
A SPARSE TABLE IMPLEMENTATION OF PRIORITY QUEUES

by

Alon Itai ~t), Alan G. Konheim c2~ and Michael Rodeh (3~

1. INTRODUCTION

Priority queues have been defined in several ways. In this paper a priority queue is a data

structure on which the following operations can be executed:

Search(x), Insert(x), Delete(x), Min, Next(x), Scan.

There are numerous implementations of priority queues, in which each of the first five

operations requires no more than O(log n) time (n is the number of keys currently in the

queue). All of these implementations use trees: 2-3 trees [AHU], AVL-trees, weight

balanced trees [RND], binomial trees IV] and require large overhead, both in time and in

space. In many cases the algorithms devote much of their running time and storage

manipulating the priority queue, often rendering a theoretically efficient algorithm to be

infeasible or inefficient for all practical purposes.

An implementation of priority queues by means of sparse tables is presented in this paper.

Data is stored in a linear array and requires only a single pointer. Insertion requires three

operations:

• searching

• moving

- to locate the table address at which a record will be inserted,

- shifting of records in the table to free space for the record to be

inserted, and

(~ Computer Science Department, Techrtion- Israel Institute of Technology, Haifa, Israel.

(2~ Mathematical Sciences Department, IBM Thomas J. Watson Research Center.

(3) IBM Research, San Jose Laboratory. On sabbatical from IBM Israel Scientific Center,

Technion City, Haifa, Israel.

418

w reconfiguring - increasing the size of the table and distributing the keys.

Searching a table of s ize m requires O(log m) time using binary search and O(log log m)

time using interpolat ion search [PIA]. An exact analysis of the complexity of the move

operat ion is given in [IKR]. It shows that although the number of moves on the worst case

is O(m), the expected number of moves is bounded by a constant provided the density is

bounded away from t . In [IKR] an extensive use of generating function theory and calculus

is made. In Section 3 an O(1) bound on the expected number of moves is derived for a

special case which is similar to a structure proposed by Melville and Gries [MG] and

Franklin [Fr]. Both Melville and Gries and Franklin relate the insertion of keys into a

sparse table to the length of a probe in hashing with linear probing [KN2, KW, BK]. While

such a relationship exists, the probabil ist ic models underlying these two processes differ so

that the analyses offered in [Fr] and [MG] are incorrect. We discuss this briefly in Section

4.

To improve the worst case behavior, a more complicated sparse table scheme is introduced

in Section 5 which requires no more than O(n log 2n) time to build up a table with n

elements.

Deletion may be implemented by marking the records that have been deleted. This idea

was also used by Bentley et. al. [BDGS] and by Guibas et. al. [GMPR] and is discussed in

Section 6.

2. SPARSE TABLE SCHEMATA

Associate a key K = K (R) with each record R such that the correspondence between

records and keys R . ~ K (R) is biunique. When records are stored in a table with their

keys in sorted order, Search(K) is efficient. If records are stored contiguously, Insert(K) is

carried out by moving records to free space for the record to be inserted. The efficiency of

insertion will be improved by introducing gaps in the table thereby storing n records in a

419

table of capaci ty m for some m > n . A key is assigned to each address in the table by

in t roducing ficti t ious or d u m m y keys. We descr ibe the state of the table by the vec tor

Y = (Y0,Yl, - • • ,Ym-1) YO<Yl < '" "<Ym-1

indicat ing with this no ta t ion that the (genuine or dummy) key Yi is s tored at address i for

O< i<m. If the genuine keys in the table are

Yio<yq <, . . . ,<yin_~ 0 < i 0 < i 1 < . . . i n _ 1 = m - 1

then dummy keys, each with the value Yi / are s tored at each address in the cont iguous

block of i t - i t _ 1 - 1 addresses

it_ 1 + 1,it_ 1 + 2 , i t - 1 (0 < t < n ; i _ l = - 1)

so that

Y0 Yio<Yio+l Y i 1 < ' ' "<Yin_l+l Yin--I

For example, genuine keys are loca ted at addresses 2, 5, 6 and 8 in the table

y = (2 ,2 ,2 ,3 ,3 ,3 ,4 ,5 ,5) n = 4,m = 9.

It will be useful to cons ider the table as a circular array: Address 0 fol lows address m - 1,

address calculat ions are made modulo m, and a poin ter is used to point to the origin of the

table.

The building of a table by means of the inser t ion of keys is de te rmined by two sequences

of real numbers :

{nk:O<_k<~} and {mk: 1 _<k<~}

1 = n 0 < n l < . . . < n k < . . , n k < n k _ l m k 1 < k < ~

which have the fo l lowing in terpreta t ion:

(i) The size of the table m can only take the values n k _ l m k for k = 1,2

(ii) The size of the table is m = n k _ l m k when the number of dist inct keys in the table n

satisfies n k _ 1 <n <_ n k.

(iii) To insert the key x in to a table of size m = n k _ l m k conta in ing n k _ l < n < n k genuine

keys, the address s sat isfying

420

Y s _ l < X < Y s O<s<m

is determined by a binary search, s = 0 means that x is either smaller or larger than

any key presently in the table. If Ys is a dummy key, it is replaced by x yielding the

table

(Yo ,Ys- l,X,Ys+ l Ym-1)"

If Ys is a genuine key, the block of t (say) consecutive genuine keys

Ys~Yn+l ~ , Y s+ t - l~Ys+t = Ys+t+l

is moved circularly to the right one position, the pointer to the origin of the table is

adjusted if necessary and x is inserted at address s yielding the table

(Yo ,Ys- l ,X,Ys Ys+t- l ,Ys+t+ l ,Ym- 1)

(iv) A reconfiguration of the table takes place when the key x is to be inserted into a

table of size m -- n k _ l m k containing n k genuine keys. The size of the table is first

increased to nkmk+ 1 and the n k genuine keys

Yio<Yi 1<, • . . ,<Yin~_ 1

are uniformly distr ibuted in it. Then a binary search fo r x in the expanded table is

carried out and the key x is inserted as in step (iii).

The numbers {m k} are the (multiplicative) expansion factors; the ratio p = n / n k _ l m k with

n k _ l < n < n k is the density of genuine keys in the table. Note that 1 / m k < P < l . The

expansion factor m k adds approximately log m k steps to the binary search but reduces the

numbers of keys which must be moved to insert a new key. The cost of reconfiguration is

O (n k m k + l) so that if the number of keys inserted since the last reconfiguration, n k - - n k _ 1,

is proport ional to the size of the expanded table, the cost of reconfiguration per key is

constant. As for the worst ease, O(n) keys may be moved to insert the n th key. We will

show in Section 3 that the expected number of moves remains bounded as n k increases

provided p is bounded away from one.

42t

3. AVERAGE BEHAVIOR OF SPARSE TABLES

Let us consider a special case of the sparse tables schemata by assuming that the table size

is of the form 2 k and by setting a threshold a < 1 on the density of the table such that

when the threshold is exceeded, the table is reconfigured. These assumptions conform with

the definition of sparse tables if a is of the for m a/2 b (for integral a and b) and k > b. If

these reasonable conditions hold then m k = a / 2 .

Let (K0, . . . ,Kn) be the keys to be inserted into the table. We shall investigate inserting

K n into the table containing {K 0 Kn_l}. Since only the relative order of the keys

affects the algorithm, we assume that the keys are a permutation of the integers

{0 n}. Furthermore, because of the circular symmetry we assume that K n = O. Since

the expected number of move operation increases with the density, the expected number of

move operations is maximal just before a reconfiguration, i.e. n = nk-1. We shall,

therefore, confine our analysis to this case. Let N -- nk_l, then n --- 2N - 1.

Suppose a move of length j was required to insert K2N - 1, then

(Yo ,yj) = (1,2 ,j - 1,j,j).

Let aj be the number of keys in this segment of the table which also belong to

{ K 0 , . . . ,KN_I}. As a result of the most recent reconfiguration, at least Lj/mkJ and at

most rj/mkq elements were put there and thus

L j / m k J <aj< [j / rnkl .

Therefore the number of ways to choose {K 0 KN_I} is at most

(aSj) ,,ZN- 1-j
\ N - a j l

and the probablitity to make such a choice is

~ N - a j J

Therefore the expected number of moves is bounded by:
e~

If a/= rja/21 then it is easy to show that

422

c J 0(aj- 1)
where C o depends only on a. Therefore, by Stirling's formula [Fe],

(J "~ < C 1 (flY J)- 1/2 (/3/3yY) -J a / -

where/3 = aj/j , ~, = 1-/3 and C 1 depends onty on a.

Other approximations which follow from Stirling's formula are (C 2 and C 3 are constants):

(2 N N - 1) >C2N_1/222N

(2 N - ~ _ I ~ j j) < [. 'N-2N-jl.j/2J) < C3(2N - J)- l /222N-j
m

Therefore, there exists a constant C 4 which depends only on a such that for sufficiently

large N:
N / (1 -cz/2)

E < C 4 ~ j(/3yj)-l/2(/3/3yY) - j N1/22-2N(2N - j) - l /Z22N- j
j= l

N/(1-a/2)
= C4(/3y) -1/2 2~ jl/22-J(/3/3yY)-J (N/(ZN - j))1/2

j--1
• N / (1 - a / Z) j)) 1/2

= C4(/3y) -1/2 ~ j l / 2 (N / (Z N - (2/3flyY)-J
j= l

1/2N/(l-a/2)
< C4(/37) -1 /2 ((2 - a) / (2 - 2a)) X jl/2(2,8/3yY)-J

j= l

< C4((2-ez)/(2/3y(t-a))) 1/2 ~ jl/2(2jS/3yY)-J.
j= l

Since a < 1 and/3 < 1/2 we have:

(2/3/3~y) - 1 < 1.

Therefore, E is bounded by a function of a independent of N.

To summarize we have the following:

Theorem l : On insertion (no deletions allowed) the average number of move operations is

bounded by a constant. []

A corollary of Theorem 1 is the following:

Theorem 2: On the average, insertion requires O(log n) operations.

Proof: The binary search conducted to find the place where to insert the new key takes

0 (log m) = 0 (log n) time. The expected number of moves is constant. Reconfiguration

423

adds only constant time per each insertion. []

4. THE RELATIONSHIP OF KEY INSERTION TO HASHING WITH LINEAR

PROBING

Both Franklin [Fr] and Melville and Gries [MG] apply the analysis of hashing with linear

probing [KN2, KW] to sparse tables, However, in hashing, the address space is fixed (and

is equal to the size of the table) while in sparse tables the address space varies, and is equal

to the number of genuine keys in the table. Also, the order in which the keys are stored in

a sparse table influences the total number of move operations. When hash tables are used,

the total probe length does not depend on the order of key arrival. Therefore, the model

used to analyze sparse tables must be different from the one used to analyze hash tables.

For a more formal discussion see [IKR].

5. IMPROVING THE W O R S T CASE OF INSERTION

As indicated in Section 2, the worst case of insertion may be quite bad. For example, if

m k = 2 and n = 1.5nk_ 1 then inserting a new key may cause nk_ 1 keys to move while the

expected value tends to 5 as the table size increases (see [IKR]). To improve the worst

case performance an addit ional structure is imposed on the sparse table, yielding a more

complicated scheme which we refer to as the hierarchical sparse table. The basic idea is to

redistribute the keys locally when the local density becomes high. The insertion algorithm to

be described below is somewhat different than the one described in Section 2.

L e t m be the size of the table, h = L l o g m - l o g l o g m J a n d b = m / 2 h. Note that log m

< b < 2 1 o g m . Divide the table into m / b = 2 h blocks B o , B 2 , . . . , B 2 h _ I ; the first

2 h r b] - m blocks are of size [.bJ and the others are of size r b] .

Now consider a full binary tree of height h with leaves L o , L 1 , . . . ,L2h_l (scanned from

left to right) and associate with each of its nodes v a segment s(v) of the table as follows:

(i) To the leaf L i associate the block B i (0 < i < 2 h) .

424

(ii) Fo r an internal node with children u and w, s(v) = s (u) u s (w) .

For every node v let m(v) be the size of s(v). Thus if r is the root, then m (r) = m , the size of

the table. The density p(v) of v is the number of genuine keys in s(v) divided by m(v) .

The nodes of the tree are divided into levels. The root r is at level O, and the level of any

other node is greater by one than that of its parent. The level of the leaves is obviously h.

A distinct maximum density is associated with each of the levels. Let O<.rL<~U< 1 and

define the sequence ~'0,~1,. . . ,~'h of threshold densities of nodes in levels 0, 1 , . . . ,h by:

~q = ~'L + q('rU-- 'rL)/h O<q<h.

Thus ~'L = ~ 0 < r l <'" "" '<~h = ~U and , rq+l- ' r q = (~ U - ' r L) / h .

During the process of insertion into a hierarchical sparse table, the density P(Li) of each

leaf L i satisfies p(Li)<,c h = "r U. However, it may happen that for an interval node v of

level q that p(v)>rq .

An insertion is performed as follows:

(i) Conduct a binary search and insert the new key as in Section 2.

(ii) Assume that the block to which a key was added is B i. If the density of B i is less than

or equal to ~'h, then the insertion process has been completed. Otherwise, consider

the ancestors r = Vo,V 1 Vh_ t of L i and find the maximal value of q for which

p(Vq)<Zq. If such a q is found, then the genuine keys of S(Vq) are redistr ibuted locally;

the size of S(Vq) is not changed - only its genuine keys are evenly distributed. Howev-

er, if no such q exists, then the density of the entire table is greated than or equal to

70 = ~L and the table size is increased.

One way to increase the size of the table is by expanding to a table of size nmk+ 1 where n

is the number of genuine keys currently in the table. Note that n may be different that n k

so that the sequence {nk :0<k<~} no longer plays its former role. Another possibility is to

reconfigure when n = n k even if there is no need to do so according to the local densities

criterion. In this case, one can use ~L = n k / n k - l m k which conforms with the (regular)

425

sparse table scheme in the sense that in both schemata table expansion occurs for the same

table contents.

The advantage of hierarchical sparse tables is the improvement of their worst case perform-

anee over the original schemata.

Theorem 3: Performing n--nk_ 1 insertions into a hierarchical sparse table of size

m = n k _ l m k requires at most O((n - nk_l) log 2m/(~U--rL).) operations.

Proof: The density of a block is bounded by ~h = ~U <1" Therefore, each block contains

some dummy keys and the length of a move is less than the size of two blocks

2 [b l <2 + 4 log m.

Some insert ions trigger a redis t r ibut ion of the entire table which costs m operat ions.

However others are not immediately followed by redistribution. We wish to bound the

entire t ime spent on redistr ibution while inserting n--nk_ 1 keys. To this end we first

est imate the number of insertions into s(v) between two successive redistributions.

After redistributing s(v), the density of s(v) and therefore the densities of both of its

children is at most ~'q where q is the level of v. At the next redistr ibution of s(v), v must

have at least one child u with density ~q+l or higher. Thus, the density of s(u) has

increased by at least ~k+l-~k = (ZL-zu) /h . Hence at least (~U-ZL)m(u)/h dummy keys

have been replaced by genuine keys in s(v) between two redistributions of s(v). The cost

of a single redistr ibution of s(v) is m(v). Therefore, the cost per insertion is at most

rn(v)/((,rU-zL)m(u)/h) - - (m(v)/m(u))h/(~U--~L) "

However,

m(v)/m(u)<2 + 1/b

and thus the cost per insertion for s(v) is at most

(2 + 1/b)h/(¢U-¢L)

Each block has one ancestor at each level, and therefore each insertion contributes to at

most h redistributions. Thus the cost of inserting n--nk_ 1 keys is at most

426

(n - nk_ l) (2 + 1/b)h2/('~u-'rL).

Since b and h are both of the order log m, the theorem is proved. []

As for the implementation of this tree, several possibilities exist:

(i) Explicit Representation: The tree is stored by using nodes to contain the current

density (p(v)), and pointers to the two children. The pointers can be eliminated if we

use an array where locations 2i and 2i+1 are the children of location i. The number

of leaves is 2 h = m/b and the number of nodes is less than twice as much. Thus the

storage requirements are o(m). On each insertion the densities of the ancestors must

be updated. This can be done within O(h) = O(log m) time.

(ii) Implicit Representation: No tree structure is maintained. On insertion we first

calculate the boundaries of the block which has received an additional key. Then the

entire block is scanned to calculate its density. If the density is found to be too high

then the sibling block is scanned to calculate the density of the common parent. This

process is continued until arriving at the node v to be redistributed. The scan time is

O(m(v)) which is proportional to the redistribution time, and therefore the worst case

time bound does not change. However, a scan of length b must be conducted even if

no redistribution takes place, thus increasing the cost of insertion somewhat.

(iii) Compromise Representation: The insertion cost using the implicit representation can

be reduced if a vector containing the densities of the blocks is maintained, If no

redistribution is required then we must only update the density of a single block (in

O(1) time). In case of redistribution of s(v), the densities of all of the offsprings of v

must be updated, but the time required for the update is negligible compared to the

redistribution time. As for storage, the extra space is equal to the number of blocks

m/b = o(m).

Note that these schemata are equivalent in the sense that redistribution occurs for the same

table states and affects the same blocks.

427

(iv) Alternative Scheme: As in the implicit representation, no tree structure is maintained.

The boundaries of the blocks and their densities are calculated when needed. Redistri-

bution occurs whenever a scan of length 2b or more is conducted. This implies that at

least one block is full and requires redistribution. Note that in this scheme redistribu-

tion does not occur at the same time and does not occur for the same table state and

does not have the same scope as in the other three schemata. An analysis similar to

that used in proving Theorem 3 may be carried out.

5. DELETIONS

Deletions, though easy to implement, are difficult to analyze statistically. We propose two

deletion strategies:

(i) Physical removal - to delete the key k from the table

Y = (YO,Yl ,Ynk_lmk--1)

conduct a search to find s such that

Ys-1 <k = Ys"

Suppose L satisfies

Ys = Ys+l Y s + L - I # Y s + L

where the subscripts are taken modulo n k _ l m k. Then replace the block

(Ys,Ys+t ,Ys+L-1) by (Ys+L,Ys+L ,Ys+L)

obtaining the table

Y' = (Y0,Yl ,Ys-1, Ys+L,Ys+L 'Ys+L,Ys+L+ I Ynk_lmk-1)

In addition to the reconfiguration, which occurs whenever we attempt to insert a key

into a table y = (Y0,Yl ,Ynk_imk_l) currently containing n k keys, a reconfigura-

tion will also occur whenever deletion reduces the number of genuine keys to some

threshold. There are many ways to specify these contraction thresholds; the simplest

is to reconfigure (after deletion) when the number of genuine keys remaining is nk_2.

(ii)

428

We are not able to provide an analysis of sparse tables under a sequence of

insertions/deletions. To begin with, the set of possible table states attainable by a

sequence of insertions/deletions is larger than the set of possible table states attain-

able by only insertions. (For example, delete the key 4 from the table (0, 0, 0, 1, 2,

2, 4, 4, 4, 6, 6, 6, 8, 8, 8).) The analysis of the pure insertion process is simplified by

the existence of renewal points - the epochs of reconfiguration. The insertion/deletion

process might be compared with a birth and and death process and the analysis given

in Section 3 has determined a probability distribution on the state space of the pure

birth (= insertion) process.

Tagged deletions - Like indexed sequential files (ISAM) this scheme requires an

additional Boolean vector of length m to distiguish between genuine and dummy keys.

A key is deleted by setting the appropriate entry to false. The physical removal of

keys is postponed until reconfiguration time; until then, at least one copy of each key

must remain. The execution time of deletion consists principally of the search time

O(log m). Additional O(mk) time is required to mark all the copies of the key to be

deleted as dummy. By marking only the rightmost copy of a key as deleted, the

additional operation requires only O(1) time.

6. FINGERS

Guibas et. al. [GMPR] introduced the idea of fingers (see also Brown and Tarjan [BT]):

Assume that many search operations accumulate near some prespecified keys, called

fingers. Given a key k which is close to some finger f , it is required to design an algorithm

which searches for k in time O(log d) where d is the distance between the location of f

and the location of k. This feature can be incorporated into the sparse table scheme by

maintaining a sorted list for their fingers (by way of balanced trees ,say) through which the

sparse table may be accessed and adding a Boolean field to each table entry to indicate

429

whether the entry is currently being pointed by a finger. Searching for a key k is done by

first finding the appropriate finger, using it to access the table and then searching for k by

the unbounded search technique (Bentley and Yao [BY]). As for insertion, the proper

iocation is found and move operations takes place. When table elements are moved, the

fingers which point to them are updated.

7. LINEAR SPARSE TABLES

Replace the circular table by a linear one, with additional space on the "right end". This

extra space is used for storing keys which would otherwise shift the origin of the table. The

additional amount of storage depends on the density. It is conjectured that for density p,

bounded away from unity, o(m) extra space is sufficient to preserve the O(1) bound on the

expected number of moves.

8. CONCLUSION

The sparse table scheme is an extremely simple data structure. As indicated by Melville and

Gries [MG], it can be used for sorting. Another application is to B-trees, where all nodes

have the same prespeeified size m, and the number of keys may be as low as m/2 . Imple-

menting each node as a sparse table trades a reduced search time within a node (from

O(m) to O(log m)) for a minor increase in storage (one bit per node, for deletions). Even

though many memory management systems (such as Buddy systems [KNt]) allocate space

in predefined quantities, not many data structures take advantage of this. (The exceptions

are hash tables, sparse tables and some list processing system with garbage collection.)

For constant m k, average behavior of sparse tables is optimal (up to a constant). Howev-

er, the worse case behavior is O(n). To effectively control the worst case, a hierarchical

scheme has been introduced, and an upper bound of O(log 2n) has been proved. Whether

this bound is tight remains an open question. Another open question is the average number

of moves in a hierarchical scheme. We conjecture the bound is O(1) for constant ink.

430

9. REFERENCES

[AHU] A. V. Aho, J. E. Hopcroft and J. D. Ullman, "The Design And Analysis Of

Computer Algorithms", Addison-Wesley, 1974.

[BDGS] J. L. Bentley, D. Detig, L. Guibas and J. Saxe, "An Optimal Data Structure For

Minimal-Storage Dynamic Searching", Computer Science Department, Carnegie-

Mellon University, 1978.

[BT] M.R. Brown and R. E. Tarjan, "A Representation For Linear Lists With Movea-

ble Fingers", Tenth Annual Symposium on the Theory of Computing, San Diego,

California, 1978.

[BY] J . L . Bently and A. C. Yao, "An Almost Optima! Algorithm For Searching",

Information Processing Letters, 5, 3, 1976, pp. 82-87.

[Fe] W. Feller, "An Introduction To Probability Theory And Its Applications",

Volume 1, John Wiley, 1950.

[Fr] W.R. Franklin, "Padded Lists: Set Operations In Expected O(log log N) Time",

Information Processing Letters, 9, 4, November 1979, pp. 161-166.

[GMPR] L. J. Guibas, E. M. McCreight, M. F. Plass and J. R. Roberts, "A New Repre-

sentation For Linear Lists", 9th Annual Symposium Theory Of Complexity, pp.

49-60, 1977.

[IKR] A.Itai, A. G. Konheim and M. Rodeh, "A Sparse Table Implementation Of

Priority Queues", RC-8550, IBM Thomas J. Watson Research Center, November

1980.

[KN1] D . E . Knuth, "The Art Of Computer Programming : Fundmanetal Algorithms",

Addison-Wesley, 1969.

[KN2] , "The Art Of Computer Programming : Searching And Sorting",

Addison-Wesley, 1973.

[KW]

[MG]

[PIA]

[RND]

Iv]

431

A. G. Konheim and B. Weiss, "An Occupancy Discipline and Applications",

SIAM Journal Of Applied Mathematics, 14, 6, November 1966, pp. 1266-1274.

R. Melville and D. Gries, "Sorting And Searching Using Controlled Density

Arrays", TR 78-362, Cornetl University, Ithaca, New York, 1978. (See also IPL,

July 1980, pp. 169-172.)

Y. Perl, A. Itai and H. Avni, "Interpolation Search a LogLog N Search", CACM,

21, 1978, pp. 550-553.

E. M. Reingold, J. Nievergelt and N. Deo, "Combinatorial Algorithms: Theory

And Practice", Prentice Halt, 1977.

V. Vuillemin, "A Data Structure For Manipulating Priority Queues", CACM, 21,

pp. 309-315, 1978.

