head the columns and the rows are tuples. We then fix an order for
the at tr ibutes and represent tuples by the sequence of values tha t tuple has for each
of the at tr ibutes in order. A relation scheme is assumed to remain constant over
time, while the relation corresponding to it changes frequently. Thus we speak
of the "current" relation for a relation scheme or talk about the set of possible
relations for the scheme.

3. Functional Dependency (FD). A functional dependency X --~ Y is an assertion
about a relation scheme. It asserts of any "legal" relation tha t two of its tuples t
and s tha t agree on set of at tr ibutes X (written t[X] -~ sIX]) also agree on Y. A
relation with that property is said to satisfy the dependency.

4. MuItivatued Dependency (MVD). A multivalued dependency X -~* Y is, very
informaUy, a s ta tement tha t there is a set of Y-values associated with each X-value.
More formally, if t and s are two tuples of a relation that satisfies X -+~ Y , and
t[X] ~- siX], then the relation must have a third tuple u tha t takes the Y-value
from one of the tuples, say t, and its value everywhere else from the other. Tha t
is, if Z is all at t r ibutes not in X Y , then u[Y] ~- t[Y] and u[XZ] -~ s[XZ].

5. Normalization. Certain relation schemes have redundancy, in the sense that predict-
able values appear in certain tuples of the relations over tha t scheme. It is the
dependencies, such as functional and multivalued dependencies, tha t we assume
about "legal" relations over that scheme, tha t cause redundancy. The appropriate
response to redundancy is decomposition, the replacement of one relation scheme

t Work partially supported by NSF grant MCS-80-12907.

166

by two or more (not usually disjoint) schemes. The theory of normalization relates
dependency types to desirable properties of relation schemes; those properties in-
volve the dependencies that hold f o r the relation scheme and can be construed
as saying "there can be no redundancy caused by dependencies of the given type
in the relations for this scheme." The normal forms that eliminate redundancy
caused by functional dependencies, called third normal form and Boyce-Codd nor-
mal form, come from the seminal papers by Codd [C1, C2], while the normal form
that responds to muttivalued dependencies, fourth normal form, is from IF1].

Example i : Consider a relation scheme whose at t r ibutes are E, S, D, and M, standing
for employee, salary, department , and manager. Informally, we intend tha t the salary
is the (unique) salary of the employee, the employee may work for several departments,
and each depar tment may have several managers. Pu t another way, a tuple esdm in
the "current" relation over this scheme is an assertion that, at the current time, e is
an employee, his salary i s s , one of the departments he works for is d, and one of
the managers of d is m. We can express the requirements on the "current" value of
this relation by the functional dependency E -+ S, and the muttivalued dependency
D ~ M. I t is interesting to observe tha t the MVD E - ~ D is false, even though the
intuitive notion of meaning for this relation is that "there is a set of depar tments for
each employee." That is, just becaus~ es~dlml and es2d2rn2 are tuples doesn' t mean
tha t eS2dlrn2 is a tuple, since manager m2 may not manage depar tment dl. The reader
should thus be warned tha t the colloquial meaning of MVD's is very informal, and the
definition must be checked carefully before asserting an MVD.

There is considerable redundancy in this relation scheme. For example, the salary of
an employee is repeated once for each related depar tment-manager pair for the employee,
and the managers of a department are repeated for each employee. The normalization
process would replace this one scheme by ES, ED, and DM. Each of these schemes are
in fourth normal form, by the way. []

I[. Universal Relat ions

A database is a collection of relations, and their relation schemes collectively form
the database scheme, tn order to make queries that involve data from more than one
relation, it is convenient to imagine that the true world these relations represent is a
single relation whose scheme consists of all the at tr ibutes mentioned in the scheme for
any of the relations. We call this relation the universal relation and its scheme the
universal relation scheme. It is this viewpoint tha t justifies the decomposition of one
relation scheme into many during the process of normalization, although early papers
on normalization saw themselves as removing redundancy from a relation scheme that
could be one of many (unrelated) relation schemes in a database scheme.

Another, equally important justification for interest in this universal relation as-
sumption is tha t it provides a simple user interface. If we allow the user to query about
the universal relation, then he needs to know only about the at tr ibutes and their intui-
tive meanings and relationships, without concerning himself about the structure of the
database. For example, natural language interfaces often make the universal relation
scheme assumption tacitly.

A stronger form of assumption is that not only does the universal relation exist, but
a t all times, the relations in the database are the projections of this universal relation.

167

We project a relation r with scheme R onto a subset of the at tr ibutes in R, say S, by
forming { t[S]] t is in r }, and we denote the result by ~rs(r). This pure universal relation
assumption has been criticised on various grounds ([K], [BG1]), principally because of
its inability to express all conceivable real-world situations. There is merit to tha t point
of view, although the universal relation can be given meaning in far more cases than
anticipated if we carefully define null values in tuples and the ways they operate and
interact with dependencies.

Thus, in Example 1, we might imagine tha t there is a universal relation over
at tr ibutes E S D M . If we had an employee with no salary recorded, we might believe
that the universal relation assumption forced us to discard all information about this
employee. In this case, the simple device of entering a "null salary" in the S-component
of tuples for this employee will serve, provided we agree that the identical null value
appears in all the employee's tuples (or else the FD E -+ S would be violated). A
number of recent papers involve the use of nulls in defining the semantics of universal
relations; these include [KU], [L2], [M], [$1], IV], and [W].

Whether or not the universal relation assumption can be made in all real-world
cases is, perhaps, not the most important issue, anyway. Like the context-free grammar,
for example, there is a great deal of power in the concept, and awkwardnesses tha t arise
can be finessed much the way noncontext-free aspects of programming languages are
finessed when one designs a parser for the language.

Moreover, the need to make the pure universal relation assumption is dubious. I
prefer to see it as a guide to relational database design (discussed as the lossless join
property, below) and to the interpretation of queries over the universal relation (see
[FMU, KU]), while it disturbs me not in the least if one or another relation in the
database contains a dangling tuple, one that cannot be explained in the light of the other
relations as being the projection of any tuple in a universal relation. Thus, referring
to Example 1, the presence of tuple (Jones, Toy) in the ED relation while no entry for
Jones is in the E S relation merely means tha t Jones' salary is unknown, or null. There
should be no problem with answering "Jones" when queried for the employees of the
Toy Dept., even though had the query been "what is Jones' salary?", we could not have
made a sensible response.

IU. Decomposition Theory

We alluded to the fact that a principal activity in relational database design is the
decomposition of (universal) relation schemes into sets of at tr ibutes that serve as schemes
for the relations in the database and have certain nice properties (which we haven ' t
defines here, and don ' t intend to - - see [B, C1, F1, U], e.g.). There are also some
requirements tha t the database scheme, or collection of relation schemes must have
as a whole; for example, we cannot always choose the database scheme consisting of all
pairs of a t t r ibutes in the universal relation scheme, even though a two-at tr ibute relation
scheme always satisfies just about any normal form you can name.

One requirement on the database scheme is the lossIess join property, the condition
tha t when you take a legal universal relation and project it onto the relation scheme8
in the decomposition, then "join" the results (a term we'll define in a moment) , you
get back no more tuples than you started with (it is easy to show you never get less).
If U is a universal relation scheme, and R 1 , . . . , Rn a decomposition, then the join of

168

relations r t , . . . , rn over schemes Rt , . . . , Rn, respectively, denoted r] ~>~.. "~<~rn, is the
set of tuples t such that for all i, t[Ri] is in ri.

Exampte 2: Let U = ABC be the universal relation scheme and r -~ { 102, 304 } the
universal relation. Consider the decomposition AB, BC. Then 7tAB(r) : { 10, 30 }, and
~Bc(r) = {02,04}. Further, {10,30}~<t{02,04} = {102,104,302,304} 5 r. We
conclude that this decomposition does not satisfy the lossless join property, as long
as whatever dependencies we believe about the universal relation are satisfied by the
relation r above. N

Notice that whether the lossless join property holds for a decomposition is deter-
mined by what dependencies we assume hold for the universal relation, since it may be
that all "legal" relations, projected and then rejoined, give back what you started with,
while other relations that are not "legal" do not restore themselves after projection and
join. Also note tha t the lossless join property does not require us to assume there is
a meaningful universal relation; it merely says what must happen if we start with a
universal relation and project. It is in this sense that the universal relation assumption
is a guide to decomposition.

The motivation for the lossless join property is that without it, the projected
relations cannot be said to represent a unique universal relation. If you believe the
universal relation assumption, the absence of the lossless join property would surely
imply a defect in the decomposition. But even if you do not m a k e this assumption,
when decomposing a relation scheme with redundancy, if we do not have the lossless join
property, we can be certain that the relations in the decompsition will sometimes fail
to represent the relation we started with. Thus, in Example 2, the projected relations
over AB and BC could represent r ~--- { 102, 304 }, or they could equally well represent
{102, 104, 302,304 }, or several other relations; we can't tell which if we don't know the
universal relation from which they were projected.

[ABU] first discussed the lossless join property as a goal for decomposition, although
the need for the property was implicit as early as [C1].

A second goal for decomposition is the dependency preservation property, which
requires tha t we be able to infer the dependencies that hold for the universal relation
from their projections onto the schemes of the decomposition. Tha t is, if D and E are
two sets of dependencies (functional, multivalued, or whatever) that apply to relations
over scheme U, we say D logically implies E, written D ~ E, if every relation over U
that satisfies D also satisfies E. Given set of dependencies D over U and subset R of U,
the projection of D onto R, written vI~(D), is the set of dependencies tha t are true for
all relations ~n(r) such that r satisfies D. A dependency over R can be considered to
be a dependency over U by defining it to be satisfied by a relation r over U if and only
if ~rR(r) satisfies the dependency. We can then define the decompostion RI , . , . , Rn to
have the dependency preservation property for a set of dependencies D if D is logically
implied by U s i= t ~R,(D).

The motivation for this property is that without it, certain constraints tha t we
believe hold in the universal relation cannot be checked in the relations of the database.
Again, even if we deny the universal relation assumption, when doing the decomposition
of a relation with redundancy, we shall be giving up our ability to check these constraints
if the decomposition does not have the dependency preservation property.

The first discussion of dependency preservation as a property of decompositions is

169

in JR2], although the idea isimplicit in [B]. [H] gives an efficient test for the property
when the dependencies involved are only functional. [ABU] discusses how the projections
of dependencies are to be computed within the worlds of functional and muttivalued
dependencies, while [GZ] shows how functional dependencies project in the space of any
dependencies whatsoever.

IV. Dependency Inference

The problem of dependency inference, tha t is, determining whether a group of depen-
dencies implies another, can be perceived as the driving force behind a large fraction of
recent work in relational theory. There are three reasons why the problem is important.
1. Dependency preservation is an imprtant goal of decomposition, and the test for the

property evidently involves inference of dependencies.
2. We shall see that the lossless join property can also be viewed as an implication of

dependencies.
3. When dealing with queries about a universal relation, and wishing to translate them

into a query about certain relations in the database, a well-motivated approach is
to find some subset of the relation schemes whose attributes include those queried
about, and which have a lossless join ([MU1], [KU]). The tosslessness of a join is,
again, a dependency inference to "be made.
We could, of course, add to the above the fact that there is considerable intellectual

challenge in this quite natural problem of dependency inference, bu t let that slide.
The problem of dependency inference has been made difficult by the fact that

functional and multivalued dependencies are not the only kinds of dependencies we
could conceive of, and more importantly, they are not the only ones that appear in the
'~real world."

Example 3: A canonical example of a believable dependency that is not in the classes we
have discussed occurs in a universal relation with attributes C, S, P, and Y, standing
for course, student, prerequisite, and year (the student took the prerequisite). The
constraint we have in mind is tha t there is a set of students for the course and a set of
prerequisites for the course, and every student took every prerequisite in some year (that
year could even be null if the student doesn't belong in the course). In terms of tuples
in the universal relation, we assert that if t and s are two tuples, with t[C] ----- s[C], then
there is some tuple u in the same relation vcith u[CS] : t[eS] and u[P] --- s[P]. Note
that this constraint is not the M'VD C , , S, since u[Y] : s[Y] is not required, nor is
it the MVD C , * P for a similar reason; neither of these MVD's hold.

However, the above constraint means that if we project the universal relation onto
set of attributes CSP, we do get the MVD's C --~ S and C -+* P in CSP. We call this
constraint an embedded mnltivatued dependency and write it C * * S [P to emphasize
the fact tha t it is an MVD in C S P , not in C S P Y .

There is a horrible fact about embedded MVD's; it is not known whether their
inference problem is decidable. Thus, if you want to do decomposition of relations
into nice normal forms, or you want to support a universal relation by inferring con-
venient lossless joins to take in response to queries, you are faced with either pretending
embedded MVD's don't exist, or doing an inaccurate job in certain circumstances (or
solving an outstanding open problem).

There have been two different responses to the apparent undecidability of inference

170

for real-world dependencies.

1. An at tack on the decidability issue was mounted. The principal directions were
to search for axiomatizations of a class of dependencies that. included embedded
MVD's, and to look for a larger class in which a decision procedure would be
apparent, while the specialization of that algorithm to embedded MVD's was too
murky to be visible without going to the larger class. These a t tempts have largely
been failures, although much of intellectual interest was produced as a side effect.

2. A revision of the notion of what dependencies were appropriate was at tempted.
The idea here was to find a new class of dependencies tha t included the functional
dependencies, the multivalued dependencies, and those of the embedded MVD's
tha t we might realistically expect, yet for which inference of dependencies was
tractable.
We shall survey each of these approaches in turn.

V. Generalized Dependencies

The first a t t empt to generalize FD's and/or MVD's was the join dependency studied in
[R1]. The join dependency I>~(Rt , . . . ,Rn) is an assertion tha t if we project a relation
satisfying this dependency onto the sets of at tr ibutes R1 through R~ and rejoin, we
get back what we would get if we had projected the relation directly onto Ui~__I Ri.
The embedded MVD X --~ Y t Z is equivalent to the join dependency ~x1(XY, XZ).
Thus join dependencies generalize MVD's and embedded MVD's, although no nontrivial
functional dependency is a join dependency. The properties of join dependencies were
studied by [BV1], while a complete axiomatization (really an axiomatization for a
slightly larger class) appears in [$2].

A second class, called subset dependencies was discussed by [SW]. This class also
generalizes embedded MVD's, and the paper contains the important result that there
can be no finite axiomatization for embedded MVD's.

A more general sort of dependency occurred at about the same time to many
people; we shall follow [BV2] and call them simply generalized dependencies. These
dependencies say that if we see tuples in a relation with a certain pattern, then we can
expect to see something else, either another tuple or an equality between two symbols.
We write a generalized dependency over a universal relation scheme of n at tr ibutes as
(rl,. . . , rk)/r, where r l , . . . , r k are called the hypothesis rows and consist of strings of
length n, and r is called the conclusion; it is either another row of length n or an equality
of the form a == b, where a and b are symbols appearing among the hypothesis rows.

We require that no symbol appear in more than one column (the term untyped
dependencies has been applied to dependencies satisfying this assumption). The symbols
appearing in the conclusion, in the case it is a row, rather than an equality, need not
appear anywhere else. Symbols of the conclusion not appearing elsewhere are called
unique. A generalized dependency with no unique symbols is called full; otherwise it is
embedded.

The meaning of such a dependency is tha t whenever there is a symbol-to-symbol
mapping that maps each hypothesis row into a tuple of a particular relation, then
1. If the conclusion is a row, then we can extend the mapping to include the unique

symbols in such a way that the conclusion is also mapped into a tuple of the relation.

2. If the conclusion is an equality a ~ b, then the mapping must have mapped a and

171

b to the same symbol; no other mappings of all the hypothesis rows into tuples of
the relation are possible.

Example 4: Consider the E S D M universal relation of Example 1. If we assume the
at t r ibutes are in that order, the FD E -* S can be writ ten

(esldl~l, e s 2 d 2 , ~) / * 1 = s2

The two hypothesis rows can be mapped to any two tuples, as long as the tuples agree
on E, because e is the only symbol appearing in both hypothesis rows. Thus, this
dependency says that whenever we find two tuptes that agree in their E-component , it
turns out that they also agree in their S-component.

The MVD D - -~ M can be writ ten (eisidrni,e2s2dm2)/eis~dm2, while the em-
bedded multivalued dependency D -~+ E I M can be expressed

(el s:t dml , e2s,~drn2)/ el sadrn2

Note that the embedded MVD has a unique symbol, s3, while the other examples do
not have unique symbols.

The generalized dependencies can have more than two hypothesis rows. For ex-
ample, a join dependency with k components will have k hypotheses. The generalized
dependencies with two hypothesis rows and another row for the conclusion are exactly
the subset dependencies. The generalized dependencies with rows as conclusions (call
them ~uple generating) were considered by [P, pJ] and called generalized dependencies,
and by [SU1, SU2] and called "template dependencies." A class larger than the general-
ized dependencies, in that they allow multiple related conclusions, was considered by
[F2], where they were called "implicational dependencies," and by [YP], where they
were called "algebraic dependencies."

Complete axiomatizations were given in a number of these papers: [BV2], [SU1],
and lYe]. [F2] also contains the interesting notion of an Armstrong relation for a set
of dependencies, that is, a relation tha t satisfies the dependencies, those dependencies
tha t follow logically from it (as it must), but no other dependencies. It is shown there
that generalized dependency sets always have Armstrong relations.

There are partial decision procedures for all these classes of dependencies. An
axiom system provides such a method, since we may systematically search for proofs of
the inference, bu t we cannot be sure tha t we shall find the proof at any particular time.
Another approach is to apply the "chase" process of [ABU, MMS, SU1], in which we
start with the hypothesis rows and infer additional rows and equalities among symbols.
If we ever infer the conclusion, we are done, but embedded dependencies, with their
ability to cause new symbols to be generated for the new rows (every occurrence of
a unique symbol must be replaced by a distinct value when generating tuples) allow
the generation process to go on forever. However, if the dependencies are full, we are
constrained within the set of symbols of the original hypothesis rows, and thus we have
a decision algorithm for inferences of full dependencies.

Recently, [CLM] has proven the inference problem undecidable for tuple-generating
generalized dependencies. This paper effectively puts an end to efforts to solve the
inference problem for embedded MVD's by considering larger classes of dependencies,
bu t we should note tha t the decidability of inference for embedded MVD's is still an
open problem.

172

VI. Description by Functional and Join Dependencies

The other direction responding to the problem of an undecidable inference problem
for real-world dependencies is to develop a substitute Class of dependencies for which
inference is decidable, tn [FMU] it was proposed that a suitable assumption about the
dependencies obeyed by a universal relation is that there is an arbitrary collection of
functional dependencies and one full join dependency. The connection between join
dependencies and common types of database descriptions was also perceived by ILl].

The reason we see a full join dependency as sufficient to replace collections of MVD's
is that the intuitive meaning one ascribes to a universal relation directly implies tha t the
universal relation satisfies a particular join dependency. That is, as long as you believe
the universal relation makes sense, you may as well assume this join dependency holds.
Moreover, it appears in practice that all the MVD's we assert about a given universal
relation follow logically from this join dependency, although we cannot, of course, prove
that to be the case. More of this motivation is contained in [FMU], but here, let us be
content with an example.

Example 5: Consider the universal relation from Example 1. There we defined the set
of tuples in the current universal relation as

{ esdm l Pl(e, 8) and P~(e, i) and P3(d, m)}

The predicate P1, for example, means % is the salary of e." It is easy to show that the
set of relations that can be so defined, for some Pi, 1 < i ___ 3, is exactly the set of
relations that satisfies the join dependency ~<~(ES, ED, DM).

In general, the components mentioned in the predicates defining the universal
relation become relation schemes mentioned in the join dependency. The only additional
semantics we need in this case is the FD E -* S; the MVD D , * M can be shown to
follow logically from the join dependency.

The paper [MUll discusses some of the problems that arise with this sort of universal
relation semantics. It also shows how embedded M-VD's can frequently have their
constraint expressed by a concept called "maximal objects," which are not dependencies,
but rather, influence the way queries over the universal relation are interpreted. Thus,
much of the descriptive power of embedded MVD's can be captured, yet lossless joins are
easy to deduce from the full join dependency and a collection of functional dependencies.

VII. Acyclic Join Dependencies and tIypergraphs

An interesting development from the above hypothesis about appropriate universal
relation semantics is that a class of join dependencies called "acyclic" has been defined.
These dependencies, it can be argued, are the only ones that should appear in real-world
universal relation descriptions, if we take the trouble to split a single at tr ibute that
plays two or more roles in its relationships with other attributes. Without taking a
stand whether this argument is valid, we can profitably explore and enjoy the theory of
acyclic join dependencies for its naturalness, the many interesting properties it exposes,
and its contribution to hypergraph theory.

To begin, for any join dependency we can construct a hypergraph whose nodes are
the attributes and whose hyperedges are the components of the join dependency. For
example, the hypergraph for the join dependency mentioned in Example 5 has node set

173

{ E, S, D, M } and set of edges { { E, S }, { E, D }, { D, M } }. This hypergraph is thus
an ordinary graph, since the edges are all doubletons, but that will not be the case for
general join dependencies.

An articulation set in a hypergraph is the intersection of two edges, whose removal
increases the number of connected components of the hypergraph. For example, in
the above hypergraph, { D } is the intersection of edges { E, D } and { D, M }, and its
deletion breaks the hypergraph into two Components, { E, S } and { M }. Thus, D by
itself is an articulation set; such a set need not have only one node, of course.

A node-generated se~ of edges of a hypergraph is formed from some set of nodes
N, by intersecting each edge with N , then throwing away edges that become sub-
sets of other edges. In our running example, the set { E, S, D } yields the set of
edges { { E, S }, { E, D } }, since each of those two edges is contained in the set, while
{ E, S, D } Cl { D, M } = { D }; which is contained in the edge { E, D } and thus does
not appear.

We say a hypergraph is acyclic if every node-generated set of more than one edge
has an articulation set. Otherwise it is cyclic.

Example 6: The hypergraph with edges { A, B, e }, { C, D, E }, and { E, F, A } is cyclic,
as we would expect. The entire hypergraph is a node-generated set of edges with no
articulation set. However, if we add the edge {A, C, E }, the graph suddenly becomes
acyclie, pointing out some of the subtlety in this concept. For example, { A, C } is an
articulation set for the whole hypergraph. H

There are a number of interesting properties of acyclic hypergraphs, summarized
in [B*]. We shall point out a few of them here.
1. A join dependency is logically equivalent to a set of MVD's if and only if it is acyclic

[FMUI.
2. The Graham reduction [G] of a hypergraph is obtained by applying the following

two operations, in any sequence, until they can no longer be applied (the result can
be shown unique). (a) Delete a node that appears in only one edge. (b) delete an
edge that is a subset of another edge. Then a hypergraph is acyclic if and only if
its Graham reduction is empty [BFMY].

3. We say a set of relation schemes has the LCIGC properly (local consistency implies
global consistency) if we can test whether the current relations for these schemes are
"globally consistent" (are the projections of a universal relation) by testing "local
consistency" (whether the projections of any two relations, say with schemes R and
S, onto the set of attributes R N S are the same). Then a set of relation schemes
has the LCIGC property if and only if the hypergraph with those schemes as edges
is acyclic [BFMY].
It is interesting to note that [Z] and [G] had searched for a notion of "acyclic

hypergraph," principally with an eye toward testing the LCIGC property; however, their
definitions are too strong, failing, for example, to recognize that the second hypergraph
in Example 6 is acyclic.

Another way in which acyclic hypergraphs play a role is in the notion of "tree
queries" of [BG 2]. These queries, which were investigated because of their nice properties
for execution in a distributed database system, are equivalent to the concept of acyclic
hypergraph [BFM¥]. Interestingly, [H] showed the relationship between tree queries and
the LCIGC property, and [YO] claimed that a variant of Graham reduction served to

174

identify the tree queries, without relating any of these concepts to acyclic hypergraphs.
The reader should consult [Y], [B*] and [BFlVIY] for additional properties of acyclic

databases and hypergraphs. Finally, [MU2] gives a notion o f "paths" in a hypergraph
and shows that , in a sense, acyclic hypergraphs are exactly the hypergraphs for which
paths between nodes are unique. Tha t result has a significance in database theory, in
tha t it implies unique connections between attr ibutes in the database, whenever the
database consists of a collection of relations that form an acyclic hypergraph.

References

[ABU] Aho, A. V., C. Beeri, and J. D. Ullman, "The theory of joins in relational databases,"
A C M Transactions on Database Systems 4:3 (1979), pp. 297-314.

[BBG] Beeri, C., P. A. Bernstein, and N. Goodman, "A sophisticate's introduction to database
normalization theory," Proc. International Conference on Very Large Data Bases, pp.
113-124, 1978.

[BFH] Beeri, C., R. Fagin, and J. H. Howard, "A complete axiomati~ation for functional and
multivalued dependencies," ACM SIGMOD International Symposium on Management
of Data, pp. 47-61, 1977.

[BFMY]Beeri, C., R. Fagin, D. Maier, and M. Yannakakis, "On the desirable properties of
acyclic database schemas," manuscript in preparation.

[BV1] Beeri, C. and M. Y. Vardi, "On the properties of join dependencies," Proc. Workshop
on Formal Bases for Databases, Toulouse, Dec., 1979.

[BV2] Beeri, C. and M. Y. Vardi, "Complete axiomatizations for generalized dependencies,"
Hebrew Univ., 1980.

[B*] Beeri, C., R. Fagin, D. Maier, A. O. Mendelzon, J. D. Ullman, and M. Yannakakis,
"Properties of acyclic database schemes," to appear in Proc. 1981 ACM Symposium on
Theory of Computing.

[B] Bernstein, P. A., "Synthesizing third normal form relations from functional depen-
dencies," ACM Transactions on Database Systems 1:4 (1976), pp. 277-298.

[BG1] Bernstein, P. A. and N. Goodman, "What does Boyce-Codd normal form do?," Proc.
International Conference on Very Large Data Bases, 1980.

[BG2] Bernstein, P. A. and N. Goodman, "The theory of semijoins," TR CCA-79-27, Comp-
uter Corp. of America, Cambridge, Mass., 1979.

[CLM] Chandra, A. K., H. R. Lewis, and J. A. Makowsky, "Embedded implicational depen-
dencies and their inference problem," Harvard Univ., 1980.

[C1] Codd, E. F., "A relational model for. large shared data banks," Comm. ACh/I 13:6
(1970), pp. 377-387.

[C2] Codd, E. F., "Further normalization of the data base relational model," in Data Base
Systems (R. Rustin, ed.), Prentice Hall, Englewood Cliffs, N. J., 1972.

[F1] Fagin, R., "Multivalued dependencies and a new normal form for relational databases,"
A C M Transactions on Database Systems 2:3 (1977), pp. 262-278.

[F2] Fagin, R., "Horn clauses and database dependencies," Proc. Twelfth Annual AC M
Symposium on the Theory of Computing, pp. 123-134, 1981.

175

[FMU]

[¢]

[GZ]

[H]

[K]

[KU}

ILl]

[L2I

[M]

[M- T1]

FaJ2]

[MMS]

[P]

[PJ]

[R1]

[R2]

IS1]

IS2]
[sw]

[SUl]

Fagin, R., A. O. Mendel~on, and J. D. Ullman, "A simplified universal relation assump-
tion and its properties," R J2900, IBM, San Jose, Calif., 1980.

Graham, M. H., "On the universal relation," technical report, Univ. of Toronto, Sept.,
1979.

Ginsburg, S. and S. M. Zaiddan, '~roperties of functional dependency databases,"
Dept. of C. S., USC, 1980.

Honeyman, P., "Properties of the universal relation assumption," Ph.D. thesis, Prince-
ton Univ., Princeton, N. J., 1980.

Kent, W., "Consequences of assuming a universal relation," IBM technical report, Dec.,
1979, to appear in TODS.

Korth, H. F. and J. D. Ullman, "SYSTEM/U: a database system based on the universal
relation assumption," Proc. X P I Conference, Stonybrook, N. Y., June, 1980.

Lien, Y. E., "On the equivalence of database models," private communication, June,
1980.

Lien, Y. E., "Multivalued dependencies with null values in relational data bases," Proc.
International Conference on Very Large Data Bases, pp. 61-66, 1979.

Maier, D., "Discarding the univdrsal instance assumption: preliminary results," Proc.
X P I Conference, Stonybrook, N. Y , June, 1980.

Maier, D. and J. D. Utlman, "Maximal objects and the semantics of universal relation
databases," TR-80-016, Dept. of C. S, SUNY, Stonybrook, N. Y., 1980.

Maier, D. and J. D. Ullman, "Paths in acyclic hypergraphs," manuscript in preparation.

Maier, D., Y. Sagiv, and A. O. Mendel~on, "Testingimplications of data dependencies,"
A C M Transactions on Database Systems 4:4 (1979), pp. 455-469.

Paredaens, J., "A universal formalism to express decompositions, functional depen-
dencies, and other constraints in a relational database." To appear in TCS. To appear,
JA CM.

Paredaens, J. and D. Jannsens, "Decomposition of relations: a comprehensive ap-
proach," in Formal Bases for Databases (H. Gallaire and J.-M. Nicolas, eds.), CERT
workshop, Toulouse, 1979.

Rissanen, J., "Theory of joins for relational databases--a tutorial survey," Proc. Sev-
enth Syrup. on Mathematical Foundations of Computer Science, Lecture Notes in CS,
64, Springer-Verlag, pp. 537-551.

Rissanen, J., "Independent components of relations," A C M Transactions on Database
Systems 2:4 (1977), pp. 317-325.

Sciore, E., "Null values, updates, and normalization in relational databases," doctoral
dissertation, Princeton Univ., Princeton, N. J., 1980.

Sciore, E., "A complete axiomati~ation for full join dependencies." To appear in JACM.

Sagiv, Y. and S. Walecka, "Subset dependencies as an alternative to embedded multi-
valued dependencies." To appear in JAC.MI.

Sadri, F. and J. D. Ultman, "A complete axiomati~ation for a large class of dependencies
in relational databases," Proc. Twelfth Annual A C M Symposium on the Theory of
Computing, pp. 117-122, 1980.

176

[su2]

[u]

Iv]

[w]

[Y]

[YO]

[YP]

[z]

Sadri, F. and J. D. Ullman, "The interaction between functional dependencies and
template depend.encies," ACM SIGMOD International Symposium on Managemen~ of
Da~a, pp. 45-51, 1980.

Ullman, J. D., Principles of Database Systems, Computer Science Press, Potomac, Md.,
1980.

Vassilou, Y., "Null values in database management--a denotationat semantics ap-
proach," ACM SIGMOD International Symposium on Managemen~ of Data, pp. 162-
169, 1979.

Walker, A., "Time and space in a lattice of universal relations with blank entries,"
Proc. XPI Conference, Stonybrook, N. Y., June, 1980.

Yannakakis, M., '~roperties of acyclic databases," unpublished memorandum, Bell
Laboratories~ Murray Hill, N. J., 1981.

Yu, C. T. and M. g. Ozsoyoglu, "An algorithm for tree-query membership of a dis-
tributed query," Proc. Compsac-79, pp. 306-312, 1979.

Yannakakis, M. and C. H. Papadimitriou, "Algebraic dependencies," Proe. Twenty
First Annual IEEE Symposium on Foundations of Computer Science, pp. 328-332,
1980.

Zaniolo, C., "Analysis and design of relational schemata for database systems," Ph. D.
thesis, UCLA, 1976.

