Absolute Primality of Polynomials is Decidable in

Random Polynomial Time in the Number of Variables

Joos Heintz and Malte Sieveking

Abstract. ILet F be a n-variate polynomial with degF =d over an infinite
field k, . Absolute primality of F can be decided randomly in time polynomial in n

and exponential in d° and determinalistically in time exponential in &% + n2@% .

Iet ko <k fields, k being algebraically closed.

We call a polynomial F € ky[Xq,..,Xy] in the indeterminates Xq,...,¥, over k,

absolutely prime, if F is prime over k. With other words: F is absolutely prime

if F is prime considered as an element of k[Xq,..,%3] . We remark that the notion
of absolute primality doesn't depend on the specific algebraically closed extension
of k, we have chosen. For example, ¥ e Q[Xq,..,Xy] is absolutely prime iff it is
prime over €. ( Q@ denotes as usual the rational and € the complex numbers.)

If n=1 the absolutely prime polynomials are exactly the linear ones. For nz 2
there is no chance of such a general and simple description of the absolutely prime
polynomials over given ground field k,,even if k,is algebraically closed. (This
would solve the problem of classifying algebraic varieties up to birational equiva-
lence.)

However, if we can effectively perform arithmetic operations in k , we can decide
whether a given polynomial over k is absolutely prime or not, since we have algo-
rithms for quantifier elimination in the first order theory of k . For given polyno-
mial F € kK, [X7,..,X,] with degree deg F = d we write wp a first order formula
in the coefficients of F which says that F has no factor of degree 0<d'<d .

(n+q) ? . h cuadrati 1
e bounded variables and as much quadratic poly-

nomials, where b>0 is some constant. The best known quantifier elimination algo-

Such a formula contains b -

rithms for algebraically closed fields are polynomial in degree and mumber of poly-
nomials appearing in the formula but hyperexponential in the number of variables.
(Compare [5]). If we apply such an algorithm to our problem to decide whether F is

(n M)Bn
absolutely prime or not, we need O(2 ) steps to get a quantifier free for-

mula in the coefficients of F which is true iff F is absolutely prime, for B >0
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some constant. Even if verifying polynomial identities in k, is free, this
straight forward algorithm has a complexity which is hyperexponential in degree and
triple exponential in the number of variables.

Our main result can be stated as follows :

Theorem 1: Let k, be an infinite field. Then there exist constants C>0 and ¢ >0
such that absolute primality of any multivariate polynomial F over k, can be
decided randomly

d o d°

in Cn arithmetical steps {the operations: +,%,/ )

vwhere n is the number of indeterminates appearing in F and d = deg F .

The deterministic bound for the decision procedure is

6 2 43
C1201(6+nd)

for some constants C,>»0 , ¢;>0 .

In the case of k, =0 we have an encoding of the elements of k, on a Turing Ma-
chine tape such that the arithmetical operations of k, can be performed in time
guadratic in the length of the input.

In this case the Turing complexity of the random procedure is bounded by

5
cz n2d 2C2d U(F)Z

where ofF) denotes the maximal length of the coefficients of F in the encoding,
and C,>0 , ¢,>0 are same constants.

The deterministic Turing camplexity of our procedure is bounded by

cy(d® + n?ga%)

c, 2 o (F)?

for suitable C3>0 , ¢>0 .

If char k,=p>0 and if k, is the algebraic closure of its prime field Zp '
similar results hold with o(F) := (deg F)° .

The assumption for k, to be infinite is not essential. In fact, our decision proce-
dure works for any coefficient field k, and for any polynomial ¥ over k, provided

5
that # kqz <, zck(deg B for some universal constants C,>0 , c,>0 . So,
working in a finite extension of ko ¢ if necessary, we can apply our decision pro-
cedure also to the case of k'J to be finite.
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Our methods don't depend on the charakteristic of k, . So, for the sake of simpli-
city, we shall restrict ourselves to the case %k, = @

We need some algebraic geometry. Terminology and prerequisites are given for example
in [11 and [4] or can be found {with exception of the Bezout inequality [1]1,[2]) in
any standard text book about classical algebraic geometry, for instance [91 or [7] .

Furthermore, we need a General Hyperplane Section Lemma, which we state in the fol-

lowing form :

Lemma 2 : Let k be algebraically closed and Xq,...,X, indeterminates over k

Let p be a prime ideal of k([X4,..,Xp] which defines an affine subvariety of K"

of dimension r:z2 . Let Aij /Ay, 1=1,..,0-1, j=1,..,n be transcendent quanti-
ties over k , and let K be an algebraically closed field containing k and

Ajy By, i=1,.0r-1, 351,000 .
Then the ideal p +(X1—- 1§j A1j Xj T A seeer Xy _r-12<j Ar—1j Xj— A._q) is

prime in K[Xq,..,¥p]

We apply Lemma 2 in the case k=C and p=(F) , vhere FeQD[Xq,..,Xy] with nZz2
and deg F = d is the polynomial from which we want to decide if it is absolutely

prime or not. In this case r =n-1

Iet R be the polynomial ring generated over Q by Aij'Ai 3 i=1,..02, J=1,..,n ,
L the fraction field of R , and K be an algebraically closed field containing L
and C .

Iet @ : Q[Xq,..,Xy] — R[Xn_1 Xpl be the @ -algebra homomorphism obtained by suc-

cessively substituting Xi by jEi Aj4 Xy + Ay .

Then (F) and (F) +(Xq- 351 Ay g+ Aqreeai Xy - sz By %57 A )
have the same image (F*) , where F*eRI[X, 1,%n] with deg F* = d . Note that the
coefficients of F* are polynomials in Bjy A, ,i=1,..m2, j=1,..,n of
degree < d . Furthermore, if the degree of F in Xn ’ degan = deg F , then

deg an* = deg F* , and the leading coefficient of X, in F* is in Q.

Now we extend ¢ to a C-algebra homomorphism C[Xy,..,Xp] — K[Xp-1,%p]

By the General Hyperplane Section Lemma,

F prime in C[Xq,...Xp] implies F* prime in K{Xp_1,Xpl

Obviously, F reducible in C[Xq,..,%y] dmplies F* reducible in R{Xnq:%n] -



So we have finally :

F  absclutely prime iff F* azbsolutely prime.

Since k, = @ 1is infinite, we may, after a suitable linear transformation of

X17--esXy + assure that deg F = deanF .

So far, we have reduced the problem of deciding absolute primality of F to the case
of deciding absolute primality of some other polynomial F* in only the two varia-
bles Xn.q (X, over some extension field L of @ .We have deg F* = degF =4 ,

and we may assume deg XnF* =d , the leading coefficient of }Sj in F* being 1 , if
d >0 . Furthermore, we keep in mind that the coefficients of F* are polynomials in

£ n{n-2) indeterminates over ¢ .

In the sequel let L be any field containing k, = Q@ , X,Y indeterminates over L ,
K the algebraic closure of L , and FeKR[X,Y] , with d = deg F = degy F >0 .
Let m=d?> and Hireear¥y M different numbers of ¢ , for example 1,...,d% .

lemma 3: F is reducible over K iff there exist 0<4d'<d and
Y']']””Y‘]d' rvee g m,l,..,ymd,eK such that

F(XirYij) = 0 for 1i=1,...,m , j=1,...,4'

and such that the inhomogeneous linear equation system

k _ 1 _ .
" kgc%'-l Gy %y = (=1} Ol(yiT""yid') 1=1,.,d , i=1,.0.m
*

GOd' = 1

in the unknowns Gyq ¢ k=0,...,d'", 1=0,...,d", k+1£ d' has a solution in
a+1
( )
rq-
K ! . O'j denotes the j-th elementary symmetric polynomial in d' variables.

Proof : If F is reducible over X , let G be a factor of F with 0<d=degG<4d.
Since degy ¥ = deg F  we have degy G = deg G > 0 , and we may assume that the
leading coefficient of ¥ in G is 1 .

et G= z 91 Xk Yl .
0 <k,1<d"

k+d =4

Since K is algebraically closed and the leading coefficient of ¥ in each G(Xi,Y)

is 1 , we can choose for each i=1,...,m Yilreesr Vigr Such that
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G(x, ,Y) = I (Y~v,.) .
i’ 1§_j§d‘ yl])
Then we have for each 1=1,...,d
k _ 1 _
emoy Ta ¥ = W o yyreeyiy) a@d gge =1

j)=0 for i=1,...m, j=1,..,d

Now suppose F prime over K. If there exist 0<d'<d and YyqreerYqgqene o1 ¥pr oo 1 Yo

so (*) has a solution and F(xj,y;

such that F(Xi,yij)=0 for i=1,...m, j=1,...,d and such that () has a
3+

solution (G)ocy 1cq 0 KO et
k+led
k 1
G = pX g. X7 ¥ e K[X, Y1 .
0sk,1s& Kl
k+l <&

Clearly, deg G = d' and G(xi, i1)=0 for i=1,..,m . So # {F=01Nn{G=0} 2 mn=4d?
since the (x1 ,yn} Feas s (xm,ym) are all different common zerces of F and G .

On the other side G is not a multiple of F , since deg G= d'<d = degF . So, by
the Dimension Theorem, # {F =0}MN{G=0}w, since F is prime. Then, by the Bezout
Inequality [1] follows # {F=0}N{G=0}<degF.degG = dd'<ad% , a contradiction.

The entries of the matrix of (*) are in @ and only dependent on the choice of
KyreeerX » Applying Gauss elimination we can exprime the solvability of (#} saying
that some < d%°=m @ -linear combinations of the set

{1}u{ol(yi1,..,yid.) 1 1=1,..,84 , i=1,..,m} have tobe 0 .

Given Xyrees ,xme Q we can compute the coefficients of these linear cambinations in
0 (a'*?) arithmetical steps.

With these preparations we have the following corollary of Iemma 3 :

Let Yij ri=1,00.m, j=1,...,8-1 , new indeterminates over K .

Corollary 4 : Given FeL[X,Y] with d= degF=degyF>0 and given m= g2
different numbers Kireeos® € 0.

with o0 (2 d) arithmetical steps (where ¢ >0 is some constant) there can be
computed the coefficients of polynomials

Bypree B € O qrees gl e eee s B qoeeithyq € QY ey g qreeer g ey

of degree £ d , with the following property :
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F is reducible over K iff there exists 0<d <d such that the ideal generated
by {F(xi,Yij) s i=1..m j=1,..,d‘}U{H3-_d'(Yﬁ,..,Ymd;) ;i=1,..,m} in

H
LIYq1sees gl has & zero in Kmd .

Corollary 4 is nothing but a reformulation of ILemma 3, avoiding algebraic elements
over L ., We omit its proof.

For given 0<d<d the Hyg,...,Hyy ave linear combinations over § of 1 and
the d'-variate elementary symmetric polyncmials in the variable sets

Fqqreerlygrd reee ,{Xm,',..,Ymd.} - HygseeerBpg 4 can be chosen uniformly for all
FeL[X,Y] with d=deg F = degy F>0 .

Iet 0<d&<d ., Put r=md and give the elements of {(i,3): i=1,..,m,3=1,..,d}
numbers S = T,....T o

For s, the number of (i,j), write ¥g:= Yij » Fgl¥g) 3= F(xi,Yij) and
Hg(¥q,..,¥g) == Hij . Note that deg Fg=4d , and that the leading coefficient of Fg,
s=1,..,x s is 1.

Iet U4s...,Up be new indeterminates over K , and let K be the algebraical clo-
sure of K(Uj,..,U.) .

Since for each s=1,...,¥ Fg 1is a polynomial of degree d>0 in only the inde-
terminate Yg , the following equivalence holds :

the ideal generated by

{Fgis=1,0.,r} v Hy i 8= 1,..00r }

in L[Yq,..,%] has a zero in K° iff
the ideal generated by

{Fgis=1cr I U{U H + . +UH )

in L{Uy,..,Up) [Y1,..,¥] has a zero in k¥ .

Now we are ready to work with resultants.
We define a sequence R.s«v.sRy of polynomials with Rse L{Uyse0sUr s ¥9,.0,¥g]  for
s=1,...,r and ROGL[U1,..,Ur] such that the following holds :

the ideal generated by {Fg; s=1,..,r}u{U;HEq+ ...+ Up B} in L(Ug .., U ¥q,. 00 Yy ]
has a zero in KX  iff Ryp=0 .
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The construction of Rereeay Ry :

Put Ry := UjH; +...+ UrHy

For s=1,...,0-1 let Rgu1€L{Ug,.. Up¥qr...,¥ge1] be already constructed.
let D be the resultant of Rgyq und Fgyq (eliminating Yguq ).
Then De€L[Uj,..,Up¥qs-.,¥g] . Since Fq,..,Fg are 1-variate polynomials in the

indeterminates Y4,..,Y, respectively, division with remainder by Fq,..,Fg 1is de~

s
fined in L[U1,..,UI,Y1,..,YSI . Now divide D by Fq , then its remainder by Fy
and continue this procedure for F3,..,Fg . We define Rg to be the polynomial
finally cbtained in this way. Rg- D 1is in the ideal generated by Fy,...,Fg in
LUy, oo iUy, Yqpa0, Y] ™

Furthermore, we have deg Y4 Ros owens degys Ry< d

Finally we put Rg to be the resultant of Ry und Fq .

Since deg Fo= oo = deg Fg = d >0 one sees inductively : The ideal generated by
{Fg 7 s=1,.c} ULU By +.o0 + U Hel dn L{Up .. Up) [¥q,..,%] has a zero in K-
iff Ry= 0.

Note for later application, that, if the coefficients of F are n(n-2)-variate polyno-
mials over © of degree £4 ,then Ry is a nn-2)+r= variate polynomial over © of

2
degree 0O(d 2d )

4
Ryr.. /Ry are defined by an algorithm. To compute Ry we have to perform O(ci12 d )

arithmetical operations in L(Ug,..Uy)

Note that the sequence Ry,..,Ry depends on F and 0<d < d . So let us write
F

rd,:=R0.

Putting together all our material, the following proposition is self explanatory :

Proposition 5: Iet Uy, Up,... be indeterminates over L . There is a constant
¢ >0 such that for each FelL[X,Y] with d=deg F = degyF there can be computed

5
d-1 gquantities r g‘ Fenur rg_j € L[U1 veo ,Udgl with 0(2 cd } arithmetical operations

over L(U1 reefU dg) such that the following holds :

F absolutely prime  <=> r?#o Fees s rg_q?é o .

Now we turn back to the situation we started from.
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Let E‘eQ[X1 1+ 1Xpl . We want to decide the absolute primality of F . Without loss
of generality we may assume nz2 and d =deg F > 0 . By a linear transformation
of Xq,...,X, which costs at most Of{ nd) arithmetical operations in € we may
furthermore assume deg F = deanF . let Aij P Ay s i=l00m2 , 31,0, and
UgseeesU 3 be indeterminates over € , let R the polynomial ring generated over ¢
by Ajy, 23 ,1=1,...0°2, j=1,...,n, L the fraction field of R and

F*e R[X, 1, X,] as at the beginning. We have d= deg F* = degxn F* , and we may

assume that the leading coefficient of Xn in F* ig 1 .

& 3
To F* we can apply Proposition 5. We have r‘? ,...,rg__1 € R[UI""Uds} and

% .3 2 &k 3
deg rE; ,,..,c‘iegrg_7 £ C, dzd and rg‘ ,...,r§_1 can be computed in

5
L{Uqs../Up) with C;2 ad arithmetical operations, where C, >0, C,;>0 and ¢, >0
are constants not depending on F . Furthermore, we have :

fika B
F absolutely prime iff xry # 0, ..., rgq#0 .

* *
Iet N := (n=2)n + d° . r? ,...,rg__1 are N-variate polynomials over @ which

* %
we interprete as functions on QN . Going back to the construction of rﬁ‘ Feeer r§_1
o % N
by resultants, we see that we can evaluate 1 reeerr @1 atany zeQ in
5
C, nd 2 ¢, d arithmetical steps, where C, >0 and ¢, >0 are constants. Since
x b 2 2 N
r? reeer T34 have degree £ C, d2 d we have to evaluate them at (G dZd )" points

of QN to check whether they all are different from 0 or not.

This gives the deterministic bound stated in Theorem 1 for the problem to decide

absolute primality of F , namely

¢, (@%+ n? g%

of(2 ) for some ¢, >0

In order to get the probabilistic bound of Theorem 1, we apply [4], Theorem 4.4 .

5 2
et vi= T2c, 29 % (¢ a?® 4120 and

as® as -

g:="60c; 29% 4 1)(c 2% +2) 7 where

7 denctes the least upper integer bound.

c, d°
We have wv,gq SC,2 % for some C,>0 , ¢, >0 .
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Let [v] ={1,...,v} . Then by [4], Theorem 4.4 any randomly chosen sequence
d

N
Z1re0er 29 € fvl” © QN is with probability 2 1- v S % a correct test sequence

*

for the complexity class of rﬁ‘ reeos ¥ g: . With other words : The probability

F* F* . *

that 1y #0,...,rd__1750 but for same i=1,...,8-1 ri‘*(z1)=0,...,ri(zq)=0
-9,

is s v ¢ <-2- .

F* F* F* * 5
To compute ry (2q),.., 1 (zq) PR rd._1(z1),.., rg_1(zq) we need Csnd ,Cs d

arithmetical steps, C,> 0 , ¢, > 0 being constants.

To decide absolute primality of F choose randomly a sequence Zyreeer2g€ [v]N
and check if for any i=1,...,d~-1 there isa j=1,...,9 such that r?(zj) 0.
If this is the case, decide F to be absolutely prime, otherwise that F 1is redu-

cible over C .

This is a random algorithm for deciding absolute primality of F working in

d ,cgd’

Cin 2 arithmetical steps as stated in Theorem 1.

The Turing complexity bounds of Theorem 1 are straight forward by analyzing the
algorithms step by step and verifying that the length of the numbers involved doesn't
grow too much.

Remarks to the proof of Theorem 1 :

The use of the Bezout-Inequality in the case of n=2 can be avoided by using
resultants. But then, the proof, thus elementarized, is less elegant and gives
slightly worse bounds. This elementarized proof can easily be generalized to arbi-
trary n 2 2 . But then, the bounds become hyperexponential in n . The great advan-
tage of using the General Hyperplane Section Lemma is that the bounds become poly-
nomial in n in the random case and simply exponential in n in the deterministic

case.

Finally we are going to say some words about the connection of Theorem 1 with the
problem to decide whether a given set of polynomials defines an irreducible alge-
braic set.

For the sake of simplicity assume k, = k algebraically closed.
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let Xq,...,%, indeterminates over k .

Let F1,...,Fmek[x1,..,Xn} and @& := 1§l§§m deg Fk .

et V := {F1=0 ,...,Fm=0} » the set of common zerces of Fy,...,Fp in K.

For given F1 PR ’Fm we want to decide whether V is irreducible or not.

As in [1], [2] , define degV := z

C component of VvV deg C .

By [2], Corollary 1, [1], Corollary 2 respectively, we have deg V < {1+ d)n .

ILet r 3= max dimC as in [4] .
C camponent of V

If r is known , we can use Theorem 1 to decide the irreducibility of V :

As a consequence of [2] , Lemma 1 and the proof of ILemma 3 there is a Zariski open
set of kn(r+1) of linear maps Kt — err1 mapping V on a reducible r -dimen-

sional subset of kr+1 if V itself is reducible and on a r -dimensional irredu-
cible subset of kﬂ1 if V is irreducible. By [2], lemma 2 the degree of the

image of V is g (1+@)" .
This geometric fact can be translated into the language of formal manipulations :

Choose new indeterminates A . , i=1,...,xr+1 , j=1,...,n and Y over k.

i3 17 e
Iet L be the field generated by Aij ri=1,.0041 , 3=1,...,n over k.

Consider (Fq,..,F,) as an ideal in LiXy,..,%,] .

Compute G(Y‘l""’yrﬂ) eL{Y1,..., r+1} with

G( & A.X. ,..., I A _.X)elF ,....F ), G#0
1<j<n 13 73 153sn r+1j °j 1 m

and deg G minimal. By [6] or [10], Prop. 1 and the fact that deg V < (1+d)” ,
2

cn
this is possible in O(d2 ) arithmetical operations in k , where c>0 is

sane constant. G is not a unit in L[Y1,.., 1 and deg G £ (1+d)n .

Yr+1
So without loss of generality, we may assume deg ¥4 G>0.

Iet D := greatest common divisor of G and %_C_;_ and F := g in LY ...Y
Yy D 1 r+
2
cn
We have deg F £ (1+d)n and F can be computed in  0O¢ dz }  arithmetical steps

in k.

-

By our geometric fact it is easily seen that

Fe L[Y,], ..,Yr+ ] absclutely prime iff V irreducible.

1
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¢, n?
So we get for some c1>1 a deterministic 0{2 am )} - bound for the problem to
decide the irreducibility of V= {F;=0,..., F = 0}, where F1,..,Fmek{X1,..,Xn]

and d = 1ékzim deg Fk

; if r=dim V is known .

This bound is much better than the bound obtained by converting the problem into a
first order formula and applying then quantifier elimination, however, it is still

hyperexponential in n .

The restriction that r has to be known is not essential if we accept bounds hyper-

2
Cp 0
exponential in n . In fact, by (5] r can be computed in O d2 )

steps, where ¢,>0 1is some suitable constant.

Putting this result together with the result presented in {[3] , we have for some

2
Cyn 2

c, n
&
c3> 0 , c,>0 a deterministic O a? + Zd } - procedure to decide

(Fir-.,F ) prime in k[X,,..,X ] and V:i= {F,=0,.., F =0} smooth.
This bound is very bad in n but still simply exponential in d . In any case it is
much better than bounds obtained by applying general quantifier elimination.

Appendix
We prove the General Hyperplane Section Lemma (Lemma 2) modulo [8], Chapter VIII
§ 6 Lama .

Iet k be an algebraically closed field, S = k[w,i ,..,Trn} the coordinate ring of
some {irreducible)} affine k-variety of dimension rz2 .

let Ayg, 84 » 15100071, 4=1,...,0 be indeterminates over S , R the ring
generated by Aij r By s i=T e j=1,...,n over k , L the fraction field

of R, and K the algebraic closure of L . Let

H, := 7w, ~ I A.,TT.'-AiER S , i=%1,...,0-1 .

®
i N e k

and write T := Re S/
k" (Hy, oo Heg)

.

(H1,..,Hr_1) is the kernel of the homomorphism R@ks - R@ks which maps Ai on

- i=1,c.0,=1 . i ial ri S has n
T, igj Aij Trj , 1=1, =1 R@ks , being a polyncmial ring over o]

zerc divisors, hence T as a subring of RskS is an integral domain.
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Let Q be the fraction field of T .

By the methods used in [2], Lemma 1 it can easily be seen that R 1is a subring
of T, hence L is contained in Q . Fram [8], Chapter VIIT §6 Lemma it follows
that L is algebraically closed in Q . We are going to show that Xe.T is an in-

R
tegral domain.

Let Lsep

integral. If not, let &e LSep such that L{g) ®RT contains zero divisors.

be the separable closure of L in K . We first show that Lsep ®RT is
Iet X be an indeterminate over ¢ and let F{X)e L{X] be the minimal polynomial
of £ over L . Since L(&) L ={L @RT) [£] contains zero divisors, F is not irre-

ducible considered as polynomial over Q .

et G be a factor of F in Q[X] with deg F > deg G > 0 and leading coeffi-
cient 1 . The coefficients of G are algebraic over L and are in Q . Since L
is algebraically closed in Q , they are in L . So G is a factor of F in L[X] ,
which is impossible since F is irreducible over L and 0<degG <deg F .

So our claim is shown in the case char k = 0 .

Now suppose char k =p > 0 . If Kep,T is not integral, then there are

Zyr 2, € K@RT different from 0 such that 242, = 0 . There exists a natural num—
£ £
ber £ such that ZTP ’ zzp € Q ; the fraction field of L e, T . So we may
£ sep sep R
assume z1p =0 ., But then z,e( C Ke, T , whence 2z, =0 . Contradiction.
1 sep R 1

Now let Xy,...,X, be indeterminates over k , p© kiXys..,X,]1 & prime ideal de-
fining a variety of dimension rz2 , and Aij cA o 1ET -1 JE, 000,
as in Lemma 1.

Put S = k[X1 . /)0 . Now the General Hyperplane Section Lemma ( Lemma 2} follows.
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