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A B S T R A C T  

We shall briefly survey what  the author believes are some of the most  
fruitful directions in relational database theory. These directions in- 
clude dependency inferences, support  for the universal relation concept, 
null value semantics, and an exploration of the properties of acyclic 
database schemes. 

I. Introduction 

We shall assume the reader is familiar with the basic concepts of relational database 
theory, at  least at  the level covered by [U] or [BBG]. These concepts include 

1. Relation Scheme. This is a set of attributes,  which are names of columns for 
relations. We shall use A, B, C , . . . ,  for at tr ibutes and shall use concatenation for 
forming sets of attr ibutes.  Thus A B  stands for ( A ,  B ). We shall use . . . ,  X', Y, Z 
for sets of attr ibutes;  concatenation will also stand for union. Thus X Y  stands for 
X U Y .  

2. Relation. A relation is a set of tuples, which, strictly speaking, are maps  from the 
set of at tr ibutes (relation scheme) for tha t  relation, to the corresponding domains, 
or da ta  types for the attr ibutes.  It  is normal to display relations as tables, where 
the at tr ibutes head the columns and the rows are tuples. We then fix an order for 
the at tr ibutes and represent tuples by the sequence of values tha t  tuple has for each 
of the at tr ibutes in order. A relation scheme is assumed to remain constant over 
time, while the relation corresponding to it changes frequently. Thus we speak 
of the "current" relation for a relation scheme or talk about  the set of possible 
relations for the scheme. 

3. Functional Dependency (FD). A functional dependency X --~ Y is an assertion 
about  a relation scheme. It asserts of any "legal" relation tha t  two of its tuples t 
and s tha t  agree on set of at tr ibutes X (written t[X] -~ sIX]) also agree on Y. A 
relation with that  property is said to satisfy the dependency. 

4. MuItivatued Dependency (MVD). A multivalued dependency X -~* Y is, very 
informaUy, a s ta tement  tha t  there is a set of Y-values associated with each X-value.  
More formally, if t and s are two tuples of a relation that  satisfies X -+~ Y ,  and 
t[X] ~- siX], then the relation must  have a third tuple u tha t  takes the Y-value 
from one of the tuples, say t, and its value everywhere else from the other. Tha t  
is, if Z is all at t r ibutes not in X Y ,  then u[Y] ~- t[Y] and u[XZ] -~ s[XZ]. 

5. Normalization. Certain relation schemes have redundancy, in the sense that  predict- 
able values appear in certain tuples of the relations over tha t  scheme. It  is the 
dependencies, such as functional and multivalued dependencies, tha t  we assume 
about  "legal" relations over that  scheme, tha t  cause redundancy. The appropriate  
response to redundancy is decomposition, the replacement of one relation scheme 
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by two or more (not usually disjoint) schemes. The theory of normalization relates 
dependency types to desirable properties of relation schemes; those properties in- 
volve the dependencies that  hold f o r  the relation scheme and can be construed 
as saying "there can be no redundancy caused by dependencies of the given type 
in the relations for this scheme." The normal forms that  eliminate redundancy 
caused by functional dependencies, called third normal form and Boyce-Codd nor- 
mal form, come from the seminal papers by Codd [C1, C2], while the normal form 
that  responds to muttivalued dependencies, fourth normal form, is from IF1]. 

Example i : Consider a relation scheme whose at t r ibutes  are E,  S, D, and M, standing 
for employee, salary, department ,  and manager.  Informally, we intend tha t  the salary 
is the (unique) salary of the employee, the employee may work for several departments,  
and each depar tment  may  have several managers.  Pu t  another way, a tuple esdm in 
the "current" relation over this scheme is an  assertion that, at  the current time, e is 
an employee, his salary i s s ,  one of the departments  he works for is d, and one of 
the managers of d is m.  We can express the requirements on the "current" value of 
this relation by the functional dependency E -+ S, and the muttivalued dependency 
D ~ M. I t  is interesting to observe tha t  the MVD E - ~  D is false, even though the 
intuitive notion of meaning for this relation is that  "there is a set of depar tments  for 
each employee." That  is, just  becaus~ es~dlml and es2d2rn2 are tuples doesn' t  mean 
tha t  eS2dlrn2 is a tuple, since manager m2 may not manage depar tment  dl. The reader 
should thus be warned tha t  the colloquial meaning of MVD's is very informal, and the 
definition must  be checked carefully before asserting an MVD. 

There is considerable redundancy in this relation scheme. For example, the salary of 
an employee is repeated once for each related depar tment-manager  pair for the employee, 
and the managers of a department  are repeated for each employee. The normalization 
process would replace this one scheme by ES, ED, and DM. Each of these schemes are 
in fourth normal  form, by the way. [] 

I[. Universal  Relat ions  

A database is a collection of relations, and their relation schemes collectively form 
the database scheme, tn order to make queries that  involve data from more than one 
relation, it is convenient to imagine that  the true world these relations represent is a 
single relation whose scheme consists of all the at tr ibutes mentioned in the scheme for 
any of the relations. We call this relation the universal relation and its scheme the 
universal relation scheme. It is this viewpoint tha t  justifies the decomposition of one 
relation scheme into many  during the process of normalization, although early papers 
on normalization saw themselves as removing redundancy from a relation scheme that  
could be one of many (unrelated) relation schemes in a database scheme. 

Another, equally important  justification for interest in this universal relation as- 
sumption is tha t  it provides a simple user interface. If we allow the user to query about  
the universal relation, then he needs to know only about  the at tr ibutes and their intui- 
tive meanings and relationships, without concerning himself about  the structure of the 
database.  For example, natural  language interfaces often make the universal relation 
scheme assumption tacitly. 

A stronger form of assumption is that  not only does the universal relation exist, but  
a t  all times, the relations in the database are the projections of this universal relation. 
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We project a relation r with scheme R onto a subset of the at tr ibutes in R,  say S, by 
forming { t[S] ] t is in r }, and we denote the result by ~rs(r). This pure universal relation 
assumption has been criticised on various grounds ([K], [BG1]), principally because of 
its inability to express all conceivable real-world situations. There is merit  to tha t  point 
of view, although the universal relation can be given meaning in far more cases than 
anticipated if we carefully define null values in tuples and the ways they operate and 
interact with dependencies. 

Thus, in Example  1, we might imagine tha t  there is a universal relation over 
at tr ibutes E S D M .  If we had an employee with no salary recorded, we might believe 
that  the universal relation assumption forced us to discard all information about  this 
employee. In this case, the simple device of entering a "null salary" in the S-component  
of tuples for this employee will serve, provided we agree that  the identical null value 
appears in all the employee's tuples (or else the FD E -+ S would be violated). A 
number of recent papers involve the use of nulls in defining the semantics of universal 
relations; these include [KU], [L2], [M], [$1], IV], and [W]. 

Whether  or not the universal relation assumption can be made in all real-world 
cases is, perhaps, not the most important  issue, anyway. Like the context-free grammar,  
for example, there is a great deal of power in the concept, and awkwardnesses tha t  arise 
can be finessed much the way noncontext-free aspects of programming languages are 
finessed when one designs a parser for the language. 

Moreover, the need to make the pure universal relation assumption is dubious. I 
prefer to see it as a guide to relational database design (discussed as the lossless join 
property,  below) and to the interpretation of queries over the universal relation (see 
[FMU, KU]), while it disturbs me not in the least if one or another relation in the 
database contains a dangling tuple, one that  cannot be explained in the light of the other 
relations as being the projection of any tuple in a universal relation. Thus, referring 
to Example 1, the presence of tuple (Jones, Toy) in the ED relation while no entry for 
Jones is in the E S  relation merely means tha t  Jones' salary is unknown, or null. There 
should be no problem with answering "Jones" when queried for the employees of the 
Toy Dept., even though had the query been "what is Jones'  salary?", we could not have 
made a sensible response. 

IU. Decomposition Theory 

We alluded to the fact that  a principal activity in relational database design is the 
decomposition of (universal) relation schemes into sets of at tr ibutes that  serve as schemes 
for the relations in the database and have certain nice properties (which we haven ' t  
defines here, and don ' t  intend to - - see  [B, C1, F1, U], e.g.). There are also some 
requirements tha t  the database scheme, or collection of relation schemes must  have 
as a whole; for example, we cannot always choose the database scheme consisting of all 
pairs of a t t r ibutes  in the universal relation scheme, even though a two-at tr ibute relation 
scheme always satisfies just  about  any normal form you can name. 

One requirement on the database scheme is the lossIess join property, the condition 
tha t  when you take a legal universal relation and project it onto the relation scheme8 
in the decomposition, then "join" the results (a term we'll define in a moment) ,  you 
get back no more tuples than you started with (it is easy to show you never get less). 
If U is a universal relation scheme, and R 1 , . . . ,  Rn a decomposition, then the join of 
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relations r t , . . . ,  rn over schemes Rt , . . . ,  Rn, respectively, denoted r] ~>~.. "~<~rn, is the 
set of tuples t such that  for all i, t[Ri] is in ri. 

Exampte 2: Let U = ABC be the universal relation scheme and r -~ { 102, 304 } the 
universal relation. Consider the decomposition AB, BC. Then 7tAB(r) : { 10, 30 }, and 
~Bc(r)  = {02,04}.  Further, {10,30}~<t{02,04} = {102,104,302,304} 5 r. We 
conclude that  this decomposition does not satisfy the lossless join property, as long 
as whatever dependencies we believe about the universal relation are satisfied by the 
relation r above. N 

Notice that  whether the lossless join property holds for a decomposition is deter- 
mined by what dependencies we assume hold for the universal relation, since it may be 
that all "legal" relations, projected and then rejoined, give back what you started with, 
while other relations that  are not "legal" do not  restore themselves after projection and 
join. Also note tha t  the lossless join property does not require us to assume there is 
a meaningful universal relation; it merely says what must happen if we start  with a 
universal relation and project. It is in this sense that the universal relation assumption 
is a guide to decomposition. 

The motivation for the lossless join property is that  without it, the projected 
relations cannot be said to represent a unique universal relation. If you believe the 
universal relation assumption, the absence of the lossless join property would surely 
imply a defect in the decomposition. But even if you do not m a k e  this assumption, 
when decomposing a relation scheme with redundancy, if we do not have the lossless join 
property, we can be certain that  the relations in the decompsition will sometimes fail 
to represent the relation we started with. Thus, in Example 2, the projected relations 
over AB and BC could represent r ~--- { 102, 304 }, or they could equally well represent 
{102, 104, 302,304 }, or several other relations; we can't  tell which if we don't  know the 
universal relation from which they were projected. 

[ABU] first discussed the lossless join property as a goal for decomposition, although 
the need for the property was implicit as early as [C1]. 

A second goal for decomposition is the dependency preservation property, which 
requires tha t  we be able to infer the dependencies that  hold for the universal relation 
from their projections onto the schemes of the decomposition. Tha t  is, if D and E are 
two sets of dependencies (functional, multivalued, or whatever) that  apply to relations 
over scheme U, we say D logically implies E, written D ~ E, if every relation over U 
that  satisfies D also satisfies E. Given set of dependencies D over U and subset R of U, 
the projection of D onto R, written vI~(D), is the set of dependencies tha t  are true for 
all relations ~n(r)  such that  r satisfies D. A dependency over R can be considered to 
be a dependency over U by defining it to be satisfied by a relation r over U if and only 
if ~rR(r) satisfies the dependency. We can then define the decompostion RI , .  , . ,  Rn to 
have the dependency preservation property for a set of dependencies D if D is logically 
implied by U s i= t  ~R,(D). 

The motivation for this property is that  without it, certain constraints tha t  we 
believe hold in the universal relation cannot be checked in the relations of the database. 
Again, even if we deny the universal relation assumption, when doing the decomposition 
of a relation with redundancy, we shall be giving up our ability to check these constraints 
if the decomposition does not have the dependency preservation property. 

The first discussion of dependency preservation as a property of decompositions is 
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in JR2], although the idea isimplicit  in [B]. [H] gives an efficient test for the property 
when the dependencies involved are only functional. [ABU] discusses how the projections 
of dependencies are to be computed within the worlds of functional and muttivalued 
dependencies, while [GZ] shows how functional dependencies project in the space of any 
dependencies whatsoever. 

IV. Dependency Inference 

The problem of dependency inference, tha t  is, determining whether a group of depen- 
dencies implies another, can be perceived as the driving force behind a large fraction of 
recent work in relational theory. There are three reasons why the problem is important.  
1. Dependency preservation is an imprtant  goal of decomposition, and the test for the 

property evidently involves inference of dependencies. 
2. We shall see that  the lossless join property can also be viewed as an implication of 

dependencies. 
3. When dealing with queries about a universal relation, and wishing to translate them 

into a query about certain relations in the database, a well-motivated approach is 
to find some subset of the relation schemes whose attributes include those queried 
about, and which have a lossless join ([MU1], [KU]). The tosslessness of a join is, 
again, a dependency inference to "be made. 
We could, of course, add to the above the fact that  there is considerable intellectual 

challenge in this quite natural problem of dependency inference, bu t  let that  slide. 
The problem of dependency inference has been made difficult by the fact that  

functional and multivalued dependencies are not the only kinds of dependencies we 
could conceive of, and more importantly, they are not the only ones that  appear in the 
'~real world." 

Example 3: A canonical example of a believable dependency that is not in the classes we 
have discussed occurs in a universal relation with attributes C, S, P,  and Y, standing 
for course, student, prerequisite, and year (the student took the prerequisite). The 
constraint we have in mind is tha t  there is a set of students for the course and a set of 
prerequisites for the course, and every student took every prerequisite in some year ( that  
year could even be null if the student doesn't belong in the course). In terms of tuples 
in the universal relation, we assert that if t and s are two tuples, with t[C] ----- s[C], then 
there is some tuple u in the same relation vcith u[CS] : t[eS] and u[P] --- s[P]. Note 
that  this constraint is not the M'VD C , ,  S, since u[Y] : s[Y] is not  required, nor is 
it the MVD C , * P for a similar reason; neither of these MVD's hold. 

However, the above constraint means that  if we project the universal relation onto 
set of attributes CSP,  we do get the MVD's C --~ S and C -+* P in CSP.  We call this 
constraint an embedded mnltivatued dependency and write it C * * S [ P to emphasize 
the fact tha t  it is an MVD in C S P ,  not in C S P Y .  

There is a horrible fact about embedded MVD's; it is not known whether their 
inference problem is decidable. Thus, if you want to do decomposition of relations 
into nice normal forms, or you want to support a universal relation by inferring con- 
venient lossless joins to take in response to queries, you are faced with either pretending 
embedded MVD's don't  exist, or doing an inaccurate job in certain circumstances (or 
solving an outstanding open problem). 

There have been two different responses to the apparent undecidability of inference 
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for real-world dependencies. 

1. An at tack on the decidability issue was mounted.  The principal directions were 
to search for axiomatizations of a class of dependencies that.  included embedded 
MVD's, and to look for a larger class in which a decision procedure would be 
apparent,  while the specialization of that  algorithm to embedded MVD's was too 
murky to be visible without going to the larger class. These a t tempts  have largely 
been failures, although much of intellectual interest was produced as a side effect. 

2. A revision of the notion of what dependencies were appropriate was at tempted.  
The idea here was to find a new class of dependencies tha t  included the functional 
dependencies, the multivalued dependencies, and those of the embedded MVD's 
tha t  we might realistically expect, yet for which inference of dependencies was 
tractable.  
We shall survey each of these approaches in turn. 

V. Generalized Dependencies 

The first a t t empt  to generalize FD's  and/or  MVD's was the join dependency studied in 
[R1]. The join dependency I>~(Rt , . . .  ,Rn) is an assertion tha t  if we project a relation 
satisfying this dependency onto the sets of at tr ibutes R1 through R~ and rejoin, we 
get back what  we would get if we had projected the relation directly onto Ui~__I Ri. 
The embedded MVD X --~ Y t Z is equivalent to the join dependency ~x1(XY, XZ). 
Thus join dependencies generalize MVD's and embedded MVD's, although no nontrivial 
functional dependency is a join dependency. The properties of join dependencies were 
studied by [BV1], while a complete axiomatization (really an axiomatization for a 
slightly larger class) appears in [$2]. 

A second class, called subset dependencies was discussed by [SW]. This class also 
generalizes embedded MVD's, and the paper contains the important  result that  there 
can be no finite axiomatization for embedded MVD's. 

A more general sort of dependency occurred at about the same time to many 
people; we shall follow [BV2] and call them simply generalized dependencies. These 
dependencies say that  if we see tuples in a relation with a certain pattern,  then we can 
expect to see something else, either another  tuple or an equality between two symbols. 
We write a generalized dependency over a universal relation scheme of n at tr ibutes as 
(rl,. . . ,  rk)/r, where r l , . . . , r k  are called the hypothesis rows and consist of strings of 
length n, and r is called the conclusion; it is either another row of length n or an equality 
of the form a == b, where a and b are symbols appearing among the hypothesis rows. 

We require that  no symbol appear in more than one column (the term untyped 
dependencies has been applied to dependencies satisfying this assumption). The symbols 
appearing in the conclusion, in the case it is a row, rather than an equality, need not 
appear anywhere else. Symbols of the conclusion not appearing elsewhere are called 
unique. A generalized dependency with no unique symbols is called full; otherwise it is 
embedded. 

The meaning of such a dependency is tha t  whenever there is a symbol-to-symbol 
mapping that  maps each hypothesis row into a tuple of a particular relation, then 
1. If the conclusion is a row, then we can extend the mapping to include the unique 

symbols in such a way that  the conclusion is also mapped into a tuple of the relation. 

2. If the conclusion is an equality a ~ b, then the mapping must have mapped a and 
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b to the same symbol; no other mappings of all the hypothesis rows into tuples of 
the relation are possible. 

Example 4: Consider the E S D M  universal relation of Example  1. If we assume the 
at t r ibutes  are in that  order, the FD E -* S can be writ ten 

(esldl~l, e s 2 d 2 , ~ ) / * 1  = s2 

The two hypothesis rows can be mapped to any two tuples, as long as the tuples agree 
on E, because e is the only symbol appearing in both hypothesis rows. Thus,  this 
dependency says that  whenever we find two tuptes that  agree in their E-component ,  it 
turns out that  they also agree in their S-component.  

The MVD D - -~  M can be writ ten (eisidrni,e2s2dm2)/eis~dm2, while the em- 
bedded multivalued dependency D -~+ E I M can be expressed 

( el s:t dml , e2s,~drn2)/ el sadrn2 

Note that  the embedded MVD has a unique symbol, s3, while the other examples do 
not have unique symbols. 

The generalized dependencies can have more than two hypothesis rows. For ex- 
ample, a join dependency with k components will have k hypotheses. The generalized 
dependencies with two hypothesis rows and another row for the conclusion are exactly 
the subset dependencies. The generalized dependencies with rows as conclusions (call 
them ~uple generating) were considered by [P, pJ] and called generalized dependencies, 
and by [SU1, SU2] and called "template dependencies." A class larger than the general- 
ized dependencies, in that  they allow multiple related conclusions, was considered by 
[F2], where they were called "implicational dependencies," and by [YP], where they 
were called "algebraic dependencies." 

Complete axiomatizations were given in a number of these papers: [BV2], [SU1], 
and lYe]. [F2] also contains the interesting notion of an Armstrong relation for a set 
of dependencies, that  is, a relation tha t  satisfies the dependencies, those dependencies 
tha t  follow logically from it (as it must), but  no other dependencies. It  is shown there 
that  generalized dependency sets always have Armstrong relations. 

There are partial  decision procedures for all these classes of dependencies. An 
axiom system provides such a method, since we may systematically search for proofs of 
the inference, bu t  we cannot be sure tha t  we shall find the proof at  any particular time. 
Another  approach is to apply the "chase" process of [ABU, MMS, SU1], in which we 
start  with the hypothesis rows and infer additional rows and equalities among symbols. 
If we ever infer the conclusion, we are done, but  embedded dependencies, with their 
ability to cause new symbols to be generated for the new rows (every occurrence of 
a unique symbol must be replaced by a distinct value when generating tuples) allow 
the generation process to go on forever. However, if the dependencies are full, we are 
constrained within the set of symbols of the original hypothesis rows, and thus we have 
a decision algorithm for inferences of full dependencies. 

Recently, [CLM] has proven the inference problem undecidable for tuple-generating 
generalized dependencies. This paper effectively puts an end to efforts to solve the 
inference problem for embedded MVD's by considering larger classes of dependencies, 
bu t  we should note tha t  the decidability of inference for embedded MVD's is still an 
open problem. 
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VI. Description by Functional and Join Dependencies 

The other direction responding to the problem of an undecidable inference problem 
for real-world dependencies is to develop a substitute Class of dependencies for which 
inference is decidable, tn [FMU] it was proposed that  a suitable assumption about  the 
dependencies obeyed by a universal relation is that  there is an arbitrary collection of 
functional dependencies and one full join dependency. The connection between join 
dependencies and common types of database descriptions was also perceived by ILl]. 

The reason we see a full join dependency as sufficient to replace collections of MVD's 
is that the intuitive meaning one ascribes to a universal relation directly implies tha t  the 
universal relation satisfies a particular join dependency. That  is, as long as you believe 
the universal relation makes sense, you may as well assume this join dependency holds. 
Moreover, it appears in practice that all the MVD's we assert about a given universal 
relation follow logically from this join dependency, although we cannot, of course, prove 
that  to be the case. More of this motivation is contained in [FMU], but  here, let us be 
content with an example. 

Example 5: Consider the universal relation from Example 1. There we defined the set 
of tuples in the current universal relation as 

{ esdm l Pl(e, 8) and P~(e, i) and P3(d, m)} 

The predicate P1, for example, means % is the salary of e." It is easy to show that  the 
set of relations that  can be so defined, for some Pi, 1 < i ___ 3, is exactly the set of 
relations that satisfies the join dependency ~<~(ES, ED, DM). 

In general, the components mentioned in the predicates defining the universal 
relation become relation schemes mentioned in the join dependency. The only additional 
semantics we need in this case is the FD E -* S; the MVD D , * M can be shown to 
follow logically from the join dependency. 

The paper [MUll discusses some of the problems that  arise with this sort of universal 
relation semantics. It also shows how embedded M-VD's can frequently have their 
constraint expressed by a concept called "maximal objects," which are not dependencies, 
but  rather, influence the way queries over the universal relation are interpreted. Thus, 
much of the descriptive power of embedded MVD's can be captured, yet lossless joins are 
easy to deduce from the full join dependency and a collection of functional dependencies. 

VII. Acyclic Join Dependencies and tIypergraphs 

An interesting development from the above hypothesis about appropriate universal 
relation semantics is that  a class of join dependencies called "acyclic" has been defined. 
These dependencies, it can be argued, are the only ones that  should appear in real-world 
universal relation descriptions, if we take the trouble to split a single at tr ibute that  
plays two or more roles in its relationships with other attributes. Without  taking a 
stand whether this argument is valid, we can profitably explore and enjoy the theory of 
acyclic join dependencies for its naturalness, the many interesting properties it exposes, 
and its contribution to hypergraph theory. 

To begin, for any join dependency we can construct a hypergraph whose nodes are 
the attributes and whose hyperedges are the components of the join dependency. For 
example, the hypergraph for the join dependency mentioned in Example 5 has node set 
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{ E, S, D, M } and set of edges { { E, S }, { E, D }, { D, M } }. This hypergraph is thus 
an ordinary graph, since the edges are all doubletons, but  that  will not be the case for 
general join dependencies. 

An articulation set in a hypergraph is the intersection of two edges, whose removal 
increases the number of connected components of the hypergraph. For example, in 
the above hypergraph, { D } is the intersection of edges { E, D } and { D, M }, and its 
deletion breaks the hypergraph into two Components, { E, S } and { M }. Thus, D by 
itself is an articulation set; such a set need not have only one node, of course. 

A node-generated se~ of  edges of a hypergraph is formed from some set of nodes 
N,  by intersecting each edge with N ,  then throwing away edges that become sub- 
sets of other edges. In our running example, the set { E,  S, D } yields the set of 
edges { { E, S }, { E, D } }, since each of those two edges is contained in the set, while 
{ E, S, D } Cl { D, M } = { D }; which is contained in the edge { E,  D } and thus does 
not appear. 

We say a hypergraph is acyclic if every node-generated set of more than one edge 
has an articulation set. Otherwise it is cyclic. 

Example 6: The hypergraph with edges { A, B, e }, { C, D, E }, and { E, F,  A } is cyclic, 
as we would expect. The entire hypergraph is a node-generated set of edges with no 
articulation set. However, if we add the edge {A, C, E }, the graph suddenly becomes 
acyclie, pointing out some of the subtlety in this concept. For example, { A, C } is an 
articulation set for the whole hypergraph. H 

There are a number of interesting properties of acyclic hypergraphs, summarized 
in [B*]. We shall point out a few of them here. 
1. A join dependency is logically equivalent to a set of MVD's if and only if it is acyclic 

[FMUI. 
2. The Graham reduction [G] of a hypergraph is obtained by applying the following 

two operations, in any sequence, until they can no longer be applied (the result can 
be shown unique). (a) Delete a node that appears in only one edge. (b) delete an 
edge that is a subset of another edge. Then a hypergraph is acyclic if and only if 
its Graham reduction is empty [BFMY]. 

3. We say a set of relation schemes has the LCIGC properly (local consistency implies 
global consistency) if we can test whether the current relations for these schemes are 
"globally consistent" (are the projections of a universal relation) by testing "local 
consistency" (whether the projections of any two relations, say with schemes R and 
S, onto the set of attributes R N S are the same). Then a set of relation schemes 
has the LCIGC property if and only if the hypergraph with those schemes as edges 
is acyclic [BFMY]. 
It is interesting to note that  [Z] and [G] had searched for a notion of "acyclic 

hypergraph," principally with an eye toward testing the LCIGC property; however, their 
definitions are too strong, failing, for example, to recognize that  the second hypergraph 
in Example 6 is acyclic. 

Another way in which acyclic hypergraphs play a role is in the notion of "tree 
queries" of [BG 2]. These queries, which were investigated because of their nice properties 
for execution in a distributed database system, are equivalent to the concept of acyclic 
hypergraph [BFM¥]. Interestingly, [H] showed the relationship between tree queries and 
the LCIGC property, and [YO] claimed that a variant of Graham reduction served to 
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identify the tree queries, without relating any of these concepts to acyclic hypergraphs. 
The reader should consult [Y], [B*] and [BFlVIY] for additional properties of acyclic 

databases and hypergraphs. Finally, [MU2] gives a notion o f  "paths" in a hypergraph 
and shows that ,  in a sense, acyclic hypergraphs are exactly the hypergraphs for which 
paths between nodes are unique. Tha t  result has a significance in database theory, in 
tha t  it implies unique connections between attr ibutes in the database, whenever the 
database consists of a collection of relations that  form an acyclic hypergraph. 
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