
ON THE COMPLEXITY OF SIMPLE ARITHMETIC EXPRESSIONS

Oscar H. Ibarra, Brian S. Leininger, and Shlomo Moran
Computer Science Department

Institute of Technology
University of Minnesota

Minneapolis, Minnesota 55455

Abstract

Let IE be the set of all simple arithmetic expressions of the form E(x)=XTl...Tk,

where x is a nonnegative integer variable and each T i is a multiplication or integer

division by a positive integer constant. We investigate the complexity of the in-

equivalence and the bounded inequivalence problems for expressions in E . (The

bounded inequivalence problem is the problem of deciding for arbitrary expressions

El(X) and E2(x) and a positive integer ~ whether or not El(X) # E2(x) for some non-

negative integer x < I. If £ = ~, i.e., there is no upper bound on x, the problem

becomes the inequivalence problem.) We show that the inequivalence problem (or

equivalently, the equivalence problem) for a large subclass of IE is decidable in

polynomial time. Whether or not the problem is decidable in polynomial time for the

full classIE remains open. We also show that the bounded inequivalence problem is

NP-complete even if the divisors are restricted to be equal to 2. This last result

can be used to sharpen some known NP-completeness results in the literature. Note

that if division is rational division, all problems are trivially decidable in

polynomial time.

i. Introduction

Let Ebe the set of all simple arithmetic expressions of the form E(x) =xTI...T k,

where x is a nonnegative integer variable, k > i, and each T. is of the form *c or
-- l

of the form /d (i.e. multiplication by a positive integer constant c or inteser div-

ision by a positive integer constant d). The expression is evaluated from left to

right. (For example, if E(x) =x/3"5"3/4"7/2, then E(O) = E(1) = E(2) = O, E(3) =

E(4) = E(5) = i0, E(6) = 24, etc.) It can be shown (see[6]) that the inequivalence

problem for expressions in]E (i.e. deciding for arbitrary expressions El(X) and E2(x)

whether or not El(X) # E2(x) for some nonnegative integer x) is decidable in nonde-

terministic PolYnomial time. Is there a (deterministic) polynomial time algoritl~ai

to solve the problem? (Is it NP-hard? See [4] for the definitions of NP-hard~ NP

complete, etc.) This seemingly simple problem is nontrivial, and so far we have no

answer. However, for a large subclass of E , we can provide a polynomial time

algorithm.

Call an expression an I-expression (I for "irreducible") if the multiplication

and division operations alternate. Clearly, every expression can easily be trans-

formed (in polynomial time) to an equivalent I-expression. Thus, finding a

295

polynomial time algorithm for expressions in IE is equivalent to finding a polynomial

time algorithm for I-expressions. Now call an I-expression E(x) a C-expression (C

for "canonical") if it satisfies the following condition: If c is a multiplier in

E(x) and *c is not the last operation, then gcd(c,d) = 1 for all divisors d in E(x).

(For example, x/2"2/3 is an I-expression which is not a C-expression. x/2"2,

x'7/i0"3/8"4 and x/3"5/4"3 are C-expressions.)

We prove in this paper that the equivalence problem for C-expressions is decid-

able in polynomial time. As a corollary, we show that there is a polynomial time

algorithm to decide equivalence of expressions in E whose divisors are powers of 2.

The algorithm does not generalize to the full class ~ . Could it be that the in-

equivalence problem for the full class E is NP-hard? We do not know, but we believe

it unlikely. However, for the bounded inequivalence problem, we can provide an

answer. We show that the problem of deciding for two expressions El(X) and E2(x)

and a positive integer i whether or not El(X) # E2(x) for some nonnegative integer

x < ~ is NP-complete. The result holds even if we restrict the divisors to be equal

to 2. This result can be used to sharpen known NP-completeness results. For, exam-

ple, it follows that it is NP-complete to decide inequivalence of expressions of the

form rem(x/C)Tl...Tk, where rem(x/c) = remainder(x/c) appears only at the beginning,

and each T i is of the form *c or of the form /2. This shows that inequivalence of

"simple functions" as defined in [9] (see also [5]) is NP-complete, even when they

are highly restricted. The NP-completeness of the bounded inequivalence problem can

also be used to show that the inequivalenee of Ll-programs (see [5,9]) with one in-

put variable and three intermediate variables is NP-complete, an improvement over a

result in [5].

2. Simple One-Variable Straight-Line Programs

There is a she-to-one correspondence between expressions in E and straight-line

programs over one variable x using only constructs x ÷ c *x and x + x/d. (In the

sequel, x ÷ c *x will be abbreviated x ÷ cx.) It is trivial to translate expressions

into equivalent straight-line programs and vice-versa. For example, the expression

x/5"2"3/2 translates to the program x ÷ x/5; x ÷ 2x; x ÷ 3x; x ÷ x/2. For notational

convenience, the results and proofs in Sections 3 and 4 are stated in terms of

straight-line programs. They are easily translated to similar results concerning

expressions.

Notation. In the sequel, { } encloses the permitted operations for straight-line

programs. For example, {x ÷ cx, x ÷ x/2 k} - programs can only use instructions of

the form x + cx and x ÷ x/2 k, where c and k are any positive integer constants.

3. The Uniqueness of C-Programs

In this section, we show that two C-programs are equivalent if and only if they

296

are identical. (This result is not true for I-programs in general.) It follows that

the equivalence problem for C-programs is (trivially) decidable in polynomial time.

As a corollary, we show that the equivalence problem for {x ÷ cx, x ÷ x/2 k} - programs

is decidable in polynomial time.

Let F be a program over {x ÷ cx, x ÷ x/d}, where c and d are integers ~ 2. The

number of instructions in F is denoted by length(F). For convenience, we define a

program of length 0, F0, to be a program with one "multiplication" x + Ix. (This is

the only program where such an instruction is allowed.) Let IN denote the set of non-

negative integers. For a given n in IN,F(n) denotes the output of F on input n. tN F

denotes the set {F(n) : n ~ IN }.

For given programs F and G, we say that F is equivalent to G (F E G) if F(n) =

G(n) for all n in ~. We say that F is equal to G (F = G) if F and G are identical

programs.

For a program F, F' denotes the program obtained by deleting the last instruc-

tion from F. (If length(F) ! i, then F' = F0.)

Definition 3.1. Let F be a program over ix ÷ cx, x ÷ x/d}. Let the multiplications

.x and x ÷ X/dl,...,x + x/d.. and divisions in F be, respectively, x ÷ ClX,...,x ÷ e I]

Then:

(a) ~ = ClC2...c i (if i =0 then ~ = i).

(b) D F = dld2...d j (if j =0 then D F = i).

(c) ~ = <~/DF>. (<a/b> denotes the rational number a divided by b.)

In particular, for the program of length 0, F 0 (i.e. the program x + lx), ~0 = DFo =

=

~0 i.

The proofs of the next three lemmas are straightforward.

Lemma 3.1. Let n be a positive integer divisible by D F. Then for each m, F(n+m) =

F(n) +F(m) =~n + F(m).

Lemma 3.2. If F E G, then ~ = R G.

Le~mna 3.3. For each program F and each positive integer n, F(n) !~n. F(n) = RFn

if and only if when executing the program on input n, each time a division instruction

x ÷ ~d is encountered, the value of x is divisible by d.

An "elementary transformation" on a program F is one of the following 3 opera-

tions:

1)

2)

3)

Replacing 2 consecutive multiplications x ÷ ClX; x + c2x by x ÷ ClC2X.

Replacing 2 consecutive divisions x ÷ X/dl; x ÷ x/d 2 by x ÷ X/dld 2.

Replacing 2 consecutive instructions x ÷ kcx; x ÷ x/kd by x ÷ cx; x ÷ x/d.

(If c = i (d = i) then the first (second) instruction is deleted.)

A program is irreducible (in short, an I - program) if no elementary transfor-

mation is applicable to it. It is easy to show that:

297

(I) Elementary transformations map programs to equivalent programs.

(II) Any program over {x ÷ cx, x ÷ x/d} can be reduced by elementary trans-

formations to an I - program in polynomial time.

(III) The multiplication and division instructions in an I - program occur in

alternating order, and if x ÷ cx; x ÷ x/d are consecutive instructions,

then gcd(c,d) = I.

Lemma 3.4. Let F be an I-Program. Then F E F 0 if and only if F = F 0.

Proof. Clearly, if F = F 0 then F ~ F 0. Assume that F ~ F 0. Then, by Lemma 3.2,

= = i. If the first instruction in F is x ÷ x/d (where d > i), then F(1) =0#

1 = F0(1) , a contradiction. If the first instruction is x + cx (where c > i)~ then

length (F) > 1 (otherwise ~= c > i), and the second instruction is, by (III) above,

x ÷ x/d, where d > 1 and gcd(c,d) = i. Hence, on input n = i, this second instruction

is encountered when the value of x is c, and d ~ c (i.e. c is not divisible by d).

Therefore, by Lemma 3.3, F(1) < ~i = 1 = F0(1), a contradiction. It follows that

the first instruction in F must be x ÷ x, which means that F = F 0. []

An I - program F is in "canonical form" (a "C - prosram") if it satisfies also

the following:

(IV) If x ÷ cx is an instruction in F which is not the last instruction, then

for each d such that x ÷ x/d is an instruction in F, gcd(c,d) = i. (This

is equivalent to requiring that gcd(c,D F) = i.)

There are I - Programs Which are not C - programs (example: x ÷ x/2; x ÷ 2x;

x ÷ x/3). But it is not hard to see, by (III) above, that every program over {x + cx,

x ÷ x/2 k} (c ~ 2, k ~ i) can be reduced by elementary transformations to a C - pro-

gram in polynomial time. Hence, the problem of deciding equivalence between programs

over {x ÷ ex, x ÷ x/2 k} can be reduced in polynomial time to the problem of deciding

equivalence between C - programs.

Lemma 3.5. Let M and d be positive integers such that d ~ M. Let A be the set de-

fined by A = {kM/d : k ~ |N }. Then gcd(A) = I.

Proof. Let a = gcd(A) and assume that a > i. By definition, M/d = ax for some

x ~ O, i.e. M = axd + r for some r < d. Since d ~ M, r > 0. Hence, for

some k, d j kr < 2d. The integer kM/d is in A, and kM = kaxd + kr. Hence ~/d =

kax + i. Since a > i, a ~ kM/d, a contradiction. []

In the remainder of this section, unless otherwise specified, all programs are

assumed to be C - programs.

Lemma 3.6. (a) If x ÷ x/d is the last instruction in F, then gcd(IN F) = i. (b)

If x ÷ cx is the last instruction in F, then gcd(INF) = c.

Proof. (a) By Lemma 3.1, for each k E IN , F'(kDF,) = k~, and hence F(kDF,) = ~/d.

It follows that ~ = {k~/d : k g iN } is included in INF. By the definition of

a C - program, d ~ ~. Hence, by Lemma 3.5, with A = ~ and M = ~, gcd(~) = i, and

298

hence gcd(INF) = i.

(b) If F = F 0 then IN F= IN and e = i, so the result holds trivially. If F # F0, then

INF = {cn : n ~ INF,}, where either F' = F 0 or the last instruction in F' is x ÷ x/d

for some d > I. In both cases ged(INF,) = i, and hence gcd(INF) = c. []

Lemma 3.7. If F ~ G and the last instruction in F is x ÷ cx, then so is the last

instruction in G.

Proof. The lemma is obvious if length(F) = 0 by Lemma 3.4. So assume that length(F)

> 0. If F ~ G then clearly IN F = ING, and hence gcd(INF)= gcd(ING). The result

now follows easily from Lemma 3.6 (b). []

Lemma 3.8. Let F ~ G and let the last instruction in F be x + x/d. Then (a) the last

instruction in G is x + x/e for some e and (b) MF=MG, D F = D G.

Proof. Part (a) follows from Lemma 3.7. Now by Lemma 3.2, <MF/DF > = <MG/DG >. Also,

from part (a) and the definition of C - programs (see (IV)), gcd(MF,D F) = gcd(MG,DG)=

i. It follows that ~ = M G and D F = D G. []

The next lemma is obvious.

Lemma 3.9. Let k, M, a, e be integers such that ~M = ae+ i. Then gcd(M,a) = i.

Theorem 3.1. F = G if and only if F z G.

Proof. Clearly, we need only prove the "if" part. The proof is an induction on

length(F) + length(G). The result is trivial if length(F) + length(G) = 0. Assume

that the result is true for all F and G such that length(F) + length(G) < h where

h > I. Now consider tWO programs F and G such that length(F) + length(G) = h. Sup-

pose that F ~ G but F # G. We shall derive a contradiction. Since F ~ G and h ~ i,

by Lemma 3.4, length(F) ~ i and length(G) ~ i.

Case i. The last instruction in F is x + cx. By Lem~na 3.7, the last instruction in

G is also x ÷ cx. Since F # G, F' # G'. Hence, for some n, F'(n) # G'(n). Then,

F(n) = cF'(n) # cG'(n) = G(n), a contradiction of F e G.

Case 2. The last instruction in F is x + x/d. Then, by Lemma 3.8(a), the last in-

struction in G is x + x/e for some e. Also by Lemma 3.8(b), MF=MG, D F = D G. We

consider 2 subcases.

Subcase 2a. d = e. In this case F' # G', and by induction hypothesis, F'(n O) #

G'(n 0) for some n o . Without loss of generality assume that F'(n 0) < G'(n0). By the

fact that if gcd[a,b) =I, then the function n(mod b) ÷ an(mod b) is a 1 - 1 mapping

of the integers (~od b) on themselves ([3]~ Section 1.3), there is some k, (k < d),

such that k~ ~-G'(D0)(mod d). Let n I = n o + kDF,. By Lemma 3.1, G'(n I) =

G'(n0+kD~,) ~ G~(n0) + kM F = O(mod d). Let G'(n I) = ad. F~(n I) = F'(n 0+kDF,) =

F'(n0) + kM F < G'[n0) + kM F = ad. It follows that G(n I) = a and F(n I) < a, a con-

t~adiction.

Subcase 2b. d # e. Without loss of generality assume that d < e. Let the last 2

instructions in F be x * cx; x ÷ x/d. (Each of F and G is of length > 2, otherwise

D F # DG, which, by Lemma 3.8(b), contradicts the assumption that F ~ G.)

By the same consideration as in subcase 2a, there exists a k, (k < d), such that

299

kMF = kM G = ae + 1 for some a. By Lemma 3.2, ~ = RG, and hence kDG, ~ = a + i/e.

This implies that kDG,~, = ad + d/e < ad + i. By Le~na 3.3, F'(kDG,) ikDG,RF,,

hence F'(kDG,) j ad. By Lemma 3.9, and by the equality kM G = ae + 1 above, gcd(MG,a)

= i. Since clMc, this implies that gcd(c,a) = I. By the definition of a C - program,

gcd(c,d) = I. This implies that gcd(c,ad) = i, and in particular that c ~ ad. But,

by Lemma 3.6(b), cIF'(kDG,). This implies that F'(kDG,) # ad, and hence F'(kDG,) <

ad. It follows that F(kDG,) < a. Since G(kDGT) = kMG/e = (ae+l)/e = a, we get a

contradiction. []

From Theorem 3.1 and the fact that any {x + cx, x ÷ x/2 k} - program can be trans-

formed into a C - program in polynomial time, we have

Theorem 3.2. The equivalence probelm for {x ÷ cx, x ÷ x/2 k} - programs is decidable

in polynomial time.

Theorem 3.1 cannot be generalized to programs which are not C - programs. In

fact, we have

Proposition 3.1. There is an infinite set of distinct four-instruction I - programs

which are all equivalent to the C - program x ÷ x/2; x ÷ 2x.

Proof. Let m be any odd positive integer. Then the program x ÷ mx; x + x/2; x ÷ 2x;

x ÷ x/m is an I - program (but not a C - program) which is equivalent to the C -

program x ÷ x/2; x ÷ 2x. []

Open Problem: Is the equivalence problem for I - programs decidable in polynomial

time? It can be shown (see [6]) that the inequivalence problem can be decided in

nondeterministic polynomial time.

4. The Bounded Inequivalence Problem for {x ÷ cx, x + x/2} - Programs

In this section, we show that the problem of deciding for two {x ÷ cx, x ÷ x/2}

- programs P and P' and a positive integer ~ whether or not P and P' disagree on some

nonnegative integer input x < ~ is NP-complete. (We saw in Section 3 that when there

is no upper bound on x, i.e. ~ = ~, the problem is decidable in polynomial time.)

This result is similar in spirit to the following theorem in [8]: The problem of de-

ciding for positive integers m, n, and £ whether or not there is a positive integer
2

x < ~ such that x z m (mod n) is NP-complete. (Again, if there is no upper bound

on x~ the problem is decidable in polynomial time.) The proof of our NP-completeness

result involves an intricate coding of the satisfiability problem for Boolean formulas.

That the reduction can be carried out with only one program variable using only the

operations of mult&plication by positive integer constants and integer division by 2

is rather surprising. We believe that this coding technique is quite interesting and
2

can be used to prove other new NP-completeness results. (The proof of the x ~ m

(mod n) result mentioned above uses an entirely different construction.)

To simplify the discussion, we first prove the following intermediate result

which is of independent interest~ The satisfiability problem for Boolean formulas

in conjunctive normal form (CNF) where each clause contains exactly 3 negated

300

variables or 3 unnegated variables is NP-hard. The theoremwithout the "exactly three

literals per clause" requirement follows directly from results of Cook [I] and Gold

[2]. We state it as a lemma.

Lemma 4.1. The satisfiability problem for Boolean formulas, F', in CNF with at most

three literals per clause where each clause contains either all negated variables or

all unnegated variables is NP-hard.

Lemma 4.2. Let Zl,... , z 5 be distinct variables. Let F 3=FOFIF2, where

F 0 = product (i.e. conjunction) of all clauses of the form

(z i + z. + Zk) , i < i < j < k < 5,

F I = product of all clauses of the form

(~i + ~" +-J Zk)' 2 < j < k ! 5 , _

F 2 = product of all clauses of the for~

(~2 + z" + - 3 Zk)' i ~ j < k ~5, j # 2, k # 2.

Then F 3 is satisfied if and only if z I = z 2 = 0 and z 3 = z 4 = z 5 = i.

Proof. Clearly, F 0 is satisfied for given values of Zl,... ~ z 5 if and only if at

least three variables are i. Hence, if z I = z 2 = 0 and z 3 = z 4 = z 5 = 1 then F 3 is

satisfied. Now suppose F 3 = FoFIF 2 is satisfied for given values of Zl,... , z 5.

Then at least three of these variables are i. If z I is one of these variables and z r

and Zs are at least two others that are 1 then (~i + ~r + -Zs) will make F 1 have

value of 0. Hence z I cannot be i. Similarly, z 2 cannot be i. It follows that if

F 3 is satisfied, then z I = z 2 = 0 and z 3 = z 4 = z 5 = I. []

Combining Lemmas 4.1 and 4.2, we have

Theorem 4.1. The satisfiability problem for Boolean formulas in CNF with exactly

three literals per clause where each clause contains either all negated variables or

all unnegated variables is NP-hard.

Proof. Let F 5 = F3F4, where F 3 is the formula of Lemma 4.2 and F 4 is the formula

obtained from F' of Lemma 4.1 by adding the literals Zl, z 2 to clauses with less

than 3 unnegated variables and the literals z3,z 4 to clauses with less than 3 negated

variables. (We assume, of course, that Zl,... , z 5 are variables distinct from those

in F'.) It is clear that we can construct F 5 to have exactly three variables per

clause with each clause containing only all negated variables or all unnegated vari-

ables. Moreover, F 5 is satisfiable if and only if F' is.

The next theorem is the main result of this section. It shows that the in-

equivalence problem for {x ÷ cx, x ÷ x/2} - programs over bounded inputs in NP-hard.

Theorem 4.2. It is NP-hard to determine for two {x ÷ cx, X ÷ x/2} - programs P and

P' and a positive integer ~ ~ether or not P and P' disagree on some nonnegative in-

teger input x < £.

Proof. Let F' = C2...C m be a Boolean formula in CNF over variables x2,..., x n, where

each C. is a disjunction (i.e. sum) of exactly 3 negated variables or 3 unnegated
I

variables. By Theorem 4.1, the satisfiability problem for such formulas is NP-hard.

301

Let x I be a new variable, and let F = CIC2...Cm, where C 1 = x I. Then F is satisfiable

if and only if F' is satisfiable. Let % = 2 n. We shall construct a program PF such

that PF outputs an odd number for some input x < % if and only if F is satisfiable.
!

PF will be the program obtained from PF by adding the following instructions at the

' will disagree on some input x < ~ if and end of PF: x ÷ x/2; x + 2x. Then PF and PF

only if F is satisfiable. PF has the following form:

~2

n

B 2

x ÷ x/2 k

At the beginning of el' x = ...000XnXn_l...X2Xl, where Xn,Xn_l,...,x2,xl are binary

digits. We describe the tasks of ~l,...,~n, ~l,...,Bm, omitting the details. The

actual coding can be found in [7].

Each ~. is of the following form:
i

x * ax

x ÷ X12

After ~l''en" x looks like this;

#0..OAm0..0A 10..0Am_2...A20..0AI0..0

where the 0..0 strings of zeroes are sufficiently long. (# represents a string of

digits whose composition is not important.) Also, A i is a linear combination of pre-

fixes of XnXn_l...x2x I so that the third bit from the right of A i is a one iff clause

C i is true in the interpretation specified by XnXn_l...x2x I. For example, for the

clause C i = x 2 + x 5 • x6, we want A i to be 3 + x 2 + x 5 + x 6. If either x 2 = i,

x 5 = 1 or x 6 = i, the third bit from the right of A i is one. Now, we cannot add con-

stant 3 so we use x I instead, i.e., we have 3x I + x 2 + x 5 + x 6. Similarly, if the

clause C i = x2 ~ x5 + x6' we want A i to be 5x I + x 2 + x 5 + x 6. Finally, in order to

add xj we add XnXn_l...x j and subtract XnXn.l...xj+10. Now we cannot subtract.

However, since we are only interested in the result modulo 8, we can add 7*XnXn~l...

xj+10 instead of subtraction (since 7*XnXn_l..~Xj+lO ~ -XnXn~l~..xj+10 (mod 8)).

Hence a suitable nonnegative linear combination of XnXn_l...Xl gives us the desired

302

result. If x looks like this:

#O..0BmO. o0Bm_10..0...0~.0BlO..OXnXn_l..X.

then a s i n g l e m u l t i p l i c a t i o n by a s u i t a b l e a , i , e . , x ÷ ax , w i l l add a m u l t i p l e o f

t he p r e f i x X n X n _ l . . . x j to Bi; a d i f f e r e n t m u l t i p l e can be added to each B..~ Then

x + x / 2 s h i f t s so we have x l i k e t h i s :

O - - O B ~ O - - O B ~ _ l O - - O - - - O - - O B i O - - O X n X n _ l . - . x j + 1

and the operation can be repeated. (Here B~ is B. with some multiple of x ...x.
m l n 3

added.)

Inasimilar way, the B i gather together the third bits of each A. ol Let b.l be

the third bit from the right of A.. Then after all $. have executed, x looks like
I l

this:

#0..0C where C is x 1 + b 2 + 2b 3 + 4b 4 + 8b 5 + . . . + 2m-2bm"

Now, the 2 m-I bit of C will be 1 iff x I and all the b.'sl are !, that is, if CIC2..C m

is satisfied. Each B. is of the form
1

x ÷ x/2S; x ÷ bx; x + x/2; x + cx

where the division shifts x right until the third bit of A. is at the right of x.
1

Then x ÷ bx; x + x / 2 ; x ÷ cx adds t h e a p p r o p r i a t e b i t of A° to C, T h i s i s done by
1

adding a prefix of Ai; shifting right; and subtracting the new prefix of A i. (The

new p r e f i x l a c k s t h e t h i r d b i t .) We s u b t r a c t yA i modulo 2 m by add ing (2 r -y)A ' l f o r

l a r g e enough r . That i s , x + (2 r - y) A , x .
1

The final step, x ÷ x/2 k, brings the 2 m-I bit of C to the right of x. This bit

i s 1 i f CtC2. .C m was s a t i s f i e d by t h e a s s i g n m e n t X n X n _ l . . . x 1,
!

' be PF followed by x ÷ x/2; x ÷ 2x. Then PF and PF are equivalent on x, Let PF
n

1 < x < 2 , i f f F i s u n s a t i s f i a b l e . []

Corollary 4.1. The problem of deciding for two {x + cx, x + x/2} - programs P and P'

and a positive integer ~ whether or not P and P' disagree on some nonnegative integer

input x < ~ is NP-complete.

Proof. The problem is clearly solvable in nondeterministic polynomial time (NP). []

When the instruction x ÷ ex is restricted to c = 2, we can prove

Proposition 4.1. The problem of deciding for two {x ÷ 2x, x ÷ x/2} - programs P

and P' and a positive integer ~ whether or not P and P' disagree on some nonnegative in-

teger input x < ~ is solvable in polynomial time.

Proof. This follows from the observation that any program P can be reduced (in poly-

nomial time) to one of the following forms (k, m are nonnegative integers):

(i) x ÷ 2kx

(2) x + x/2 k

(3) x + x/2k; x ÷ 2mx []

Adding the instruction x * rem(x/d), where rem(x/d) = remainder of x divided by

d makes the inequivalence problem NP-complete.

303

Theorem 4.3. The inequivalence problem for {x * cx, x * x/2, x ÷ rem(x/d)} - pro-

grams (over nonnegative integer inputs) is NP-complete. The result holds even if the

instruction x ÷ rem(x/d) is used exactly once in the programs, and d is a power of 2.

T Proof. Modify the programs PF and PF of Theorem 4.2 by adding the instruction
!

x ÷ rem(x/2 n) at the beginning. Then the modified PF and PF are inequivalent if and

only if F is satisfiable. Hence, the problem is NP-hard. That the problem is in

NP follows from a result in [6]. However, a simple direct proof that inequivalence

is in NP is the following: If F is a program, let D F be the product of all divisors

in F and all d in rem(x/d) instructions. Then two programs F and G are inequivalent

if and only if they disagree on some input x, 1 < x < DFD G. []

If x ÷ rem(x/d) is used twice, we have

Theorem 4.4. The problem of deciding if a {x + cx, x ÷ x/2, x ÷ rem(x/d)} - program

(over nonnegative integer inputs) outputs a nonzero value for some input in NP-com-

plete. The result holds even if the instruction x ÷ rem(x/d) is used exactly twice

in the programs~ and in each instance, d is a power of 2.

Proof. Modify the program PF by adding the instruction x ÷ rem(x/2 n) at the beginning

' outputs a nonzero value and the instruction x ÷ rem(x/2) at the end. Then the new PF

for some input if and only if F is satisfiable. []

Acknowledgment

We would like to thank an anonymous referee for suggestions which improved the

presentation of the proof of Theorem 4.2. This research was supported in part by

NSF Grant MCS78-01736.

304

References

I. Cook, S., The complexity of theorem proving procedures, Conference Record of

the Third ACM Symposium on Theory of Computing, (1971),151-158.

2. Gold, E., Complexity of automaton identification from given data, Information

and Control, 37 (1968), 302-320.

3. Herstein, I., "Topics in Algebra," Xerox College Publishing, Lexington, MA,

(1964).

4. Hopcroft, J. and Ullman, J., "Introduction to Automata Theory, Languages, and

Computation," Addison-Wesley, Reading, Mass., 1979.

5. Hunt III, H., Constable, R., and Sahni, S., On the computational complexity of

program scheme equivalence, SIAM Journal on Computing, 9(1980), 396-416.

6. Ibarra, 0. and Leininger, B., The complexity of the equivalence problem for

simple loop-free programs, to appear in SIAM Journal on Computing. (Also avail-

able as University of Minnesota Computer Science Department Tech. Report 79-23.)

7. Ibarra, O., Leininger, B., and Moran, S., On the Complexity of Simple Arithmetic

Expressions, University of Minnesota Computer Science Tech. Report 80-3.

8. Manders, K. and Adleman, L., NP-complete decision problems for binary quadratics,

Journal of Computer and System Sciences, 16(1978), 168-184.

9. Tsichritzis, D., The equivalence problem of simple programs, Journal of the

Association for Computing Machinery, 17(1970), 729-738.

