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ABSTRACT 

Consider the connection between denotational semantics for a language with 
goto statements and flow diagrams for programs in such a language. The main 
point of interest is that the denotational semantics uses a recursively defined 
environment to give the meaning of labels, while a flow diagram merely has a 
jump to the appropriate program point. A simple reduction called "indirection 
elimination" strips away the environment from the denotational semantics and 
extracts an expression with cycles (circular expression) that is very close to the 
flow diagram of a program. The same idea applies to associating bodies with 
recursive procedures, or to any construct whose semantics is not wedded to the 
syntax. Circular expressions are offered as a useful data structure and conceptual 
device. Expressions with cycles are well defined mathematical objects - -  their 
semantics can be given by unfolding them into infinite structures that have been 
well studied. The practicality of the elimination of environments has been tested 
by constructing a trial implementation, which serves as the front end of a seman- 
tics directed compiler generator. The implementation takes a denotafional seman- 
tics of a language and constructs a "black box" that maps programs in the 
language into an intermediate representation. The intermediate representation is 
a circular expression. 

1. Introduction 
Static environments. The term "context sensitive syntax" is sometimes used to refer to proper- 

ties of a program that are evident from the syntax, but are hard to specify with a context free 
grammar. Speaking in broad terms, programs may contain "things" that are defined and used in 
ways that cannot be specified with a context free grammar. For example labels are defined where 
they occur on statements, and are used in goto's. Similarly procedures are defined when they are 
declared, and are used when they are invoked. By defining and using type synonyms, a structure 
containing a pointer to itself can be created in some languages. Even if goto statements are not 
allowed, hidden labels might be defined and used due to break and continue statements. In each 
of the above examples, the definit ion of a thing may be at a point syntactically unrelated to the 
use of the thing (in a context free syntax). 

A mechanism like a symbol table is therefore needed so that a use can locate the correspond- 
ing definit ion indirectly through the table. Such symbol tables are called environments. When an 
environment is used to connect a definition and use that are evident from the syntax, then the 
environment is referred to as a static environment. Note that at language specification time, any 
program is fair game, so static environments are essential to a language specification based on a 
context free syntax. 

The above discussion can be made more concrete by considering goto statements and flow of 
control, but it applies more generally. The semantics of structured constructs like while  state- 
ments do not depend on the context in which they appear. The meaning of such constructs can 
therefore be determined from the meaning of the subconstructs by providing appropriate "glue".  
This approach does not  work for a language with goto statements. The standard denotational 
semantics for such languages [mi176] first determines an environment containing the meanings of 
labels, and then uses this environment to give the meaning of a block. 
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Semantics directed compiler generation. Now consider the problem of generating a compiler 
directly from the denotational semantics of a programming language. Denotational specifications 
of programming languages follow the convention of giving the meaning of a construct strictly in 
terms of its subconstructs. For example, the meaning of a while statement is given in terms of the 
meanings of the test and the body alone - -  not the whole while statement. Therefore, in a syntax 
directed fashion it is theoretically possible to map a program into an expression in the 
metalanguage that is used to specify semantics. The logical organization of a program for perform- 
Lng this mapping is described in Section 5. The program takes as input the semantics of a 
language, and constructs a "black box" to perform the syntax directed mapping. 

The output of the syntax directed mapping will contain static environments and other con- 
structions that can be eliminated "at compile time" i.e. when the syntax directed mapping is done 
(as opposed to when the semantics of the language are specified). Using the example of goto 
statements once again, it is shown in Section 4 that static environments can easily be eliminated, 
and that something close to a flow diagram for a program can be extracted from the output of the 
syntax directed mapping. 

Programs that run on conventional computers have loops. But there are no cycles in the 
standard denotational semantics of programming languages [mi176]. Instead, least fixed points are 
used to give meanings for recursion and iteration. This difference can be bridged by introducing 
expressions with cycles. 

Circular expressions. In an elegant mathematical treatment of flow diagrams, Scott [sco71] 
remarks, "There are many shortcuts one can take in the drawing of diagrams to avoid tiresome 
repetitions . . . .  Loops may just be an extreme case of abbreviation." As the remark suggests, loops 
make a brief appearance in [sco71] only to be unfolded into acyclic, though infinite, diagrams. 

I would like to revive circular rather than infinite structures, both from a conceptual and from 
a data representation viewpoint. In the early days, Landin [lan64] talked of "circular definitions". 
The phrase "tying the knot", presumably to create a circular expression, has been attributed to 
Strachey. Infinite structures are still of interest since they are needed to specify the semantics of 
circular expressions: the basic idea is to unfold a circular expression into an infinite acyclic one - -  
Appendix A contains references. 

Outline. There is a close connection between least fixed points and circular expressions. Each 
instance of the least fixed point operator (fix) can be replaced by the simple circular expression in 
Figure 1. When a subgraph representing a function is applied to a subgraph representing an argu- 
ment, some simplification can take place. (This simplification would be called B-reduction in the 
k-calculus [chu41].) Figure 2 contains an example showing how such simplification results in other 
cycles. See Section 2 for details. 

Static environments are studied abstractly in Section 3 in terms of a class of circular expres- 
sions. Under some assumptions that are expected to hold in practice, it is shown that static 
environments can be easily eliminated. The example of goto statements is considered in Section 4 
to provide evidence that the assumptions are reasonable. Using circular expressions, the environ- 
ment and labels are transformed away, resulting in an expression in which the cycles correspond 
naturally to the intended goto statements. Since the environment is used in a similar manner to 
determine the meanings of recursive procedures, circular expressions help there as well. 

A trial implementation sketched in Section 5 attests to the practical utility of the development 
in this paper. Sample inputs and outputs are shown in Appendix B. Section 6 discusses some of 
the experiments that have been performed and contains brief speculation on the remaining task of 
mapping reduced circular expressions to something that runs. 

While I have attempted to write simply and clearly, some readers may benefit from the 
tutorial presentations in [gor79, sto77]. 

2. Circular expressions versus fixed points 

The first indication that circular expressions may be useful comes from a connection between 
the least fixed point operator (fix) and the graph in Figure 1. Let app represent an operator that 
applies its first argument to its second. So, the app in Figure 1 applies f to the expression graph 
rooted at app. As this graph is unfolded, the sequence of expressions 

~f. 1~, kf. f (1~),),f. f (f (f~)), . . • 
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k 

f 

Figure 1. Let app represent an operator that applies its first argument to its second. When 
the above graph is unfolded, the infinite expression ~f. f ( f ( f ( .  • . ))) is obtained. It is well 
known that this expression is semantically equivalent to the least fixed point operator. 

is obtained, where Fl marks the place at which further unfolding needs to take place. The fully 
unfolded form is the infinite expression kf. f ( f ( f (  - - . ))). It is well known [par70, sco76] that this 
infinite expression is semantically equivalent to the least fixed point operator. 

R 

R 
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Figure 2. The root of the expression in (a) is the vertex u. Since the value of u is the result 
of applying the function at v to an argument, the value of u is obtained from w by substitut- 
ing the argument for all instances of the bound variable R. The reduction is performed in 
two stages. First, all edges into the bound variable are redirected to the vertex that the func- 
tion at v is applied to. In this case the edge from x to the leaf for R is redirected to u. 
Second, all edges into u are redirected into w which now represents the value previously 
represented by u. The result is the expression in (b). As an aside, %" represents composi- 
tion, "U" represents set union, and the relation being defined is the transitive closure of the 
binary relation R 0. This example has been taken from a paper on query languages for data 
bases [aho79]. 

Once the graph in Figure I is allowed, further cycles arise naturally. Consider for example: 

f ix ( ~,R. RoR0 U R0 ) (1) 

First, replace f ix by the graph in Figure 1 i.e. apply the function represented by the graph in Fig- 
ure 1 to the argument of fix. ~-reduction now yields the circular expression in Figure 2(a). In the 
k-calculus: 

(kx.M)N -,~ M[N/x] 

Here M[N/x] represents the expression obtained by substituting N for all instances of x in M. 
With graphs, the substitution M[N/x] corresponds to redirecting all edges to x into the root of N. 
Such a substitution rule for acyclic graphs is given in [pac74, sta79]. The details for circular 
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expressions are a matter of routine programming. In particular, the graph in Figure 2(b) is 
obtained from 2(a) by IS-reduction. 

Drawing graphs on blackboards is one thing: instructing a text processing system to draw 
them is another. Instead of having to draw circular expressions all the time, it will be convenient 
to have a linear representation using recursive schemes. The schemes are for human consumption 
only - -  all algorithms operate on graphs. 

Playing the usual game of cutting all loops and writing recursive schemes, the value at  vertex 
w in Figure 2(b) must satisfy the equality: 

w = woR o U R o (2) 

where w does double duty as a variable for a relation in this equality. The recursive scheme for a 
graph is not unique. With multiple, intersecting loops, there is in general a choice of cutpoints. 
Even the simple graph in Figure 2(b) has the alternate representation 

w where w = x U R  o and x = woR o 

Fortunately it can be shown that all recursive schemes representing the same graph have the 
same infinite tree as their least fixed point. (Scott [sco71] uses flow diagrams for motivation alone: 
the mathematics deals with recursive schemes. .This  is why Scott has trouble writing a flow 
diagram for a particular recursive scheme [adj77, p.90].) 

3. Elimination of static environments 

In denotational semantics, the term environment generally refers to a function that relates a 
"name and the thing it denotes" [str72]. While there are no a priori restrictions, in practice, 
environments are used essentially as symbol tables. There may be c i r ~ r i t y  in the definition of 
the symbol tables since things like types can be defined in terms of themselves. This section 
begins with an informal discussion of some conditions to be placed on environments. The exam- 
ple of goto statements in the next section (which is self contained) suggests that the conditions are 
natural. Environments satisfying the conditions can be eliminated without detailed analysis of the 
circular expression for a program. 

The conditions to be placed on static environments are a formalization of the following. 

El. An environment is either given, or is obtained by updating a static environment. Circularity 
is permitted e.g. a static environment may be obtained by updating itself. 

E2. Environments may be used only to determine the things denoted by names. 

E3. The static aspects of environments can be formalized by requiring that environments are 
applied only to known entities. For example, if an array A is indexed only by constants, as 
in A[2I or A[23],  then the array is used in a static manner; otherwise if A [ i ]  is allowed 
then the static properties are lost since i has to be evaluated dynamically to determine what 
A[i] refers to. 

In formalizing the above conditions, an operator upd will be used: 

upd( f , z ,a)  =- kx. i f  x = z  then a else f ( x )  

In circular expressions, upd(f , z ,a)  is encoded by constructing a vertex with three sons, the 
first representing f ,  the second z, and the third a. app( f ,x)  is encoded by constructing a vertex 
with two sons, the first representing f and the second x. 

In order to focus on environments, the only functions that will be considered are environ- 
ments. Thus, all instances of the operator app correspond to the application of a static environ- 
ment to a name. Similarly, all instances of the upd operator correspond to the updating of an 
environment. Since uninterpreted operators will also be allowed, other kinds of functions can also 
be applied and updated using uninterpreted operators: their presence will just not influence the 
discussion. 

With all the above justifications, the precise specification of the class of circular expressions to 
be considered is actually quite short. 

Definition. A circular expression is restricted if  each nonleaf is labelled with app, upd, or an 
uninterpreted operator symbol, and the following conditions are satisfied: 

1. The first son of a vertex labelled upd is either a leaf or a vertex labelled upd. 
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2. The first son of a vertex labelled app is either a leaf or a vertex labelled upd. Moreover, there 
may not be an edge from a vertex labelled with an uninterpreted function symbol to a vertex 
labelled upd. 

3. The second son of a vertex labelled app or upd is a leaf. cJ 

A useful reduction, which I will call "indirection elimination", can now be introduced. 
McCarthy [mcc62] observes that the following equivalence must  hold: 

app( updff ,z,a) , x ) =- i f  x=z  then a else app(f ,x) 

In particular, if x and z are given names,  then the equality x=z  can immediately be tested. The 
following definition is more complicated than the above equivalence because it takes circularity 
into account. 

Definition of indirection elimination. Let u be a vertex labeUed app in a restricted circular expres- 
sion. Let vl,v2, . • . ,v n be a maximal sequence of distinct vertices such that v 1 is the first son of 
u, and vi+l is the first son of vi, l<<-i<n. Note from the definition of restricted circular expressions 
that v n is either a leaf or has as its first son vi, for some l<<-i<-n. 

If there exists a least j ,  l<-j<-n, such that the second sons of u and vj are for the same name, 
then u has the same value as the third son of vj, so all edges into u can be redirected into the 
third son of vj; otherwise, if v n is a leaf, then make vn the first son of u; otherwise, v, is recur- 
sively defined and there is no update  for the second son of u, so u represents ±, so redirect all 
edges into u to a special leaf labelled fL D 

It is a simple observation that repeated application of indirection elimination to a restricted 
circular expression eliminates all nonteaf vertices that correspond to static environments.  In prac- 
tice, if any leaves representing static environments are left after indirection elimination then an 
error has probably occurred since static environments  generally start out with no information. 

PROPOSITION . Let G be a restricted circular expression whose root is not labelled upd. Indirection 
elimination and the elimination of unreachable vertices results in a restricted circular expression G' that has 
no vertices labelled upd. 

Proof. By definition, the only vertices with edges into a vertex labelled upd have label app. A 
simple induction on the number  of vertices labelled upd establishes that  the proposit ion must  be 
true. n 

The correctness of indirection elimination is left as an exercise for the reader. 

a2 

bl 

. f \  
Z/3 

b2 

Figure 3. The flow diagram for a program in the text. 
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4. Application to label environments 
The utility of circular expressions in a compiler generator based on denotational semantics will 

be •ustrated by considering the following program fragment. 

LI: u := v; 
L2: w := x; 

if (p) goto L1; 
y := z; 
if (q) goto L2; 

I have deliberately chosen a program with goto statements since structured constructs 1Lke 
while statements are actually easier to handle. In explaining this work, I have found it convenient 
to talk of flow diagrams. Given the above program, the flow diagram in Figure 3 might be drawn. 

Consider however  the problem of constructing a flow diagram generator that takes a program 
as input and constructs its flow diagram. One possibility is for the generator to make two passes 
over the candidate program. In the first pass, a table containing labels and their program points is 
constructed. Call this table an environment. In the second pass the environment is used to deter- 
mine where a goto jumps to. 

An  environment  can be thought of as a function, which when applied to a label yields the 
corresponding program point. If after the first pass the environment  e' is determined, then Figure 
4 shows an intermediate stage in the construction of the flow diagram. 

al 

a 2 

yb2 i 
J \  

L2 

Figure 4. Once the environment e' containing the continuations for labels is determined, 
then the above circular expression gives the continuation for the whole program. Each of 
the operators is an abbreviation of an expression that maps continuations to continuations. 

The flow diagram generator analogy is very close to the way denotational semantics of a 
language with goto statements are specified. In denotationat semantics, instead of program 
points, "continuations" are associated with labels by the environment. States, which map identif- 
iers to values, are not mentioned explicitly in a flow diagram. It is implicit that the final state on 
leaving a flow diagram depends on the initial state on entry to the diagram. The entry point is 
important - -  the mapping from initial state to final state depends on it. With an entry point L0 of 
a diagram associate a continuation Co, which is a function from the initial state to the final state. If 
the entry point is changed to L1 from L0 then there will be a different continuation ci associated 
with the entry point L I. 

The meaning of a label L is given by a continuation c that corresponds to making L the entry 
point of the program. Let I stand for the identity continuation. 
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The root of Figure 4 gives the continuation for the entire program. Since the first statement is 
labelled L1 the root also gives the continuation for label L1. Irrelevant detail is avoided by sketch- 
ing the effect of the assignments using the operators al, a2, and a 3. These operators map the con- 
tinuation following the relevant assignment to the continuation that includes the effect of the 
assignment. 1 Conditionals have two possible exits and there is a continuation associated with each 
exit. The operators bl and b2, for the predicates p and q, take two con~uat ions  as arguments - -  
the first corresponding to the predicate being true, the second to the predicate being false. A goto 
statement is handled by using the continuation of the label gone to: recall that the continuation for 
a label can be determined by applying a suitable environment to the label. 

a2  

,/ll \\ 
/ \ \  \ 

L2 

Figure 5. The dashed line connects vertices that are merged when an instance of the least 
fixed point operator is eliminated, as in Figure 2. 

The suitable environment is determined as shown in Figure 5. There are two environments 
in Figure 5. Environment em is a mini-environment that contains label bin "drags for the current block 
alone. Ignoring the dashed line, let e m be  the initial environment that maps every label to the 
"undefined" continuation 2_. The environment e contains global bindings, so before it can be 
used, the continuations for the labels in the current block are entered into e yielding say e'. As in 
Figure 4, e' is used to determine the continuations for the whole program. An updated mini- 
environment is then determined by entering the continuations for the labels into an empty mini- 
environment nil .  Once fix is applied, Figure 5 is obtained. 

As mentioned in Section 3, the following equivalence [mcc62] leads to a reduction called 
indirection elimination. 

a l p ( u p d ( f , x , a ) ,  y ) =- i f  y = x  then a else f ( y )  

In the graph in Figure 5, the labels L1 and L2 are literal labels, not label variables, so the equality 
"y = x  can immediately be tested. Look at the application of e m to L1 at the bottom left hand comer 
in Figure 5. Since the vertex for e m is merged with the vertex connected to it with the dashed line, 
there is an application of an update as in the equation above. In Figure 6, rather than going 

The precise specification of al,  the operator for the first assignment,  is as follows. Given con- 
tinuation C, 

a~(c) = xs. c( s[ s |v]  / u l ) 
The remaining operators in Figure 4 are also continuation transformers. 
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through the mini-environment, there is a direct edge to the continuation for L1. Similar remarks 
apply to the label L2. Vertices that are unreachable have been eliminated. 

L2 

Figure 6. This graph is obtained from the graph in Figure 5 by eliminating the indirection 
through the mini-environment. 

Indirection elimination can be applied to Figure 6 as well. This time, elimination of the app 
and other vertices that become unreachable yields the circular expression in Figure 3t Only now 
the operators in Figure 3 have a very definite meaning as continuation transformers. 

5. A compiler generator 
Figure 7 shows the logical organization of the front end of a semantics directed compiler gen- 

erator. The user interface is indicated by the dotted box. For a candidate language L, a denota- 
tional semantics Lsem.d and regular expressions Ltok.r specifying the lexical structure of L have to 
be provided. 

Together with a package of trivial symbol table r o u ~ e s ,  the regular expressions in Ltok.r con- 
stitute Ltok.l. The program Lex [les75] generates a lexical analyzer for L from Ltok.l. 

The program d2y examines the semantic rules in Lsem.d and converts them into a C [ker78] 
program fragment that will cause a graph to be built for a program in L. The mapping performed 
by d2y is such that its output Lsem.y can be piped through the parser generator Yacc [joh75] to 
construct a syntax analyzer for programs in L. 

Given a program prog.L in L, the output of the syntax analyzer is a graph representing the 
meaning of the program. The reducer performs 13-reductions, ind i rec~n elimination, and the 
selection of elements from lists. (Other reductions are easy to add.) ~-reduction is performed only 
when the app vertex is the sole father of the k vertex. (Common subexpression elimination may 
be needed to permit some 13-reductions. Presently, this has been done by coding Lsem.d care~]ly. 
Eventually the algorithm of [dow80] will be used.) The output of the reducer is a simplified circu- 
lar expression. 

Figure 7 also shows how the program d2y is constructed. The notation used for writing deno- 
tational specifications like Lsem.d is inspired by that of Yacc. The major difference is that instead 
of a C program fragment, the semantic rules are denotational. Further details are given in Appen- 
dix B. metaspec.l and metaspec.y give the syntax of the notation in which Lsem.d is written. 
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Figure 7. Logical organization of the front end of a semantics directed compiler generator 
d2. For a language L, the lexical and syntactic analyzers are constructed from the specifica- 
tions Ltok.r and Lsem.d, respectively. Ltok.r contains regular expressions and their transla- 
tions, while Lsem.d contains denotational semantic rules. 

6. Discussion 

The few examples that I have tried are very encouraging. The present version of d2y has 
31,876 bytes (on a PDP 11/70: November 9, 1980). In each of the examples, the lexical analyzer, 
parser, and reducer together are less than 27,500 bytes. (These programs contain fat that can 
easily be trimmed. By way of a lower bound, empty Lex and Yacc specifications lead to a lexical 
analyzer and parser containing 9,288 bytes.) Besides the goto language of Section 4 and Appendix 
B, I have tried a while language with break and continue statements; the language LC, a version 
of the lambda calculus from [mos79b]; and the Loop language of [ten76]. 

Based on a meagre five samples, the reducer tends to eliminate at least two thirds of the ver- 
tices constructed by the syntax analyzer. This figure is not surprising. For example, the meanings 
of statements are typically functions from environments to continuations to continuations. In the 
graph built by the syntax analyzer there will be ~, vertices and bound variable vertices for environ- 
ments and continuations. Often the ~ vertices have one father, which is an app vertex, so ~- 
reduction is possible. Each f~-reducfion eliminates three vertices. For the example program in Sec- 
tion 4, the final circular expression is actually smaller than Figure 3 suggests since ~-reduction will 
eliminate the links between some of the continuation transformers. The actual output is shown in 
Appendix B. 

Circular expressions are not an end in themselves. They can either be interpreted using 
reductions like the ones listed by Mosses [mos79a] (see also [hof79, hue79]), or code can be gen- 
erated directly from them. I am presently examining ways of converting applicative expressions 
(with cycles) to imperative code, but it is too early to talk of progress on this problem. In the 
meantime, techniques that require additional information for each language can be used. For 
example, Wand [wan80] defines the semantics of languages using combinators that are easy to 
implement directly on a machine. Using such combinators the simplified circular expression con- 
structed as in Figure 7 will be easy to map onto machine code. The approach of [ras80] uses 
detailed knowledge of continuations, but can be applied to the reduced circular expression. In 
short, all the approaches to compiler generation that I am aware of would benefit by starting with 
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the reduced circular expression. 
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Appendix A. Semantics of circular expressions 
A circular expression is a directed graph with a unique vertex called a root. The meaning of a 

drcular expression is given by starting at the root and unfolding the graph into an infinite tree. 
The purpose of this section is to suggest how the semantics of circular expressions can be formal- 
ized. 

The well known idea of cutting loops and associating recursive equations with a flow diagram 
[mcc62] can be applied just as easily to circular expressions. (The system of recursive equations 
that is generated will be referred to as a recursive scheme,) The semantics of a circular expression 
can then be given by the semantics of a recursive scheme for it. See [sco71, cou76, adj77, rey77] 
for example. The basic idea in each of these papers is to construct an infinite expression tree and 
let the meaning of the tree be the meaning of the recursive scheme. Unfolding the circular expres- 
sion yields the same tree. 

The semantics of an infinite expression cannot be given by associating values with the leaves 
and working up to the value of the root, since the root can never be reached. Its meaning is 
therefore given as the limit of an infinite sequence of values of finite expressions. For limits to 
exist, the expressions in the sequence and their values must satisfy certain constraints. 

On a syntactic level, each expression tree in the sequence represents a stage in the incremen- 
tal unfolding of a circular expression (graph). There will be leaves in these expression trees at 
which further unfolding needs to take place, and this fact is noted by labelling such leaves with 
the symbol f~. Along with f~ comes a partial order on expressions, since f/, representing the fully 
folded expression, gives less information than any other expression. (More precisely, no more 
informa~on than any other expression.) For limits to exist in general, infinite expressions have to 
be added. There is a similar partial order on values. 

Since functions may be defined and applied in circular expressions, some of the work on the 
),-calculus is also quite relevant. Following Wadsworth, a special symbol f~, whose value is ±, is 
added to the k-calculus in [wad78, hy176, lev76, we175]. A notion of "approximant" of a term is 
defined (this is more than just direct approximation since ~-reductions can take place). The value 
of a term is shown to be the limit of the values of all its approximants [wad78, hy176]. Hytand 
shows the result for both the D~ [sco73] and the P0~ [sco76] models. Such results allow 
equivalences to be proved between a finite expression on the one hand and an infinite expression 
on the other. 

Appendix B 

The notation used to specify semantics will be illustrated by considering a simple language 
with goto statements. The specification consists of three parts: declarations that help Yacc con- 
struct a parser; domain declarations; and, the syntactic and semantic rules. The three parts are 
delimited using the marker ~%. 

In the first part, d2y looks at lines beginning with ~token and %star t .  All other declara- 
tions are copied through for the benefit of Yacc. Knowledge of tokens is used when the semantic 
rules are examined. The start symbol is captured and a new start symbol supplied so that some 
~nitializing code can be executed before parsing of a program begins. In particular, if there are any 
predeclared identifiers or hidden identifiers in the semantics, they have to be passed through and 
entered into the symbol table so that their special status is recognized when a program is parsed. 

At present the domain declarations are examined, but the type information is not used to do 
any checking. As an aside, domain declarations are represented by a directed graph, where cycles 
record reflexive domain dedarationso Associated with each domain identifier is a pointer to a ver- 
tex in the directed graph. Along with the domains are: va r  declarations of variables that 
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represent elements of the domain; non t  declarations that identify nonterminals in the syntax 
whose meanings belong to the domain; and, elem declarations that identify elements of the 
domain. So far, I have used elem declarations for hidden identifiers in a language with break 
and continue statements, and for the identifiers p l u s  and mul t  that have predefined meanings 
in LC [mos79b]. 

The third part contains the syntactic and semantic rules. If all the text between braces is 
deleted, a syntactic specification in the input language of Yacc will be left. The semantic rules 
between braces are in a metalanguage similar to DSL [mos79a] without the parse tree constructs. 
The precedence of operators is different from that in DSL. For those unfamiliar with DSL, the 
metalanguage is an extended k-calculus. 

In the following spedfication, syntactic rules are indented one tab stop, while semantic rules 
are indented two tab stops. The meaning of a syntactic object is indicated by preceding it with a 
$ sign. For ease of implementation, the specification of all valuations is collected together, so the 
meaning of a syntactic object will in general be a function from some domain to a list of elements 
from some other domains. 

There are differences of detail between the discussion in Section 4 and the exact treatment of 
labels in the semantic specification that follows. For pedagogic reasons, the mini-environment was 
constructed using functions rather than lists. Here, the meaning of a statement is a function from 
environments and continuations to a list containing a continuation as a second element and with 
label information as a first element. The label information consists of a list of pairs of labels and 
their associated continuations. There is an operation in the metalanguage that allows a function to 
be be updated using a list, so that the list of labels and their assodated continuations can be used 
to directly update the environment. 

The code for Lsem.d follows. 

~token GOTO IDE IF 

Mstart prog 

Ide 

v; 
s = Ide -> V 

A; 

C = S -> A 

Env = Ide -> C 

var IDE~ 

var s; 

var c; 

var e; 

prog 

S -> V nont exp; 

Env -> C -> C nont prog; 

Env -> C -> [ [Ide,C]~ , C ]nont stm, stmlist~ 

: stm 

{ lambda e. lambda c. 

let cyclic p = $stm (e[p.1]) c; 

in p. 2 
} 

/, The keyword cyclic indicates that the definition of p is circular, The environment e is 
updated using the hst p. I, i.e. the first element of the pair p. p. I is itself a list of pairs of 
labels and assodated continuations. The second element p. 2 of p is the continua~on that is asso- 
dated with the beginning of the program. 
, /  

stm : IDE ':" '=' exp ";' 

{ lambda e. lambda c. 

let sc = lambda s. c(s[$IDE;$exp s]); 

in ((),so) 
} 

"{' stmlist "}" 
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{ Sstmlist } 

IDE ":' stm 

{ lambda e. lambda c. 

let pair = $stm e c; 

sc = pair.2; 

sl = ($IDE,sc) cons pair.l; 

in (sl,sc) 
} 

IF '(' exp ')' GOTO IDE ";" 

{ lambda e. lambda c. 

let sc = lambda s. 

Sexp s -> e (SIDE) s , c (s); 

in ((),sc) 
} 

exp : IDE 

{ lambda s. s($IDE) } 

stmlist : stm 

{ Sstm } 

stmlist stm 

{ lambda e. lambda c° 

let p2 = $stm e c; 

sc = p2.2; 

pl = Sstmlist e sc; 

sl = p1.1 cat p2.1; 

in (sl,pl.2) 

l 

The mapping performed by d2y is such that the first semantic rule will be transformed to: 

prog: stm 
{ 

} 

nodeptr[3] = ctnode(VAR,9,12); 

nodeptr[4] = ctnode(VAR,7,10); 

nodeptr[5] = ctnode(VAR,99,16); 

nodeptr[6] = $1; 

nodeptr[7] = ctnode(SELECT, 1,nodeptr[5]); 

nodeptr[8] = ctnode(UPD,nodeptr[3],nodeptr[7]); 

nodeptr[9] = ctnode(APP,nodeptr[6],nodeptr[8]); 

nodeptr[10] = ctnode(APP,nodeptr[9],nodeptr[4]); 

cttie(nodeptr[5],nodeptr[10]); 

nodeptr[11] = ctnode(SELECT,2,nodeptr[10]); 

nodeptr[12] = ctnode(LAM,nodeptr[4],nodeptr[11]); 

nodeptr[13] = ctnode(LAM,nodeptr[3],nodeptr[12]); 

$S = nodeptr[13]; 

Until a program is supplied for parsing, the "address" of the vertices constructed for the pro- 
gram are not available. However, when c tnode  creates a vertex during parsing, it can leave the 
"address" in the array nodep t r  where subsequent calls to c tnode  will be able to find it. The 
routine c t t i e  creates the circular expression. 

Once the parser, graph builder, and reducer have been constructed, the following program 
will be mapped to the circular expression below. 
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LI: u := v; 

L2: w := x; 

if(p) goto LI; 

y := z; 

if(q) goto L2; 
} 

In the representation of the circular expression below, vertex numbers appear before the colon on 
the left. When a number appears by itself on the right of a colon, it represents the expression 
rooted at the vertex with that number. Variables like s 10 and s41 have been created to distin- 
guish bound instances of the same variable s. 

6:st0 ( v ) 

14: slO [ 6 / u ] 

15:47 ( 14 ) 

16: lam slO . 15 

37:s41 ( x ) 

45:s41 [ 37 / w ] 

47: lam s41 . 94 

83:45 ( p ) 

91:16 ( 45 ) 

94:83 -> 91 , 160 

117:45 ( z ) 

125:45 [ 117 / y ] 

149:125 ( q ) 

157:47 ( 125 ) 

158:c182 ( 125 ) 

160:149 -> 157 , 158 

188: lam c182 . 16 

189: lam e181 . 188 

root 189 

There is no mystery to the routine used for printing out drcular expressions. There is a 
sequential scan through the vertices during which vertices for identifiers, variables, and constants 
are ignored. At each vertex representing an operator some printing takes place. The details can 
be gleaned from the example. 

The astute reader will have noticed that at least 189 vertices were constructed for the above 
program, of which about a sixth remain in the reduced circular expression. I suspect that the 
phases of graph building and reduction can be made into coroutines without too much difficulty, 
so that it will not be necessary to construct large intermediate expressions that get cut down to 
size. 
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