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Abstract. Let F be a n-variate polynomial with deg F = d over an infinite 

field k 0 . Absolute primality of F can be decided randomly in time polynomial in n 

and exponential in d 5 and determinalistically in time exponential in d 6 + n 2 d 3 . 

Let k 0 c k fields, k being algebraically closed. 

We call a polynomial F ~ k, [X I ,.. ,X n] in the indeterminates X I , ... ,X n over k 0 

absolutely prime, if F is prime over k. With other words: F is absolutely prime 

if F is prime considered as an element of k[X I ,.. ,Xn] . We remark that the notion 

of absolute primality doesn't depend on the specific algebraically closed extension 

of k 0 we have chosen. For example, F e ~[X I , .. ,Xn] is absolutely prime iff it is 

prime over C. ( Q denotes as usual the rational and C the complex numbers. ) 

If n = I the absolutely prime polynomials are exactly the linear ones. For n > 2 

there is no chance of such a general and sinple description of the absolutely prime 

polynomials over given ground field k 0 , even if k 0 is algebraically closed. (This 

would solve the problem of classifying algebraic varieties up to birational equiva- 

lence. ) 

However, if we can effectively perform arithmetic operations in k , we can decide 

whether a given polync~nial over k is absolutely prime or not, since we have algo- 

rithms for quantifier elimination in the first order theory of k . For given polyno- 

mial F ~ k 0[x 1,..,X n] with degree deg F = d we write up a first order formula 

in the coefficients of F ~fnich says that F has no factor of degree 0 < d' < d . 

Such a formula contains b- !n+d)n (n-1)! bounded variables and as much quadratic poly- 

nc~ials, ~/nere b>0 is some constant. The best known quantifier elimination algo- 

ritlm%s for algebraically closed fields are polynomial in degree and number of poly- 

nomials appearing in the formula but hyperexponential in the number of variables. 

(Compare [5]). If we apply such an algorithm to our problem to decide whether F is 

(n+d) Bn 

2 (n-1)' 
absolutely prime or not, we need 0(2 ) steps to get a quantifier free for- 

mula in the coefficients of F which is true iff F is absolutely prime, for B > 0 
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some constant. Even if verifying polynomial identities in k 0 is free, this 

straight forward algorithm has a conplexity which is hyperexponential in degree and 

triple exponential in the number of variables. 

Our main result can be stated as fo!lo%~ : 

Theorem I : Let k 0 be an infinite field. Then there exist constants C >0 and c >0 

such that absolute primality of any multivariate polyncrnial F over k 0 can be 

decided randomly 

in C n d 2c~ 5 arithmetical steps (the operations: +,*,/ ) 

where n is the number of indeterminates appearing in F and d = deg F . 

The deterministic bound for the decision procedure is 

CI 2 cl(d6 + n2 d3) 

for some constants Cz> 0 , ci> 0 . 

In the case of k 0 = Q we have an encoding of the elements of k 0 on a Turing Ma- 

chine tape such that the arithmetical operations of k 0 can be performed in time 

~la~ratic in the length of the input. 

In this case the Turing ccmpl~xity of the randcm procedure is bounded by 

C 2 n 2d 2c2dS~(F)2 

where o(F) denotes the maximal length of the coefficients of F in the encoding, 

and C2> 0 , c2> 0 are some constants. 

The deterministic Turing complexity of our procedure is hounded by 

C~ 2 c~(d~ + n~d3) ~(F) 2 

for suitable C3>0 , c3>0 . 

If char k 0 = p >0 and if k 0 is the algebraic closure of its prime field ~ , 

similar results hold with o(F) := (deg F) s 

The assumption for k 0 to be infinite is not essential. In fact, our decision proce- 

dure works for any ooefficient field k 0 and for any pol~al F over k 0 provided 

that ~ k~ C% 2 c~ (deg F)s for sc~e universal constants C~> 0 , c~> 0 . So, 

working in a finite extension of k 0 , if necessary, we can apply our decision pro- 

cedure also to the case of k to be finite. 
0 
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Our methods don~t depend on the charakteristic of ~ . So, for the sake of simpli- 

city, we shall restrict ourselves to the case k 0 = Q . 

We need some algebraic geometry. Terminology and prerequisites are given for example 

in [I] and [41 or can be found (with exception of the Bezout inequality [I], [2]) in 

any standard text book about classical algebraic geometry, for instance [9] or [7] . 

Furthermore, we need a General Hyperplane Section Lamina, which we state in the fol- 

lowing form : 

Lamina 2 : Let k be algebraically closed and X I ..... X n indeterminates over k . 

Let p be a prir~ ideal of k[X I,.-,X n] which defines an affine subvariety of k n 

of dimension r_->2 . Let Aij ,A i , i=1,..,r-1 , j =I .... n be transcendent quanti- 

ties over k , and let K be an algebraically closed field containing k and 

Aij , A i , i=I .... r-1 , j =I .... n . 

Then the ideal p + (X I- I<Zj AIj Xj - A I ..... Xr_ I r_~< j Al~ lj Xj Ar_ I ) is 

prime in K[X I .... X n] ° 

We apply L ~  2 in the case k =C and p = (F) , where F~Q[X 1,..,Xn] with n~2 

and deg F = d is the polynomial from which we want to decide if it is absolutely 

prime or not. In this case r =n-1 . 

Let R be the polynomial ring generated over Q by Aij,A i , i= I,..,n-2, j =1,.o,n , 

L the fraction field of R , and K be an algebraically closed field containing L 

and C . 

Let ~ : Q[X I .... Xn] --+ R[Xn_I,Xn] be the ~-algebra homc~orphism obtained by suc- 

cessively substituting X i by j~>i Aij Xj + A i . 

Then (F) and (F) + (X I- j>~1 AIj Xj + A I ..... Xn_ 2 - j>En_2 An-2 j Xj - A~_ 2 ) 

have the same image (F*) , where F* eR[Xn_I,X n] with deg F* = d . Note that the 

coefficients of F* are polynomials in Aij , A i , i =I,..,n-2 , j =1,..,n of 

degree =< d . Furthermore, if the degree of F in ~ , degx nF = deg F , then 

degXnF* = deg F* , and the leading coefficient of X n in F* is in ~ . 

Now we extend ~ to a C-algebra homcmorphism C[XI,..,X n] -~ K[Xn_I,X n] • 

By the General Hyperplane Section lenrma, 

F prime in C[X I .... X n] inplies F* prime in K[Xn_I,X n] 

Obviously, F reducible in C[XI,..,X n] iniolies F* reducible in K[Xn_I,X n] . 
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So we have finally : 

F absolutely prime iff F* absolutely prime. 

SInce k 0 = {) is infinite, we may, after a suitable linear transformation of 

X I,...,X n , assume that degF : degxn F . 

So far, we have reduced the problem of deciding absolute primality of F to the case 

of deciding absolute primality of so~e other polynomial F* in only the two varia- 

bles Xn_ 1 ,X n over scme exte/%sion field L of Q . We have deg F* = deg F = d , 

and we may asst~ne deg XnF* =d , the leading coefficient of Yh% In F* being 1 , if 

d >0 . Furthermore, we keep in mind that the coefficients of F* are polynomials in 

< n (n- 2) indeterminates over Q 

In the sequel let L be any field contaIning k 0 = Q , X,Y indeterminates over 

K the algebraic closure of L , and FeK[X,Y] , with d = deg F = degy F > 0 . 

Let m = d 2 and x 1,...,x m m different numbers of Q , for example 1,...,d 2 . 

L 

Lean~ 3 : F is reducible over K iff t/%ere exist 0 < d' < d 

Y11,..,Yld, , ... ,Yml,..,Ymd,~K such that 

F(xi,Yij) = 0 for i=I ..... m , j =I ..... d' 

and such that the inhc~ogeneous linear equation system 

and 

{*) 

Z ~i xi k = (-I)1 °l(Yil .... Yid ') 
k<d'-i 

GOd , = I 

l=1,..,d' , i=1,...,m 

in the unknowns Gkl , k=0,...,d' , l=0,...,d' , k+l < d' has a solution in 
~d'+1 

K" d' - I ) ~. denotes the j-th elementary syTmnetric polynomial in d' variables. 
3 

Proof : If F is reducible over K , let G be a factor of F with 0<d'= degG<d . 

Since degy F : deg F we have degy G = deg G > 0 , and we may assume that the 

leading coefficient of Y in G is 1 

G : z %1 yl 
0 <k,l <d' 

k+d <d' 

Since K is algebraically closed and t~he leadLng coefficient of Y in each G(xi,Y ) 

is I , we can choose for each i=1,.o.,m Yil, .... Yid' such that 
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G (x i ,Y ) = K (Y- ) 
I <j<d' Yij " 

Then we have for each 1 = I,... ,d' 

gkl xi k = (-1)I °l(Yil .... Yid ') 
k <d'-i 

and god' = I 

so (*) has a solution and F(xi,Yij) = 0 for i =1,..,rn, j =1,..,d' . 

Now suppose F prime over K. If there exist 0<d'<d and Y11 .... Yld" .... Yml .... Ymd' 

such that F(xi,Yij) = 0 for i =I .... ,m , j =I .... ,d' and such that (,) has a 

{d'+1) 

in K "d'-1 - , let solution ( ~i ) 0 < k,l < d' 

k+l _<_ d' 

G := Z gkl Xk yl e K [X,Y] 
0 <k,l <d' 
k+l <d' 

Clearly, degG = d' and G(xi,Yil)=0 for i=I .... m . So #{F=0}N{G=0} > m=d z 

since the (Xl 'Yl I ) ..... (Xm'Yml) are all different common zeroes of F and G . 

On the other side G is not a multiple of F , since deg G= d'<d= degF . So, by 

the Dimension Theorem, # {F =O} A{G =0}<~, since F is prime. Then, by the Bezout 

Inequality [I] follows # {F=0} N{G=0}=<degF- degG = dd' <d 2 , a contradiction. 

The entries of the matrix of (*) are in Q and only dependent on the choice of 

Xl,...,x m . Applying Gauss elimination we can exprime the solvability of (,) saying 

that scme < d ~ = m Q- linear combinations of the set 

{1}U{ql(Yil,..,Yid ,) ; 1=1 .... d' , i=l,..,m} have tobe 0 . 

Given x I ,... ,Xmg Q we can ccgpute the coefficients of these linear ccmbinations in 

0 (d 12) arithmetical steps, 

With these preparations we have the following corollary of Ienm~ 3 : 

Let Y.. , i=1,...,m , j =I,...,d-1 , new indeterminates over K . 
13 

Corollary 4 : Given F&L[X,Y] with d = degF = degy F > 0 and given m = d 2 

different numbers x I ,... ,Xm~ ~ . 

With O (2 cd) arithmetical steps (where c >0 is some constant) there can be 

computed the coefficients of polynomials 

~11'"'nm1~ Q[YII'"'Y~I I ' .... H1d-1 .... ~md-1 ~ ~[Y11 .... Y1d-1 .... 'Yml .... Ymd-11 

of degree < d , with the following property : 
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F is reducible over K iff there exists 0 < d' < d such that the ideal generated 

by {F(xi,Yij) ; i = !,..,m , j= I .... d'}•{Hid,(Y11 .... Ymd,) ; i = I .... m} in 

rod' 
L[Y11 .... ~d,] has a zero in K 

Corollary 4 is notb/ng but a reformulaticn of Lemma 3, avoiding algebraic elements 

over L . We omit its proof. 

For given 0 <d'<d the Hid, ,..., Hind, are linear cambinations over @ of I and 

the d'-variate elementary sy~netric polynomiais in the variable sets 

{Y11 .... Y1d '} .... '{~I .... Ymd '} HI~ ..... ~d-1 can be chosen uniformly for all 

F~L[X,Y] with d= deg F = degy F>0 . 

Let 0<d'<d . Put r =rod' and give the elementSof {(i,j) : i=1,..:,~%,j=1,.o,d'} 

n~e_rs s = 1,...,r . 

For s, the number of (i,j) , write Ys := Yij ' Fs(Ys) := F(xi,Yij) and 

Hs(YI,..,Y s) := Hij . Note that deg Fs= d , and that the leading coefficient of Fst 

s=l,..,r , is 1 . 

Let U I , ...,U r be new inde~ates over K ~ and let K be the algebraical clo- 

sure of K(U I,..,U r) . 

Since for each s = I, ... ,r F s is a polynomial of degree d > 0 in only the inde- 

terminate Ys, the following equivalence holds : 

the ideal generated by 

{ F s ; s = 1,...,r} u { Hs ; s = I ..... r } 

in L[YI .... Yr] has a zero in K r iff 

the ideal generated by 

{ F s ; s = I ..... r } • { UIH I + ...+ UrH r } 

in L(U1 .... Ur) [YI,'-,Yr] has a zero in ~r . 

Now we axe ready to work with resultants. 

We define a sequence ~, .... ~ of polync~ials with RsmL[UI,..,U r ,YI,..,Ys] for 

s =I, .... r and ~6L[UI,..,Ur] such that the following holds : 

the ideal generated by {F s ; s = I .... r} U{U I H I + ... + Urn} in L(U I .... Ur)[YI .... Yr] 

has a zero in ~r iff R 0 = 0 
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The construction of R r .... , R 0 : 

Put R r := U IH I +... + UrH r 

For s = I,...,r-1 let Rs+I£L[UI,..~Ur, YI,...vYs+ I] be already constructed. 

Let D be the resultant of Rs+ I und Fs+ I (eliminating Ys+1 ) - 

Then DEL[UI,..,Ur, YI,..,Y s] . Since F],..,F s are 1-variate polynomials in the 

indeterminates Y] ," • ,Ys respectively, division with remainder by F I ,.. ,F s is de- 

fined in L[U I .... Ur,Y 1 .... Ys ] . Now divide D by F I ~ t/~en its renminder by F 2 

and continue this procedure for F3,..,F s . We define R s to be the pol~nqomial 

finally obtained in this way. R s - D is in the ideal generated by F I ..... F s in 

L[UI .... Ur ' YI .... Ys] - 

Furthermore, we have deg Y1 Rs ' .... deg Ys Rs < d 

Finally we put ~ to be the resultant of R I und F I . 

Since deg F I = ... = deg F s = d >0 one sees inductively : The ideal generated by 

[Fs ; s=1 .... r} %J{UIH I +... + UrH r} in L(UI,..,Ur)[YI,..,Yr] has a zero in ~r 

iff ~ = 0 . 

Note for later application, that, if the coefficients of F are n(n-2)-variate polyno- 

mials over Q of degree ~-d ,then ~ is a n~n-2)+r-variate polynomial over Q of 

degree O(d2d 2) 

d ~ 
R r .... R 0 are defined by an algorithm. To compute ~ we have to perform O(d 12 ) 

arithmetical operations in L (U I ,..U r) . 

Note that the sequence Rr,..,R 0 depends on F and 0 <d' < d . So let us write 

F 
r d' := ~ " 

Putting together all our material, the following proposition is self explanatory : 

Proposition 5 : Let U I ,U2,... be indeterminates over L . There is a constant 

c>0 such that for each F~L[X,Y] with d = deg F = degyF there can be computed 

d-1 quantities rF1 "'''" r F_IEL[U1, . .,Ud3] with O( 2 cd~) aritbn~tical operations 

over L(U I , .. ,UdJ such that the following holds : 

F 
F absolutely prime <:> r # 0 , ... , rd_ 1 # 0 

Now we turn back to the situation we started from. 
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Let F ~ Q[X I ,.. ,X n] . We want to decide the absolute primality of F . Without loss 

of generality we may ass~ne n >2 and d = deg F > 0 . By a linear transformation 

of X I .... ,X n which costs at most 0 ( n d ) arithmetical operations in Q we may 

furthermore assume deg F = degxnF . Let Aij , A i , i=1,..,n-2 , j =1,..,n and 

U I , ...,U d be indeterminates over C , let R the polynomial ring generated over Q 

by Aij , A i , i=1,...,n-2 , j =1,.o.,n , L the fraction field of R and 

F*ER[Xn_ I, X n] as at the beginning. We have d= deg F* = degxnF* , and we may- 

assume that the leading coefficient of X in F* is I 
n 

F* F* 
To F* we can apply Proposition 5. We have r I ,...,r d-1 e R[UI,..,Ud3] ~nd 

F* F* d 2 d 2 F* F* 
deg r I ,...,deg rd_ I _-< C o and r I ,..., rd_ I can be c~uted in 

L(U],..,U r) with C12 cId5 arit~h/netical operations, where C o >0 , C~>0 and ci>0 

are constants not depending on F . Furthermore, we have : 

F* F* 
F absolutely prime iff r I # 0 , ..., rd_ I # 0 

F* F* 
Let N := (n-2)n + d3 . rl ,...,rd_1 are N-variate polynomials over Q which 

Q N F* F* 
we interprete as functions on . Going back to the construction of r I ,..°, rd_ I 

F* F* 
by resultants, we see that we can evaluate r I ,''', r d-1 at any z ~QN in 

C 3 n d 2 c3ds arithmetical steps, where C~ >0 and c 3 >0 are constants. Since 

F* F* (C~ d2d2) N r I ,..., rd_1 have degree < C o d 2 d2 = we have to evaluate them at points 

of Q N to check whether they all are different from 0 or not. 

This gives the deterministic bound stated in Theorem I for the problem to decide 

absolute primality of F , namely 

O ( 2 c4 ( d6 + n2 d3) 
) for some c~ > 0 

In order to get the probabilistic bound of Theorem I , we apply 

d ~ Co d 2 d 2 )z Let v := ~ 2 C 1 2 cI ( + I and 

r d s d 5 
q := 6 (C 1 2 cl + I) (C l 2 cl + 2) ~ where 

c ~ denotes the least upper integer bound. 

45 
We have v,q _-< C 4 2c~ for some C 4 > 0 ~ c~ > 0 . 

[4 ] , Theorem 4.4 
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Let [v] = { I ..... v } . Then by [4] , Theorem 4.4 any randc~ly chosen sequence 

6 I 
z I,..., Zq~ [v] N c QN is with probability > I- v > ~ a correct test sequence 

for the complexity class of 

F* F* 
that r I ~ 0, .... rd_1~ 0 

is < v 6 < 1 
2 

F* 
To ccmpute r I (Zl) 

arithmetical steps, 

F* F* 
r I ,..., rd- I 

but for some 

. With other words : The probability 

iF*( rF*(zq) i =I,...,d-I r Zl) = 0,..., = 0 

F* F* F* d S 
.... r I (Zq) ..... rd_1(Zl ) .... rd_1(z q) we need Csn d 2 c5 

C s > 0 , c s > 0 being constants. 

To decide absolute primality of F choose randomly a sequence z I ,..., Zq E [v] N 

and check if for any i=I ..... d-1 there is a j =I ..... q such that riF*(zj) ~ 0 . 

If this is t_he case, decide F to be absolutely prime, otherwise that F is redu- 

cible over C . 

This is a randem algorithm for deciding absolute primality of 

d s 
C s n d 2 cs arithmetical steps as stated in Theorem I . 

F working in 

The Turing cc~plexity bounds of Theorem I are straight forward by analyzing the 

algorithms step by step and verifying that the length of the n~ubers involved doesn't 

grow too much. 

Remarks to the proof of Theorem I : 

The use of the Bezout-Inequality in the case of n =2 can be avoided by using 

resultants. But then, the proof, thus elementarized, is less elegant and gives 

slightly worse bounds. This el~tarized proof can easily be generalized to arbi- 

trary n > 2 . But then, the bounds becc~e hyperexponential in n . The great advan- 

tage of using the General Hyperplane Section iemma is that the bounds become poly- 

n(m~ial in n in the random case and sit,ply exponential in n in the deterministic 

case. 

Finally we are going to say some words about the connection of Theorem I with the 

problem to decide whether a given set of polyncm~iais defines an irreducible alge- 

braic set. 

For the sake of simplicity assume k 0 = k algebraically closed. 
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Let X I ,... ,X n indetezminates over k . 

Let F I .... ,Free k[X1,..,X n] and d := 7~ deg F k 
I _<k_< m 

Let V := {F I= 0 ,..., F m= 0} , t~he set of cor~Dn zeroes of F I ..... F m ink n 

For given F I ,... ,F m we want to decide whether V is irreducible or not. 

As in [I] , [2] , define deg V := 
C component of V deg C 

By [2], Corollary I , [I] , Corollary 2 respectively, we have degV < (1+d) n 

Let r := max dim C as in [4] 
C ~nent of V 

If r is known , we can use Theorem I to decide the irreducibility of V : 

As a consequence of [2] , Lemma I and the proof of Lerm~ 3 there is a Zariski open 

set of k n(r+1) of linear maps k n --+ k r+1 mapping V on a reducible r-dimen- 

sional subset of k r+1 if V itself is reducible and on a r-dimensional irredu- 

cible subset of k r+1 if V is irreducible. By [2] , iemma 2 the degree of the 

image of V is < (1+d) n 

This geometric fact can be translated into the language of formal manipulations : 

Choose new indeterminates Aij , i=I ..... r+1 , j =1,...,n and YI ..... 'Yr+1 over k . 

Let L be the field generated by Aij, i=I .... ,r+1, j=1,...,n over k. 

Consider (F I .... Fm) as an ideal in L[X 1 .... Xn] . 

Cc~pute G(Y I .... , Yr+1) EL[Y I ..... Yr+1 ] with 

G (1<j<nZ AIj Xj ..... 1<j<nZ Ar+ lj Xj ) ~(F I ..... %) , G ~ 0 

and deg G minimal. By [6] or [110] , Prop. I and the fact that deg V < (1+d) n , 

this is possible in 0 (d 2 c n 2) arithmetical operations in k , where c >0 is 

some constant. G is not a unit in L[Y I .... Yr+1 ] and degG < (1+d) n 

So without loss of generality, we may assume deg YI G > 0 . 

~G G Let D := greatest ~ n  divisor of G and ~ and F := 

d 2c n 2 
We have deg F < (1+d) n and F can be con!outed in O( ) 

in k . 

By our geometric fact it is easily seen that 

m L[Y I .... Yr+1] 

arit/m~tical steps 

F e L[Y I , ..,Yr+l ] absolutely prime iff V irreducible. 
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So we get for some cl> I a deterministic O (2 d cl nZ) _ bound for the problem to 

decide the irreducibility of V = {F 1 = 0 ..... Fro= 0} ~ where F I .... %ek[X I .... Xn] 

and d = Z deg F k , if r = dim V is known . 
I <k ~m 

This bound is much better than the bound obtained by converting the problem into a 

first order formula and applying then quantifier elimination, however, it is still 

hyperexponential in n . 

The restriction that r has to be known is not essential if we accept bounds hyper- 

C 2 n 2 
e x p o n e n t i a l  i n  n . I n  f a c t ,  by  [5] r c a n  be  c o n p u t e d  i n  O(  d 2 ) 

s t e p s ,  w h e r e  c2> 0 i s  some s u i t a b l e  c o n s t a n t .  

Putting this result together with the result presented in [3] , we have for some 

c 3 n 2 n z 

c 3 > 0 , c a > 0 a deterministic 0 ( d 22 + 2d c~ ) - procedure to decide 

(~ I .... Fml pr~in k[x I .... x] and V:: {~I=0 .... Fro:0} ~th. 

This bound is very had in n but still simply exponential in d . In any case it is 

much better than bounds obtained by applying general quantifier elimination. 

Appendix 

We prove the General Hyperplane Section Ienma ( Lemma 2) n~x~ulo [8] , Chapter VIII 

§6 L~a . 

Let k be an algebraically closed field, S = k [~1'"" ,~n ] the coordinate ring of 

some (irreducible) affine k-variety of dimension r >2 . 

Let Aij , A i , i=1,...,r-1 , j =1,...,n be indeterminates over S , R the ring 

generated by Aij , A i , i =I,...,r-I , j =I, .... n over k , L the fraction field 

of R , and K the algebraic closure of L . Let 

Hi := ~'l - i<jZ A.Ij ~j- Ai6R~kS , i=I, .... r-1 , 

and write T := R ®k S /(H I .... Hr_1 ) . 

(HI,..,Hr_ I) is the kernel of the hca~xnorphism R®kS --* R®kS which maps A i on 

~i- i<Zj Ai3. 713, , i= I,...,r-I . R~S , being a polynomial ring over S has no 

zero divisors, hence T as a subring of R @k S is an integral dcmain. 
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Let Q be the fraction field of T o 

By the methods used in [2] , ~ ! it can easily be seen that R is a subring 

of T , hence L is contained in Q . From [8] , Chapter VIII §6 ~ it follows 

that L is algebraically closed in Q . We are going to show that K e~T is an in- 

tegral domain. 

Let Lse p be the separable closure of L in K . We first show that Lse p ®R T is 

integral. If not, let ~e Lse p such that L(~) ®R T contains zero divisors. 

Let X be an indeterminate over Q em~d let F(X)e L[X] be the ~uinimal polynomial 

of ~ over L . Since L(~) ®R T =(L~T)[~] contains zero divisors, F is not irre- 

ducible considered as polynomial over Q . 

Let G be a factor of F in Q[X] with deg F > deg G > 0 and leading coeffi- 

cient I . The coefficients of G are algebraic over L and are in Q . Since L 

is algebraically closed in Q , they are in L . So G is a factor of F in L IX] , 

which is impossible since F is irreducible over L and 0 <deg G < deg F . 

So our claim is shown in the case char k = 0 . 

Now suppose char k = p > 0 . If K®RT is not integral, then there are 

z I, z 2~K®R T different from 0 such that z Iz 2 = 0 . There exists a natural num- 
f f 

bet f such that z~_ , z2P E Qsep ' the fraction field of Lse p®R T . So we may 
f 

assume zlP = 0 . But then zle QsepC K® RT , whence z I = 0 . Contradiction. 

Now let X I .... ,X n be indetermLnates over k , p c k[X 1,..,Xn] a prime ideal de- 

fining a variety of dimension r >2 , and Aij , A i , i=1,...,r-1 , j =1,...,n , 

asin ~ I .  

Put S = k[X I ,.. ,Xn]/p . Now the General Hyperplane Section Lenm~ ( Lersna 2) follows. 
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