
Circular expressions:
e l iminat ion of static env ironments

Ravi Sethi

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Consider the connection between denotational semantics for a language with
goto statements and flow diagrams for programs in such a language. The main
point of interest is that the denotational semantics uses a recursively defined
environment to give the meaning of labels, while a flow diagram merely has a
jump to the appropriate program point. A simple reduction called "indirection
elimination" strips away the environment from the denotational semantics and
extracts an expression with cycles (circular expression) that is very close to the
flow diagram of a program. The same idea applies to associating bodies with
recursive procedures, or to any construct whose semantics is not wedded to the
syntax. Circular expressions are offered as a useful data structure and conceptual
device. Expressions with cycles are well defined mathematical objects - - their
semantics can be given by unfolding them into infinite structures that have been
well studied. The practicality of the elimination of environments has been tested
by constructing a trial implementation, which serves as the front end of a seman-
tics directed compiler generator. The implementation takes a denotafional seman-
tics of a language and constructs a "black box" that maps programs in the
language into an intermediate representation. The intermediate representation is
a circular expression.

1. Introduction
Static environments. The term "context sensitive syntax" is sometimes used to refer to proper-

ties of a program that are evident from the syntax, but are hard to specify with a context free
grammar. Speaking in broad terms, programs may contain "things" that are defined and used in
ways that cannot be specified with a context free grammar. For example labels are defined where
they occur on statements, and are used in goto's. Similarly procedures are defined when they are
declared, and are used when they are invoked. By defining and using type synonyms, a structure
containing a pointer to itself can be created in some languages. Even if goto statements are not
allowed, hidden labels might be defined and used due to break and continue statements. In each
of the above examples, the definit ion of a thing may be at a point syntactically unrelated to the
use of the thing (in a context free syntax).

A mechanism like a symbol table is therefore needed so that a use can locate the correspond-
ing definit ion indirectly through the table. Such symbol tables are called environments. When an
environment is used to connect a definition and use that are evident from the syntax, then the
environment is referred to as a static environment. Note that at language specification time, any
program is fair game, so static environments are essential to a language specification based on a
context free syntax.

The above discussion can be made more concrete by considering goto statements and flow of
control, but it applies more generally. The semantics of structured constructs like while state-
ments do not depend on the context in which they appear. The meaning of such constructs can
therefore be determined from the meaning of the subconstructs by providing appropriate "glue".
This approach does not work for a language with goto statements. The standard denotational
semantics for such languages [mi176] first determines an environment containing the meanings of
labels, and then uses this environment to give the meaning of a block.

379

Semantics directed compiler generation. Now consider the problem of generating a compiler
directly from the denotational semantics of a programming language. Denotational specifications
of programming languages follow the convention of giving the meaning of a construct strictly in
terms of its subconstructs. For example, the meaning of a while statement is given in terms of the
meanings of the test and the body alone - - not the whole while statement. Therefore, in a syntax
directed fashion it is theoretically possible to map a program into an expression in the
metalanguage that is used to specify semantics. The logical organization of a program for perform-
Lng this mapping is described in Section 5. The program takes as input the semantics of a
language, and constructs a "black box" to perform the syntax directed mapping.

The output of the syntax directed mapping will contain static environments and other con-
structions that can be eliminated "at compile time" i.e. when the syntax directed mapping is done
(as opposed to when the semantics of the language are specified). Using the example of goto
statements once again, it is shown in Section 4 that static environments can easily be eliminated,
and that something close to a flow diagram for a program can be extracted from the output of the
syntax directed mapping.

Programs that run on conventional computers have loops. But there are no cycles in the
standard denotational semantics of programming languages [mi176]. Instead, least fixed points are
used to give meanings for recursion and iteration. This difference can be bridged by introducing
expressions with cycles.

Circular expressions. In an elegant mathematical treatment of flow diagrams, Scott [sco71]
remarks, "There are many shortcuts one can take in the drawing of diagrams to avoid tiresome
repetitions Loops may just be an extreme case of abbreviation." As the remark suggests, loops
make a brief appearance in [sco71] only to be unfolded into acyclic, though infinite, diagrams.

I would like to revive circular rather than infinite structures, both from a conceptual and from
a data representation viewpoint. In the early days, Landin [lan64] talked of "circular definitions".
The phrase "tying the knot", presumably to create a circular expression, has been attributed to
Strachey. Infinite structures are still of interest since they are needed to specify the semantics of
circular expressions: the basic idea is to unfold a circular expression into an infinite acyclic one - -
Appendix A contains references.

Outline. There is a close connection between least fixed points and circular expressions. Each
instance of the least fixed point operator (fix) can be replaced by the simple circular expression in
Figure 1. When a subgraph representing a function is applied to a subgraph representing an argu-
ment, some simplification can take place. (This simplification would be called B-reduction in the
k-calculus [chu41].) Figure 2 contains an example showing how such simplification results in other
cycles. See Section 2 for details.

Static environments are studied abstractly in Section 3 in terms of a class of circular expres-
sions. Under some assumptions that are expected to hold in practice, it is shown that static
environments can be easily eliminated. The example of goto statements is considered in Section 4
to provide evidence that the assumptions are reasonable. Using circular expressions, the environ-
ment and labels are transformed away, resulting in an expression in which the cycles correspond
naturally to the intended goto statements. Since the environment is used in a similar manner to
determine the meanings of recursive procedures, circular expressions help there as well.

A trial implementation sketched in Section 5 attests to the practical utility of the development
in this paper. Sample inputs and outputs are shown in Appendix B. Section 6 discusses some of
the experiments that have been performed and contains brief speculation on the remaining task of
mapping reduced circular expressions to something that runs.

While I have attempted to write simply and clearly, some readers may benefit from the
tutorial presentations in [gor79, sto77].

2. Circular expressions versus fixed points

The first indication that circular expressions may be useful comes from a connection between
the least fixed point operator (fix) and the graph in Figure 1. Let app represent an operator that
applies its first argument to its second. So, the app in Figure 1 applies f to the expression graph
rooted at app. As this graph is unfolded, the sequence of expressions

~f. 1~, kf. f (1~),),f. f (f (f~)), . . •

380

k

f

Figure 1. Let app represent an operator that applies its first argument to its second. When
the above graph is unfolded, the infinite expression ~f. f (f (f (. • .))) is obtained. It is well
known that this expression is semantically equivalent to the least fixed point operator.

is obtained, where Fl marks the place at which further unfolding needs to take place. The fully
unfolded form is the infinite expression kf. f (f (f (- - .))). It is well known [par70, sco76] that this
infinite expression is semantically equivalent to the least fixed point operator.

R

R

v : k

/ ' , , ,
w : U

/ ' , ,
X: o R 0

Ro R0

(a) (b)

Figure 2. The root of the expression in (a) is the vertex u. Since the value of u is the result
of applying the function at v to an argument, the value of u is obtained from w by substitut-
ing the argument for all instances of the bound variable R. The reduction is performed in
two stages. First, all edges into the bound variable are redirected to the vertex that the func-
tion at v is applied to. In this case the edge from x to the leaf for R is redirected to u.
Second, all edges into u are redirected into w which now represents the value previously
represented by u. The result is the expression in (b). As an aside, %" represents composi-
tion, "U" represents set union, and the relation being defined is the transitive closure of the
binary relation R 0. This example has been taken from a paper on query languages for data
bases [aho79].

Once the graph in Figure I is allowed, further cycles arise naturally. Consider for example:

f ix (~,R. RoR0 U R0) (1)

First, replace f ix by the graph in Figure 1 i.e. apply the function represented by the graph in Fig-
ure 1 to the argument of fix. ~-reduction now yields the circular expression in Figure 2(a). In the
k-calculus:

(kx.M)N -,~ M[N/x]

Here M[N/x] represents the expression obtained by substituting N for all instances of x in M.
With graphs, the substitution M[N/x] corresponds to redirecting all edges to x into the root of N.
Such a substitution rule for acyclic graphs is given in [pac74, sta79]. The details for circular

381

expressions are a matter of routine programming. In particular, the graph in Figure 2(b) is
obtained from 2(a) by IS-reduction.

Drawing graphs on blackboards is one thing: instructing a text processing system to draw
them is another. Instead of having to draw circular expressions all the time, it will be convenient
to have a linear representation using recursive schemes. The schemes are for human consumption
only - - all algorithms operate on graphs.

Playing the usual game of cutting all loops and writing recursive schemes, the value at vertex
w in Figure 2(b) must satisfy the equality:

w = woR o U R o (2)

where w does double duty as a variable for a relation in this equality. The recursive scheme for a
graph is not unique. With multiple, intersecting loops, there is in general a choice of cutpoints.
Even the simple graph in Figure 2(b) has the alternate representation

w where w = x U R o and x = woR o

Fortunately it can be shown that all recursive schemes representing the same graph have the
same infinite tree as their least fixed point. (Scott [sco71] uses flow diagrams for motivation alone:
the mathematics deals with recursive schemes. .This is why Scott has trouble writing a flow
diagram for a particular recursive scheme [adj77, p.90].)

3. Elimination of static environments

In denotational semantics, the term environment generally refers to a function that relates a
"name and the thing it denotes" [str72]. While there are no a priori restrictions, in practice,
environments are used essentially as symbol tables. There may be c i r ~ r i t y in the definition of
the symbol tables since things like types can be defined in terms of themselves. This section
begins with an informal discussion of some conditions to be placed on environments. The exam-
ple of goto statements in the next section (which is self contained) suggests that the conditions are
natural. Environments satisfying the conditions can be eliminated without detailed analysis of the
circular expression for a program.

The conditions to be placed on static environments are a formalization of the following.

El. An environment is either given, or is obtained by updating a static environment. Circularity
is permitted e.g. a static environment may be obtained by updating itself.

E2. Environments may be used only to determine the things denoted by names.

E3. The static aspects of environments can be formalized by requiring that environments are
applied only to known entities. For example, if an array A is indexed only by constants, as
in A[2I or A[23], then the array is used in a static manner; otherwise if A [i] is allowed
then the static properties are lost since i has to be evaluated dynamically to determine what
A[i] refers to.

In formalizing the above conditions, an operator upd will be used:

upd(f , z ,a) =- kx. i f x = z then a else f (x)

In circular expressions, upd(f , z ,a) is encoded by constructing a vertex with three sons, the
first representing f , the second z, and the third a. app(f ,x) is encoded by constructing a vertex
with two sons, the first representing f and the second x.

In order to focus on environments, the only functions that will be considered are environ-
ments. Thus, all instances of the operator app correspond to the application of a static environ-
ment to a name. Similarly, all instances of the upd operator correspond to the updating of an
environment. Since uninterpreted operators will also be allowed, other kinds of functions can also
be applied and updated using uninterpreted operators: their presence will just not influence the
discussion.

With all the above justifications, the precise specification of the class of circular expressions to
be considered is actually quite short.

Definition. A circular expression is restricted if each nonleaf is labelled with app, upd, or an
uninterpreted operator symbol, and the following conditions are satisfied:

1. The first son of a vertex labelled upd is either a leaf or a vertex labelled upd.

382

2. The first son of a vertex labelled app is either a leaf or a vertex labelled upd. Moreover, there
may not be an edge from a vertex labelled with an uninterpreted function symbol to a vertex
labelled upd.

3. The second son of a vertex labelled app or upd is a leaf. cJ

A useful reduction, which I will call "indirection elimination", can now be introduced.
McCarthy [mcc62] observes that the following equivalence must hold:

app(updff ,z,a) , x) =- i f x=z then a else app(f ,x)

In particular, if x and z are given names, then the equality x=z can immediately be tested. The
following definition is more complicated than the above equivalence because it takes circularity
into account.

Definition of indirection elimination. Let u be a vertex labeUed app in a restricted circular expres-
sion. Let vl,v2, . • . ,v n be a maximal sequence of distinct vertices such that v 1 is the first son of
u, and vi+l is the first son of vi, l<<-i<n. Note from the definition of restricted circular expressions
that v n is either a leaf or has as its first son vi, for some l<<-i<-n.

If there exists a least j , l<-j<-n, such that the second sons of u and vj are for the same name,
then u has the same value as the third son of vj, so all edges into u can be redirected into the
third son of vj; otherwise, if v n is a leaf, then make vn the first son of u; otherwise, v, is recur-
sively defined and there is no update for the second son of u, so u represents ±, so redirect all
edges into u to a special leaf labelled fL D

It is a simple observation that repeated application of indirection elimination to a restricted
circular expression eliminates all nonteaf vertices that correspond to static environments. In prac-
tice, if any leaves representing static environments are left after indirection elimination then an
error has probably occurred since static environments generally start out with no information.

PROPOSITION . Let G be a restricted circular expression whose root is not labelled upd. Indirection
elimination and the elimination of unreachable vertices results in a restricted circular expression G' that has
no vertices labelled upd.

Proof. By definition, the only vertices with edges into a vertex labelled upd have label app. A
simple induction on the number of vertices labelled upd establishes that the proposit ion must be
true. n

The correctness of indirection elimination is left as an exercise for the reader.

a2

bl

. f \
Z/3

b2

Figure 3. The flow diagram for a program in the text.

383

4. Application to label environments
The utility of circular expressions in a compiler generator based on denotational semantics will

be •ustrated by considering the following program fragment.

LI: u := v;
L2: w := x;

if (p) goto L1;
y := z;
if (q) goto L2;

I have deliberately chosen a program with goto statements since structured constructs 1Lke
while statements are actually easier to handle. In explaining this work, I have found it convenient
to talk of flow diagrams. Given the above program, the flow diagram in Figure 3 might be drawn.

Consider however the problem of constructing a flow diagram generator that takes a program
as input and constructs its flow diagram. One possibility is for the generator to make two passes
over the candidate program. In the first pass, a table containing labels and their program points is
constructed. Call this table an environment. In the second pass the environment is used to deter-
mine where a goto jumps to.

An environment can be thought of as a function, which when applied to a label yields the
corresponding program point. If after the first pass the environment e' is determined, then Figure
4 shows an intermediate stage in the construction of the flow diagram.

al

a 2

yb2 i
J \

L2

Figure 4. Once the environment e' containing the continuations for labels is determined,
then the above circular expression gives the continuation for the whole program. Each of
the operators is an abbreviation of an expression that maps continuations to continuations.

The flow diagram generator analogy is very close to the way denotational semantics of a
language with goto statements are specified. In denotationat semantics, instead of program
points, "continuations" are associated with labels by the environment. States, which map identif-
iers to values, are not mentioned explicitly in a flow diagram. It is implicit that the final state on
leaving a flow diagram depends on the initial state on entry to the diagram. The entry point is
important - - the mapping from initial state to final state depends on it. With an entry point L0 of
a diagram associate a continuation Co, which is a function from the initial state to the final state. If
the entry point is changed to L1 from L0 then there will be a different continuation ci associated
with the entry point L I.

The meaning of a label L is given by a continuation c that corresponds to making L the entry
point of the program. Let I stand for the identity continuation.

384

The root of Figure 4 gives the continuation for the entire program. Since the first statement is
labelled L1 the root also gives the continuation for label L1. Irrelevant detail is avoided by sketch-
ing the effect of the assignments using the operators al, a2, and a 3. These operators map the con-
tinuation following the relevant assignment to the continuation that includes the effect of the
assignment. 1 Conditionals have two possible exits and there is a continuation associated with each
exit. The operators bl and b2, for the predicates p and q, take two con~uat ions as arguments - -
the first corresponding to the predicate being true, the second to the predicate being false. A goto
statement is handled by using the continuation of the label gone to: recall that the continuation for
a label can be determined by applying a suitable environment to the label.

a2

,/ll \\
/ \ \ \

L2

Figure 5. The dashed line connects vertices that are merged when an instance of the least
fixed point operator is eliminated, as in Figure 2.

The suitable environment is determined as shown in Figure 5. There are two environments
in Figure 5. Environment em is a mini-environment that contains label bin "drags for the current block
alone. Ignoring the dashed line, let e m be the initial environment that maps every label to the
"undefined" continuation 2_. The environment e contains global bindings, so before it can be
used, the continuations for the labels in the current block are entered into e yielding say e'. As in
Figure 4, e' is used to determine the continuations for the whole program. An updated mini-
environment is then determined by entering the continuations for the labels into an empty mini-
environment nil . Once fix is applied, Figure 5 is obtained.

As mentioned in Section 3, the following equivalence [mcc62] leads to a reduction called
indirection elimination.

a l p (u p d (f , x , a) , y) =- i f y = x then a else f (y)

In the graph in Figure 5, the labels L1 and L2 are literal labels, not label variables, so the equality
"y = x can immediately be tested. Look at the application of e m to L1 at the bottom left hand comer
in Figure 5. Since the vertex for e m is merged with the vertex connected to it with the dashed line,
there is an application of an update as in the equation above. In Figure 6, rather than going

The precise specification of al, the operator for the first assignment, is as follows. Given con-
tinuation C,

a~(c) = xs. c(s[s |v] / u l)
The remaining operators in Figure 4 are also continuation transformers.

385

through the mini-environment, there is a direct edge to the continuation for L1. Similar remarks
apply to the label L2. Vertices that are unreachable have been eliminated.

L2

Figure 6. This graph is obtained from the graph in Figure 5 by eliminating the indirection
through the mini-environment.

Indirection elimination can be applied to Figure 6 as well. This time, elimination of the app
and other vertices that become unreachable yields the circular expression in Figure 3t Only now
the operators in Figure 3 have a very definite meaning as continuation transformers.

5. A compiler generator
Figure 7 shows the logical organization of the front end of a semantics directed compiler gen-

erator. The user interface is indicated by the dotted box. For a candidate language L, a denota-
tional semantics Lsem.d and regular expressions Ltok.r specifying the lexical structure of L have to
be provided.

Together with a package of trivial symbol table r o u ~ e s , the regular expressions in Ltok.r con-
stitute Ltok.l. The program Lex [les75] generates a lexical analyzer for L from Ltok.l.

The program d2y examines the semantic rules in Lsem.d and converts them into a C [ker78]
program fragment that will cause a graph to be built for a program in L. The mapping performed
by d2y is such that its output Lsem.y can be piped through the parser generator Yacc [joh75] to
construct a syntax analyzer for programs in L.

Given a program prog.L in L, the output of the syntax analyzer is a graph representing the
meaning of the program. The reducer performs 13-reductions, ind i rec~n elimination, and the
selection of elements from lists. (Other reductions are easy to add.) ~-reduction is performed only
when the app vertex is the sole father of the k vertex. (Common subexpression elimination may
be needed to permit some 13-reductions. Presently, this has been done by coding Lsem.d care~]ly.
Eventually the algorithm of [dow80] will be used.) The output of the reducer is a simplified circu-
lar expression.

Figure 7 also shows how the program d2y is constructed. The notation used for writing deno-
tational specifications like Lsem.d is inspired by that of Yacc. The major difference is that instead
of a C program fragment, the semantic rules are denotational. Further details are given in Appen-
dix B. metaspec.l and metaspec.y give the syntax of the notation in which Lsem.d is written.

386

Lsem.y

metaspec.1

metaspec, y

azyz I

simplified
circular

expression

Figure 7. Logical organization of the front end of a semantics directed compiler generator
d2. For a language L, the lexical and syntactic analyzers are constructed from the specifica-
tions Ltok.r and Lsem.d, respectively. Ltok.r contains regular expressions and their transla-
tions, while Lsem.d contains denotational semantic rules.

6. Discussion

The few examples that I have tried are very encouraging. The present version of d2y has
31,876 bytes (on a PDP 11/70: November 9, 1980). In each of the examples, the lexical analyzer,
parser, and reducer together are less than 27,500 bytes. (These programs contain fat that can
easily be trimmed. By way of a lower bound, empty Lex and Yacc specifications lead to a lexical
analyzer and parser containing 9,288 bytes.) Besides the goto language of Section 4 and Appendix
B, I have tried a while language with break and continue statements; the language LC, a version
of the lambda calculus from [mos79b]; and the Loop language of [ten76].

Based on a meagre five samples, the reducer tends to eliminate at least two thirds of the ver-
tices constructed by the syntax analyzer. This figure is not surprising. For example, the meanings
of statements are typically functions from environments to continuations to continuations. In the
graph built by the syntax analyzer there will be ~, vertices and bound variable vertices for environ-
ments and continuations. Often the ~ vertices have one father, which is an app vertex, so ~-
reduction is possible. Each f~-reducfion eliminates three vertices. For the example program in Sec-
tion 4, the final circular expression is actually smaller than Figure 3 suggests since ~-reduction will
eliminate the links between some of the continuation transformers. The actual output is shown in
Appendix B.

Circular expressions are not an end in themselves. They can either be interpreted using
reductions like the ones listed by Mosses [mos79a] (see also [hof79, hue79]), or code can be gen-
erated directly from them. I am presently examining ways of converting applicative expressions
(with cycles) to imperative code, but it is too early to talk of progress on this problem. In the
meantime, techniques that require additional information for each language can be used. For
example, Wand [wan80] defines the semantics of languages using combinators that are easy to
implement directly on a machine. Using such combinators the simplified circular expression con-
structed as in Figure 7 will be easy to map onto machine code. The approach of [ras80] uses
detailed knowledge of continuations, but can be applied to the reduced circular expression. In
short, all the approaches to compiler generation that I am aware of would benefit by starting with

387

the reduced circular expression.

Acknowledgements
I would like to thank Gerard Berry for helpful discussions, Doug McIlroy for providing some

perspective on early work on semantics, Bjarne Stroustrup for discussions on programming using
classes [sts80], and A1 Aho for comments on the presentation. Lex by Mike Lesk and Yacc by
Steve Johnson were invaluable tools. The figures were drawn using Brian KemJghan's Pic pro-
gram [ker80].

Appendix A. Semantics of circular expressions
A circular expression is a directed graph with a unique vertex called a root. The meaning of a

drcular expression is given by starting at the root and unfolding the graph into an infinite tree.
The purpose of this section is to suggest how the semantics of circular expressions can be formal-
ized.

The well known idea of cutting loops and associating recursive equations with a flow diagram
[mcc62] can be applied just as easily to circular expressions. (The system of recursive equations
that is generated will be referred to as a recursive scheme,) The semantics of a circular expression
can then be given by the semantics of a recursive scheme for it. See [sco71, cou76, adj77, rey77]
for example. The basic idea in each of these papers is to construct an infinite expression tree and
let the meaning of the tree be the meaning of the recursive scheme. Unfolding the circular expres-
sion yields the same tree.

The semantics of an infinite expression cannot be given by associating values with the leaves
and working up to the value of the root, since the root can never be reached. Its meaning is
therefore given as the limit of an infinite sequence of values of finite expressions. For limits to
exist, the expressions in the sequence and their values must satisfy certain constraints.

On a syntactic level, each expression tree in the sequence represents a stage in the incremen-
tal unfolding of a circular expression (graph). There will be leaves in these expression trees at
which further unfolding needs to take place, and this fact is noted by labelling such leaves with
the symbol f~. Along with f~ comes a partial order on expressions, since f/, representing the fully
folded expression, gives less information than any other expression. (More precisely, no more
informa~on than any other expression.) For limits to exist in general, infinite expressions have to
be added. There is a similar partial order on values.

Since functions may be defined and applied in circular expressions, some of the work on the
),-calculus is also quite relevant. Following Wadsworth, a special symbol f~, whose value is ±, is
added to the k-calculus in [wad78, hy176, lev76, we175]. A notion of "approximant" of a term is
defined (this is more than just direct approximation since ~-reductions can take place). The value
of a term is shown to be the limit of the values of all its approximants [wad78, hy176]. Hytand
shows the result for both the D~ [sco73] and the P0~ [sco76] models. Such results allow
equivalences to be proved between a finite expression on the one hand and an infinite expression
on the other.

Appendix B

The notation used to specify semantics will be illustrated by considering a simple language
with goto statements. The specification consists of three parts: declarations that help Yacc con-
struct a parser; domain declarations; and, the syntactic and semantic rules. The three parts are
delimited using the marker ~%.

In the first part, d2y looks at lines beginning with ~token and %star t . All other declara-
tions are copied through for the benefit of Yacc. Knowledge of tokens is used when the semantic
rules are examined. The start symbol is captured and a new start symbol supplied so that some
~nitializing code can be executed before parsing of a program begins. In particular, if there are any
predeclared identifiers or hidden identifiers in the semantics, they have to be passed through and
entered into the symbol table so that their special status is recognized when a program is parsed.

At present the domain declarations are examined, but the type information is not used to do
any checking. As an aside, domain declarations are represented by a directed graph, where cycles
record reflexive domain dedarationso Associated with each domain identifier is a pointer to a ver-
tex in the directed graph. Along with the domains are: va r declarations of variables that

388

represent elements of the domain; non t declarations that identify nonterminals in the syntax
whose meanings belong to the domain; and, elem declarations that identify elements of the
domain. So far, I have used elem declarations for hidden identifiers in a language with break
and continue statements, and for the identifiers p l u s and mul t that have predefined meanings
in LC [mos79b].

The third part contains the syntactic and semantic rules. If all the text between braces is
deleted, a syntactic specification in the input language of Yacc will be left. The semantic rules
between braces are in a metalanguage similar to DSL [mos79a] without the parse tree constructs.
The precedence of operators is different from that in DSL. For those unfamiliar with DSL, the
metalanguage is an extended k-calculus.

In the following spedfication, syntactic rules are indented one tab stop, while semantic rules
are indented two tab stops. The meaning of a syntactic object is indicated by preceding it with a
$ sign. For ease of implementation, the specification of all valuations is collected together, so the
meaning of a syntactic object will in general be a function from some domain to a list of elements
from some other domains.

There are differences of detail between the discussion in Section 4 and the exact treatment of
labels in the semantic specification that follows. For pedagogic reasons, the mini-environment was
constructed using functions rather than lists. Here, the meaning of a statement is a function from
environments and continuations to a list containing a continuation as a second element and with
label information as a first element. The label information consists of a list of pairs of labels and
their associated continuations. There is an operation in the metalanguage that allows a function to
be be updated using a list, so that the list of labels and their assodated continuations can be used
to directly update the environment.

The code for Lsem.d follows.

~token GOTO IDE IF

Mstart prog

Ide

v;
s = Ide -> V

A;

C = S -> A

Env = Ide -> C

var IDE~

var s;

var c;

var e;

prog

S -> V nont exp;

Env -> C -> C nont prog;

Env -> C -> [[Ide,C]~ , C]nont stm, stmlist~

: stm

{ lambda e. lambda c.

let cyclic p = $stm (e[p.1]) c;

in p. 2
}

/, The keyword cyclic indicates that the definition of p is circular, The environment e is
updated using the hst p. I, i.e. the first element of the pair p. p. I is itself a list of pairs of
labels and assodated continuations. The second element p. 2 of p is the continua~on that is asso-
dated with the beginning of the program.
, /

stm : IDE ':" '=' exp ";'

{ lambda e. lambda c.

let sc = lambda s. c(s[$IDE;$exp s]);

in ((),so)
}

"{' stmlist "}"

389

{ Sstmlist }

IDE ":' stm

{ lambda e. lambda c.

let pair = $stm e c;

sc = pair.2;

sl = ($IDE,sc) cons pair.l;

in (sl,sc)
}

IF '(' exp ')' GOTO IDE ";"

{ lambda e. lambda c.

let sc = lambda s.

Sexp s -> e (SIDE) s , c (s);

in ((),sc)
}

exp : IDE

{ lambda s. s($IDE) }

stmlist : stm

{ Sstm }

stmlist stm

{ lambda e. lambda c°

let p2 = $stm e c;

sc = p2.2;

pl = Sstmlist e sc;

sl = p1.1 cat p2.1;

in (sl,pl.2)

l

The mapping performed by d2y is such that the first semantic rule will be transformed to:

prog: stm
{

}

nodeptr[3] = ctnode(VAR,9,12);

nodeptr[4] = ctnode(VAR,7,10);

nodeptr[5] = ctnode(VAR,99,16);

nodeptr[6] = $1;

nodeptr[7] = ctnode(SELECT, 1,nodeptr[5]);

nodeptr[8] = ctnode(UPD,nodeptr[3],nodeptr[7]);

nodeptr[9] = ctnode(APP,nodeptr[6],nodeptr[8]);

nodeptr[10] = ctnode(APP,nodeptr[9],nodeptr[4]);

cttie(nodeptr[5],nodeptr[10]);

nodeptr[11] = ctnode(SELECT,2,nodeptr[10]);

nodeptr[12] = ctnode(LAM,nodeptr[4],nodeptr[11]);

nodeptr[13] = ctnode(LAM,nodeptr[3],nodeptr[12]);

$S = nodeptr[13];

Until a program is supplied for parsing, the "address" of the vertices constructed for the pro-
gram are not available. However, when c tnode creates a vertex during parsing, it can leave the
"address" in the array nodep t r where subsequent calls to c tnode will be able to find it. The
routine c t t i e creates the circular expression.

Once the parser, graph builder, and reducer have been constructed, the following program
will be mapped to the circular expression below.

390

LI: u := v;

L2: w := x;

if(p) goto LI;

y := z;

if(q) goto L2;
}

In the representation of the circular expression below, vertex numbers appear before the colon on
the left. When a number appears by itself on the right of a colon, it represents the expression
rooted at the vertex with that number. Variables like s 10 and s41 have been created to distin-
guish bound instances of the same variable s.

6:st0 (v)

14: slO [6 / u]

15:47 (14)

16: lam slO . 15

37:s41 (x)

45:s41 [37 / w]

47: lam s41 . 94

83:45 (p)

91:16 (45)

94:83 -> 91 , 160

117:45 (z)

125:45 [117 / y]

149:125 (q)

157:47 (125)

158:c182 (125)

160:149 -> 157 , 158

188: lam c182 . 16

189: lam e181 . 188

root 189

There is no mystery to the routine used for printing out drcular expressions. There is a
sequential scan through the vertices during which vertices for identifiers, variables, and constants
are ignored. At each vertex representing an operator some printing takes place. The details can
be gleaned from the example.

The astute reader will have noticed that at least 189 vertices were constructed for the above
program, of which about a sixth remain in the reduced circular expression. I suspect that the
phases of graph building and reduction can be made into coroutines without too much difficulty,
so that it will not be necessary to construct large intermediate expressions that get cut down to
size.

References

adj77, adj: J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright, "Initial algebra seman-
tics and continuous algebras," I. ACM 24(1), pp. 68-95 0anuary 1977).

aho79. A. V. Aho and J. D. Ullman, "Universality of data retrieval languages," Sixth Annual ACM
Symposium on Principles of Programming Languages, San Antonio TX, pp. 110-120 (January 1979).

chu41. A. Church, The calculi of lambda conversion, Annals of Math. Studies, No. 6, Princeton
University Press, Princeton NJ (1941).

cou76. B. Courcelle and M. Nivat, "Algebraic families of interpretations," 17th Annual Symposium
on Foundations of Computer Science, Houston TX, pp. 137-146 (October 1976).

dowS0. P. J. Downey, R. Sethi, and R. E. Tarjan, "Variations on the common subexpression prob-
lem," J. ACM, pp. 758-771 (October 1980).

gor79. M. J. C. Gordon, The Denotational Description of Programming Languages, Springer-Veflag,
New York NY (1979).

39I

hof79. C. M. Hoffman and M. J. O'Donnell, "An interpreter generator using tree pattern match-
ing," pp. 169-179 in Sixth Annual ACM Symposium on Principles of Programming Languages, San
Antonio TX (January 1979).

hue79. G. Huet and J. J. Levy, "Call by need computations in non-ambiguous linear term rewrit-
ing systems," Rapport Laboria 359, IRIA (August 1979).

hy176. M. Hyland, "A syntactic characterization of the equality in some models for the lambda cal-
culus," J. London Math Soc, Second Series 12(3), pp. 361-370 (February 1976).

joh75. S. C. Johnson, "Yacc - - yet another compiler compiler," CSTR 32, Bell Laboratories, Mur-
ray Hill NJ (July 1975). See the UNIX Programmer's Manual 2 Section 19 (January 1979)

jon80. N. D. Jones (ed), in Semantics-Directed Compiler Generation, Lecture Notes in Computer Sci-
ence 14, Springer-Verlag, Berlin (1980).

ker78. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Englewood
Cliffs NJ (1978).

ker80. B. W. Kernighan, "PIC - A crude graphics language for typesetting," CSTR, Bell Labora-
tories, Murray Hill NJ (1980).

lan64. P. J. Landin, "The mechanical evaluation of expressions," Computer J. 6(4), pp. 308-320
(January 1964).

les75. M. E. Lesk, "Lex - - a lexical analyzer generator," CSTR 39, Bell Laboratories, Murray Hill
NJ (October 1975). See the version by M. E. Lesk and E. Schmidt in the UNIX Programmer's
Manual 2 Section 20 (January 1979)

lev76. J.-]. Levy, "An algebraic interpretation of the k~K-calculus and an application of labelled k-
calculus," Theoretical Computer Science 2(1), pp. 97-114 (June 1976).

mcc62. J. McCarthy, "Towards a mathematical science of computation," pp. 21-28 in Information
Processing 1962, ed. C. M. Popplewell, North-Holland, Amsterdam (1963).

rail76. R. E. Mflne and C. Strachey, A Theory of Programming Language Semantics, 2 Vols., Chapman
and Hall, London, and John Wiley, New York (1976).

mos79a. P. D. Mosses, "SIS - - semantics implementation system: Reference manual and user
guide," DAIMI MD-30, Department of Computer Science, University of Aarhus, Denmark
(August 1979).

mos79b. P. D. Mosses, "SLS - - semantics implementation system: Tested examples," DAIMI MD-
33, Department of Computer Science, University of Aarhus, Denmark (August 1979).

pac74. G. Pacini, C. Montangero, and F. Turini, "Graph representation and computation rules for
typeless recursive languages," pp. 158-169 in Automata, Languages and Programming, 2nd Collo-
quium, Saarbrucken, Lecture Notes in Computer Science 14, Springer-Verlag, Berlin (1974).

parT0. D. M. R. Park, "The Y combinator in Scott's lambda-calculus models," unpublished,
University of Warwick (1970).

ras80. M. Raskovsky, "Compiler generation and denotafional semantics," see lion80].
rey77. J. C. Reynolds, "Semantics of the domain of flow diagrams,"]. ACM 24(3), pp. 484-503

(July 1977).

sco71. D. S. Scott, "The lattice of flow diagrams," pp. 311-372 in Symposium on Semantics of Algo-
rithmic Languages, ed. E. Engeler, Lecture Notes in Mathematics 188, Springer-Verlag, Berlin
(1971).

sco73. D. S. Scott, "'Lattice theoretic models for various type-free calculi," pp. 157-187 in Proc. IVth
International Congress for Logic, Methodology and the Philosophy of Science, Bucharest, ed. P.
Suppes et al., North-Holland, Amsterdam (1973).

sco76. D. S. Scott, "Data types as lattices," SIAM J. Computing 5(3), pp. 522-587 (September 1976).
sta79. J. Staples, "'A graph-like lambda calculus for which leftrnost-outermost reduction is

optimal," pp. 440-455 in Graph-Grammars and Their Application to Computer Science and Biology,
Lecture Notes in Computer Science 73, Springer-Verlag, Berlin (1979).

sto77. J. E. Stoy, Denotational Semantics, MIT Press, Cambridge MA (1977).
str72. C. Strachey, "'Varieties of programming language," pp. 222-233 in International Computing

Symposium, Cini Foundation, Venice (April 1972).

392

sts80. B. Stroustrup, "Classes: An abstract data type facility for the C language," CSTR 84, Bell
Laboratories, Murray Hill NJ (April 1980).

ten76. R. D. Tennent, "The denotational semantics of programming languages," Comm. ACM
19(8), pp. 437-453 (August 1976).

wad76. C. P. Wadsworth, "The relation between computational and denotational properties for
Scott's D~-models of the lambda calculus," SIAM J. Computing 5(3), pp. 488-521 (September
1976).

wad78. C. P. Wadsworth, "Approximate reductions and lambda calculus models," SIAM J. Com-
puting 7(3), pp. 337-356 (August 1978).

wan80. M. Wand, "Deriving target code as a representation of continuation semantics," TR 94,
Computer Science Department, Indiana University, Bloomington IN (July 1980).

wel75. P. H. Welch, "Continuous semantics and inside-out reductions," pp. 122-146 in h-calculus
and Computer Science Theory, Lecture Notes in Computer Science 37, Springer-Verlag, Berlin
(1975).

