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I. INTRODUCTION 

In this work we address ourselves to the problem of translating an 

equational specification into an equivalent working program. 

An equational specification is given by a set of equations of the form: 

Al[I 1 ..... Idl] : fl(Al[El ..... Edl] ..... Am[E ~ ..... E~] )m 

f P .,E~I ] ~[i I ..... i d] : m(al[E I ....... ~[E~,.. E t ] 
" "'d ' 

m m 

where I I, are free indices ranging over the nonnegative integers and E~ ..., are 
3 

integer valued subscript expressions. This set of equations defines therefore 

(recursively) the values of the elements of the possibly infinite arrays 

Al,...,A m 

Our interest in this problem stems from the thesis that an equational 

specification represents a higher level, non-procedural statement of the problem 

as compared to a program in a procedural language such as PL/I, Pascal, etc. for 

the same task. 

This approach is taken by several non-procedural assignment-less high level 

languages such as the family of Data flow languages [AG], LUCID [AW] and MODEL 

[PPS] . On the other hand it seems a special case of a more general functional 

definition as is present in functional languages such as LISP, POP, etc. 

The main task of a compiler for such a language is to analyze a specific- 

ation for being consistent and complete, and construct a program in a more 

conventional language for the computation of the values of the array elements as 

defined by the specification. The algorithms described here were developed as 

part of a compiling processor for the language MODEL. Closely related questions 

have to be solved for any compiler of a non-procedural language, and in fact, 

our results form an extension of the algorithms developed for the compilation of 

LUCID programs [HOd. 

There are several reasons for restricting our recursive equations to arrays 

i.e. functions over the natural numbers and imposing further limitations on the 

forms that the subscript expressions may assume. 

The areas of applications that the MODEL system addresses are data process- 

ing and economic modelling. In both these areas, arrays and structures in gen- 

eral play an important role and the direct specification of relations between 
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input and output structures seems both natural and adequate. 

The restrictions imposed on the syntax of a specification enable us to per - 

form a much deeper analysis of the specification and derive a conclusive result 

which is presented here. In one sense our results can be interpreted as another 

case of recursion removal since a recursive definition is replaced by an equi- 

valent iterative program. Moreover the terms we allow on the right are definitely 

nonlinear which in the general case implies the impossibility of such a trans- 

lation. Consequently the restriction to integer arguments of restricted form 

introduces another family of recursive functions for which recursion elimination 

is feasible and effective. 

A preliminary investigation of translability of equational specification is 

reported in [PPZ]. There, all the right-hand subscript expressions were restrict- 

ed to the form I - c with c ~ 0. The results presented there gave sufficient 

conditions for translatability. 

In this work we extend the framework by allowing much more general subscript 

expressions. The results presented here give a set of sufficient and necessary 

conditions for translatability. 

The framework in which we study the problem of translatability is schematic 

and somewhat abstract in order to ensure solutions which do not depend on specific 

properties of particular functions. 

A strongly related, even though differently motivated work is the one pre- 

sented in [KMW]. They are interested in the question of whether recurrence rel- 

ations arising in differential and difference equations can be scheduled to yield 

an orderly evaluation scheme of the elements defined. Based on the alternative 

theorem for linear equalities, they also conclude that an evaluation is possible 

iff the recurrence relations are noncircular° However they did not investigate 

the existence of a compact loop program for carrying out the computation in a 

reasonable way, a problem which is the main theme of our work. 

Equational S~ecifications -Syntax and Semantics 

A specification is given by a set of m simultaneously recursive equations 

for the array variables AI,...,A m of the form: 

AI[~ I, . . . .  ,~dl] = qC...~j ..... AI[B ~ .... E ~dl] ...Am[E~ .... ,E%s ]) 

.,Edl] u ] ) 
%t l . . . . .  = . . . . .  ' '  t . . . . .  

m 

The variables Ii~...,Id. are called free indices and range over the nonnegative 
1 

integers. The E~ are subscrl~t expressions which assume the following forms: 
3 

IZ± e c % 0 where Iz is a free index in the equation in which the 

E = { expression appears 

. . . . . . . .  'Idt 1 Are[El ..... Edm g(~l' " 
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The F.'S are function symbols standing for functions into the domain over 
1 

which the A.'s vary. 
l 

The g's appearing in subscript expressions are function symbols standing for 

integer functions. Their arguments, as shown in the definition, may be free ind- 

ices as well as subscripted variables. 

The free indices which appear on the left-hand side are assumed to be all 

distinct. 

Following is an example of a schematic representation of Ackerman's function 

as a specification: 

SI: A[I,~ = F(I,J,A[I-I,J+I] , A[I-I , g(A[I,J-~ )] ). 

An interpretation I for a specification consists of: 

I. A domain D over which the array elements will vary. 

2. An assignment of concrete D functions to the symbols {F .} , 
l 

di + k + F i accepts d. integer arguments and i.e. I[F~ : (Z) x(O ) ÷ D where 
1 

kF D arguments. Here D + = D U {I} 

3. An assignment of concrete integer valued functions to the symbols {gj} , i.e. 

I[gj] : (Z +)di× (D +) ~ ÷ Z + 
i 

Computability: Given a specification S and an interpretation I , a comp- 

utation of S under I is a finite sequence of instances of the equations of S 

[q"'~di] 
m Ai[v I ..... Vd2 = F i [Vl. "'vd ] 

l 

n 

Here in the m-th line we have an instance of the equation for A. obtained by sub- 
1 

stituting nonnegative integers Vl,...,Vd~ for the free indices, I i to Id~ . 
l l 

After substitution we evaluate the right- hand side as follows: 

i. Replace every u ± c by its value ( u being an integer). 

2. Replace every F.I or gi all of whose arguments are known, by its 

value. 

3. Replace every A[...u .... ] with u < 0 or A[...I ..~ by I . 

4. Replace every A[Ul,...~u ~ , Ul,-..,u d ~ 0 which appears on the left- 

hand side of an earlier line, by its value. 

A sequence is called a computation if every element A [Ul,...,u d] , 

Ul,...,u d ~ 0 arising in the evaluation of line m appears on the left-hand side 

of an earlier line. 

Consider the following interpretation for S 1 : 
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D -- Nonegative integers, 

F(I,J,dl,d2) = 

if I=0 then J+l 

else if J=0 then d 1 e l s e ,  d 2 

g (d):d . 

Under this interpretation S is identical to the definition of Ackerman~s 
1 

function. Below is a computation of S 1 under this interpretation: 

i. A(0,1) = 2 

2. A(0,2) = 3 

3. A(0,3) = 4 

4. A(I,0) : A(0,1) = 2 

5. A(I,I) = A(O,A(1,0)) = A(0,2) = 3 

6. A(I,2) = A(0,A(I,I)) = A(0,3) = 4 

A computation under I whose last line is A[v I ..... vj = 6 6 D + is called 

an I-computation for A[Vl,...,Vd] . We write Comp<S,I,A[Vl, .... Vd]> = 6 . If 

there is not I-computation for A[Vl,...,v ~ we write Comp<S,I,~v I .... ,v d] > = i. 

An element A[Vl,...,Vd] is said to be co~utable under I if it has an I-computa- 

tion. 

A[Vl,...,v d] is said to be computable if it is computable under every 

interpretation. 

A specification is said to be complete if every element Ai[Vlr...~Vd ] for 
l 

every i = l,...,m and Vl,...,Vd. ~ 0 is computable. 
1 

The following specification is incomplete: 

A[I]= F(A[I+I]) . 

Loop Programs 

Having discussed the source language for our translation~ namely specifications, 

we proceed to define our object language. 

A loop program is recursively defined as a list of statements, where a state- 

ment may be of the following types: 

i. Assignment statement -- 

hIE 1 ..... E d ] : =F(...L...B[G 1 .... G s] ...) 

where EIr...,E d , GI,...,G s are subscript expressions which may be nonnegative 

constants, L is a loop variable. 

2. For loop -- 

FOR I ~ El[TO E 2] DO 

SI;$2;--- S n 

END I 

where SI,.~.,S n are statements, E 1 and E 2 are integer expressions, which may 
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only depend on loop variables. The upper limit 'TO E 2 is optional and when it 

is absent we refer to this as an infinite loop. 

The only variables in the propram are array variables and loop variables which 

may be combined in expressions. Following is an example of a loop program: 

P : FOR J~0 DO 
1 

A[0,J] : :F(O,J,A[-I,J+~ ,A[-i,g(A[0,J-1] )]) 

END J ; 

FOR I~l DO 

A[I,0] : =F(I,0,A[I-l~l] ,A[I-l,g(A[I,-1])] ) ; 

FOR J~l DO 

A[I,J] : =F(I,J,A[I-1,J+]] ,A~-I,g(A[I,J-~ )] ) 
END J ; 
END I ; 

An interpretation I of a loop program consists as before of a domain D and 

assignment to the function symbols {F i} and {gi } 

Given an interpreted program pI we define the N-truncation of pI , pI i as 
N 

the program obtained by replacing every finite loop by an N-bounded loop: 

FOR I~E 1 DO ... ~ FOR I~E 1 TO N DO . 

B I can be executed in a conventional way where expressions are evaluated 
N 

using the following rules: 

I. The initial values of all A[Vl, .... vj _ = ± 

2. Every A[...u...] for u < 0 or A[...A...] is evaluated to I . 

Obviously the execution of pI must terminate since the loop bound expressions 
N 

depend only on constants and other loop variables. We denote the value of 

A [ V l , . . . , v  d] a f t e r  pI has terminated by 
N 

< I  
Val PN, I,A[Vl, .... v~ > (for v I .... ,v d ~ 0) . 

Obviously for N @ N' VaI<pI,I,A[Vl ..... Vd]>_ c Val(<pI''I'A[Vl'''''Vd I N  > where c 
N+ -- 

is the partial order over D by which 

a c b ~=~ a = ± or a = b . 

We may thus define 

I 
VaI<P ,l,A[v I ..... v d] > = lub Val<P~ ,I,A[v I ..... Vd]> . 

N 

That is, the value of an element computed by the infinite program is defined to be 

the least upper bound of the sequence (chain) of values computed by the N-truncations 

of the program. 

A program P is said to realize a specification S if they are defined over 

the same array variables, and for every common interpretation ! 

Comp<S,I,A[v I ..... Vd]> = Val<PZ,I,A[v I .... ,v~ > 

for every element A[Vl,...,Vd] , v I ..... v d ~ 0 . 

The basic question investigated in this paper is : Given a specification, 
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does there exist a loop program realizing it? 

To this question we give an affirmative answer, i.e. every specification 

can be realized by a program. Furthermore, we give an algorithm for constructing 

the program which realizes the given specification. 

Without loss of generality we will deal only with complete specifications. 

S~ecifications i D Normal Form 

A further restriction placed on the form of admissible specification is: 

Every two subscript expressions of the form I.± c , Ii± d appearing in diff- 
3 

erent subscript positions of the same variable instance must be disjoint, i.e. 

A specification is in normal form if: 

i. All variables have the same dimension, d. 

2. Every subscript expression of the form I k ± c appearing in subscript position 

9 of a variable must satisfy k = j . 

The important point in 2. is that the same free index occupies the same pos- 

ition in all the variables in an equation. 

Claim: Every specification can be brought to normal form. 

In every specification which does not satisfy I. we can extend the dimensions 

of every variable to a common maximum d . The extension is performed by adding 

extra dimensions which are arbitrarily subscripted by free indices not occupying 

the previous positions. 

To handle inconsistent subscripting consider the following specification: 

All,J] = F(I,J,A[I-I,~ , A[J-I,I]) . 

Define a new array B by 

B[I,~ = A[J,I] 

Then the following is a consistently subscripted specification which extends the 

original one. 

All,J] = F(I,J,A[I-I,~ , B[I,J-1]) 

S[I,J] = ~(J,I,S[i,J-I] , A[I-l,~]). 

This transformation can be applied to the general case to produce a subscript con- 

sistent specifications. 

Re2rgsentation of a Specification by a Dependency Graph 

A key concept in the analysis of specifications is the dependency graph. For 

a given specification S we define the dependency graph G s = (Vs,E s, I s) which is 

an edge labelled directed graph as follows: 

V -- The set of nodes, having a node for each array variable. 
s 

For every dependency of the form: 

A [ t  1 . . . . .  ~d]  = ~ C . . . s [ E  1 . . . . .  ~ . . . ~  . 

We draw a labelled edge e 
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(ll(e) ..... Id(e)) 

@- G 
e 

The l a b e l  ~ ( e )  = ( t l ( e ) ,  . . . .  Xd(e))  i s  d e f i n e d  by  

-c if E k = I k +c 

I k (e) ={ 
-~ if E k = g(...) . 

Clearly a path H in the graph 

~i ~m 

with ~(~) = ~i + . . .  + ~m and ICH) = (£1,..O,Zd) represents a dependency: 

A[I 1 ..... I~ ÷ B[II-£ 1 ..... Id-£d] 

which is implied by the specification. A -~ component implies a dependency on an 

arbitrary higher value of a subscript. 

In particular if H is a cycle, ~(H) represents a self dependency. A cycle 

C is called non~ositive if l.(c) ~ 0 for i = 1 .... ,d . 
1 

Claim: The existence of a nonpositive cycle implies an incomplete specifica- 

tion. 

A nonpositive cycle implies a self dependency which can be extended into an 

infinite chain: 

A[~ ÷ A[i- ~] ÷ A[i-2~ ... 

This claim prevents any computation for A[0,0,...,0] . 

Realizing by Scheduling 

Our approach to constructing a program which realizes a specification is by 

scheduling. In this approach we attempt to construct a program out of the equations 

of the specification which are properly sequenced and combined into an appropriate 

loop structure, where we clearly must have a loop variable identified with each 

free index. The constraints in sequencing the equations as assignment statement 

are the dependency constraints represented in the dependency graph. An equation 

computing the value of an array element must be executed prior to an equation which 

needs this value. 

As a first stage in the construction we decompose the dependency graph G(s) 

into its maximal strongly connected components. Furthermore it is possible to 

sort these components into a linear order: 

G(s) = GI,G 2 ..... G 
P 

such that any edge from G. to G. must satisfy i ~ j . 
z ] 
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Let us denote the program realizing a specification represented by a depend- 

ency graph G by P(G). Then if we have realizing program P(G1)~...,P(Gp) , then 

a realizing program for G is: 

P(G) = P(GI) ;o..;P(Gp) . 

This is so because every value needed in G. which is not defined in G. is 
3 3 

defined in G. ~ i < j and is already computed by P(G.) 
1 1 

Consequently it is sufficient to consider strongly connected specifications. 

A Positive Edge Algorithm 

Assume that one subscript position~ the first say, is such that ll(e) 9 0 

Then, we claim a program for G may be derived which is of for all edges in G . 

the form: 

FOR Ii~ 0 DO 

P(G') 

END I 
1 

G' is a modified form of G obtained by deleting from G all edges e such that 

ll(e) > 0 ~ and then retaining on the remaining edges the labels 1213,.o.~Id . 

Let us explain the reason for this modification. By enclosing the program in 

a loop on I 1 we have decided to compute all the elements defined in G by layers 

corresponding to ascending values of I 1 The fact that ll(e) 9 0 for all edges 

ensured us that no element of an I 1 -th layer may depend on an element from Ii+c , 

c > 0 layer. This implies that if the elements are computable, they are computable 

in order of increasing I 1 layers° On the other hand, any dependency of the form 

A[II,...] + .ooB[II-C .... ] ,...c > 0 which corresponds to an edge e with 

ll(e) = c > 0 , will be automatically fulfilled by an ascending I 1 loop so that 

we may drop it from the graph and not consider it any longer. 

The modified graph G' may now be further decomposable into strongly con- 

nected components which we may proceed to analyze and program. 

This leads to the following algorithm: 

Algorithm E - Construct a program P(G) for a given specification G 

i. Decompose G into SCC (strongly connected components)topologically sorted 

GI,..°,G P . Apply the following steps to construct P(GI),...,P(G P) and then 

combine into P(G) = P(GI);...;P(Gp)- 

2. Here we are presented with a strongly connected component which for convenience 

we will call G. Locate a position 

G t li(e) ~ 0 . 

3. Construct the modified graph G i 

l . ( e )  > 0 . 
l 

4. Construct the program: 

i , 1 .< i .< d such that for all edges e in 

obtained from G by deleting all edges e with 
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FOR I. ~>0 DO 
1 

P(G i) 

END I. 
1 

In order to obtain P(G l) we apply algorithm E recursive!y to G I . Consider 

the specification: 

A[I;J] = F(B[I,J-I] ) 

B[I,J] = H(B[I,J-I] ,A[Z-l,J+2] >. 

Its dependency graph is given by 

(0,i) 

(i,-2) 

The steps in the construction are: 

FOR I>~0 DO 

END I 

FOR I>~0 DO 

END I 

FOR I>~0 DO 

FOR J>~0 DO 

B[I,J] : :H(B[I,J-1] ~A[I-I,J+2] ) 

END J ; 

FOR J>~O DO 

A[I,J] : =F(B[I,J-i] ) 

END J ; 

END I ; 

A vector (kl,... ,l d) is defined to be lexicographically p_ositive if for 

some i , 1 ,< i 6 d , kl=,...,=/i_l = 0 and ~ .> 0 
1 

The edge matrix of a dependency graph G is the matrix whose rows are 

all the vectors ~ (e) for all the edges e in G , 
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ECG, = r  (ell] 

L ~(ek )] - 

Thus we obtain: 

Theorem I: A specification S whose edge matrix is lexicographioally posit- 

ive, i.e. all rows are lex-positive, is realizable. 

This is easily extended to a specification such that a column permutation of 

its edge matrix is lex-positive. In fact, the condition for success of algorithm 

E is more general than that. It requires only the existence of a nonnegative 

column in each encountered strongly connected component. Once the graph has been 

split into components, the permutations achieving positivity may be different for 

the different components. 

A Positive Cycle Algorithm 

Consider the following specification: 

A[I,J] : F(B[I+I,J-~ ) 

B[I,~ = G(B[I,J-I] ,A[I-2,J+~ ) 

It has the dependency graph: 

(-l,1) 

(0,i) 

(+2, -2) 

Algorithm E fails to schedule this specification because each subscript position 

has an edge with a negative label in this position. 

However by defining a transformed array 

A[!,J] = A'[I+I,J] 

we obtain the specification 

A' [I+l,~ = F(B[I+I,J-I]) 

B[X,J] = G(B[I,J-~ ,A'[I-1,J+2]) 

NOW by I' = i+i we get: 

A,[I',J] = F'(~[I',J-~) 

B[I,J] = G(B[I,J-I],A' [I-i,J+2]) 

where F' is F where F is defined and ± otherwise (I' = 0) . 

Consequently the graph representation of the transformed specification is 

(0,i) 

(0,11 

(1,-2) 
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This specification is now lex-positive and hence schedulable. Trying to generalize 

the transformation above, and concentrating on the first subscript position, we 

look for a general transformation 

~ i r~  1 . . . . .  ~d ] : , i ~d ] , k l i > - o -  Ai[ll+kl , 12 .... , 

The transformation should be such that the labels on all the edges of the modified 

graph should have nonnegative first component. 

Let 

Ai[I 1 ..... IJ + ...Aj[II-ll(e ) .... ] 

be any dependency in the old graph corresponding to an edge e . In the new graph 

this will be transformed to 
i (z~ = + I l k I) 

A i [  q . . . . .  z~ , , i j ' ' ÷ ...Aj [Ii-kl+kl-ll (e) .... ] ... 

Thus the new label of e is given by 

14 (e) i j = 11 (e)+(kl-k I) . 

The k i's we are looking for should therefore satisfy 

j i 
kl-k I .< ll(e) - 

for all edges e: A. + A.. 
z 3 

i By [FF] a necessary and sufficient condition for the existence of such k I >. 0 

is that for every cycle in the graph C = el,e2, ,e m .... II(C) = ll(el)+...+ll(em)>.0 

Motivated by this we consider an extended edge matrix. Let e!...e m be the edges 

of G. 
r x (el)l r 6(e$) ] 

Let E (G) = R(G) = 

Lx:(em) ] [6(~m)] 
where l(ei) is the label for edge ei: uj + uz, and 6(ei) j 

6(ei) t = 0 t#£,J 

= 1 , 6(ei)£ = -i 

We define ME(G) the extended matrix to be 

ME(G) = [E(G) ;R(G)] 

Mc(G) the cycle matrix of G is defined by 

Mc(G) = ." where ~(c i) is the label of the cycle c i of G, and 

c l..Cs are all the basic cycles of G. 

A specification S is called cycle-lexicographically positive (c-lex-positive 

for short) if the matrix Mc(G) is lex-positive. By [FF] if S is c-lex-positive 

then there exists a t-unit-vector v=(O .... 0,i .... 0) and constants k i t B 0 l$i~n, 

s.t. 

ME(G)- [~] ~ 0 
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Algorithm C - 

1. Decompose G into a sorted list of strongly connected components: G = G1..o 

Apply the following steps to each component which for brevity, we denote by G 

2. Find a position t and nonnegative constants k. for each array variable 

A such that for each edge e in G e: A~ <A(e) i . , A~ the following holds 
i m ] 

i k j  
It(e) + k - 9 0 

3. Modify the specification by substituting: 

A i [ I  1 . . . . .  I ~  = A i [  . . . . .  I t + k  i . . . .  ] , 

The modified specification would now have 

l[(e) ~ 0 

for every edge in the graph. 

4. Construct the program 

FOR It~ 0 DO 

p(G i) 

END I t 

P(G i) is the program constructed for the graph 

~G 
P 

G i by a reeursive application 

of algorithm C . G i is obtained from G by deleting all edges e such that 

l~(e) > 0 . 

Theorem 2: Every specification which is cycle-lex-positive is realizable. 

Again, the actual condition required is less restrictive than lex-positivity 

even after transformation. 

The General Case 

Consider the following specification 

A[z,~ = F(A[Z-I,J+I] , B[I,~ ) 

B[I,J]= G(B[I+I,J-~ , A[I~O-~ ) . 

Its graph representation is: 

(i,-i) ~ (-i~i) 

Here neither t/~e first nor the second label is nonnegative for each cycle. Con- 

sequently algorithm C will fail to schedule this specification. However by the 

following substitution: 

All,J] = A'[I+J,I] 

B[I,J] : B'[I+J,J] . 

We obtain a modified specification: 

A' [I+J,I] = F(A' [I+~,I-1], B' [I+~,J] ) 

B'[I+J,J] : G(B'[I+J,J-I] , A'[I+J-I,I] ) 
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Resubstitute l+J = I' and I = J' in the first equation and l+J = I' 

in the second equation to obtain 

A'[I' ,J'] =r(A'[i ~ ,J~-~, ~'[I',I'-J']) !'~ J' ~ o 

B'[I' ,J'] = G(B'[I' ,J'-~ , A'[i'-l,Z'-J']) I' % J' % 0 . 

and J = J~ 

Treating the expression I'- J' as g(I' ,J~) we obtain the following dependency 

graph: 

(0,1) ~ _  (0,i) 

with the extended edge matrix 

0100] 
[0-~ l-1 

M E (G) = 

[i -~-i 1 0100 j 

The new specification is c-lex-positive and therefore schedulabie by Algorithm C. 

Generalizing this example we will look for a linear dxd transformation T I, 

one for each variable A. such that: 
i >~ 01all are integers. a. The entries Tk, Z 

b. T i is unimodular, i.e. det(T i) = ± 1 . 

c. Perform the following: 

I. Substitute A.[~]= A~[~'T i] for each variable Ai; 
i • 1 

2. substitute ~ ' T  1 : I '  i n  t h e  e q u a t i o n  f o r  A. ; 
1 

3. substitute each dependency AS I] ÷A.[I-~ by A[ [['] ÷A~[I' (Ti)-l-~) T~ 
3 • 3 

Then the r e s u l t i n g  s p e c i g i c a t i o n  i s  c - l e x - p o s i t i v e .  

The transformations T i are constructed incrementally by columns. For two variables 

A and B , T A and T B will be identical in the first j columns if A 

and B stayed in the same strongly connected component for the first j steps. 

The basic construction step is that of finding columns v~0 and k~0 such that 

M(v,k)~ 0 where M is the current extended edge matrix. In this we refer to the 

basic alternative theorem [T] which is the theorem underlying the duality theorem 

for linear programming: 

For a given matrix M , there either exists a nonnegative column v~0 such that 

M~0 and Mv~0 or there exists an all positive row u>0 such that ~M~0 . 

We show that the second alternative implies the existence of a non-positive 

cycle which as shown above is impossible in a complete specification. 

Suppose there exists a J>0 such that uM= ~[E;R]~0 , in particular urn0, by 

the definition of R the sum of it's columns is 0, this implies ~R 0. Let 
< 

be a vertex of G and let E I be the set of edges leading int~ v and E O the 

set of edges leading out of v . Then uR- = 0 implies ~u. = ~u.. ~ is a • l l 
• 6E I i6E^ 

combination of all the edges of G (u>0) with the incoming weight o~ each vertex 

(number of incoming edges counting repetitions) equal to the outgoing weight. 
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This means that the combination ~ of edges is a circuit in G, and uE~0 . Thus 

the combination u defines a nonpositive circuit. 

Algorithm T - for scheduling a complete specification. 

Let G be the dependency graph. 

The algorithm operates in two phases. In the first phase we find for each 

~i ~2 
array variable A.I a list of transformation vectors L i = (~i,~i, ~ ..) . The list 

will be used in the second phase to construct for each array an individual unimod- 

ular nonnegative transformation such that the transformed specification will be 

c-lex-positive. 

Initially Li= @ for every variable A.. 
l 

Phase I 

Denote Gt=G and repeatedly perform steps 1-4, for t=l,2,..until the exit 

condition described in step 1 is fulfilled. 

i. Decompose G t into strongly connected components: 

G t t t 
= C 1 , . . . C q t  

If all the components are singular, i.e. contain no edges then exit this 

phase. 

Otherwise, perform steps 2,3,4 for each nonsingular component C~. 
3 

2, Find column vectors ~ ~ 0, k ~ 0 such that 

E~÷~0, ~,~,0 
3 3 3 ] 

where [E~ , R~] is the extended edge matrix for the nonsingular component C~ . 
] 3 

3. Append the obtained vector ~ to the vector list L~ of each variable A.£C~ . 
l 1 3 

4. For each edge e connecting A.l e+ ~ Z where both Ai,Az6C ~ compute the weight: 

w(e) = ~(e),v + kz-k i 

Here ~(e) is the row in E~ corresponding to the edge e . 
1 

Delete e from C~(G t) ~ if w(e) > 0 . 
1 

The graph obtained from G t by the deletions performed in step 4 is G t+l 

Phase II 

!. For each array variable A. use the list L. to construct a unimodular nonneg- 
l l 

ative dxd transformation T l (the construction is described below) 

2. Substitute each dependency 

Ai(i) + A (~ - ~) by: 
3 , i -i - j 

Ai(~ ') ÷ Aj((I (T) -I)T ) 

to get an equivalent C-lex-positive specification S' 

3. Apply algorithm C to S' - 

Below we describe the construction of T i (step 1 or phase II) 

Basic Lemma 

Let v be a vector of length d , 

and gcd(vl,...,Vd) = 1 , then there exists a dxd matrix M such that: 

1. det(~ = ± 1 . 
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2. the first column of M is ~ . 

Proof 

by induction on d . 

For d=l - obvious. 

Assuming that the lemma is true for a certain d ~ i, consider d+l: Denote 

g=gcd(v2, .... Vd+ I) and I i = Vi/g 2 $ i $ d. Obviously gcd(%2...Id+l) = 1 and by 

the induction hypothesis there is a dxd unimodular matrix Ml whose first column 

is [%2,..~,Id+ ~T gcd(v 2 .... Vd+l )= 1 implies gcd(Vl,g)= 1 ~ Consequently 

there exist integers ~,6 such that 

~v I - 6g = 1 

We define M by 

rl 0 01 rvl B 0 01 
M = 0 g ~ 0 . . 0 

x0 

Ml I 

Clearly: det{M) = det(Ml).(Vl~ - Sg) = ± 1 

and the first column of M is [vl,g~ T = ~ . 

Consider a list L of vectors L=(v -I, ...~) corresponding to an array variable 

A. Let ~i ... kP be the corresponding vectors found in step 2. We denote by 

CI...C p the sequence of strongly connected components generated by the algorithm, 

such that C i+l is a subgraph of C i, ~i is the transformation vector found for the 

component C i and A is contained in each C i . Associating with each C i its 

extended edge matrix [Ei,R~ the ~i ~i's E i R i , 's, and 's, 's are related by 

E]~l+R3kl=0 for every 1 $ i < j ~ p . 

~i,~i ~ 0 E~ ~ + RiK i ~ 0 , EI~I+RSK ! $ 0 for 1 ~ i ~ p 

Our aim is to construct a unimodular nonnegative tranformation T= [~i,.. .~p,...~% 

such that the ~i's with a corresponding ~l,..~p satisfy the same requirements as 

the ~i ~i's 'S, above, i.e.: 

EJu i + RJb i = 0 for every 1 $ i < j $ p 

(Q) Ei~ i + Ri~ i ~ 0, Eiu i + ~i~i $ 0 . 1 ~ i $ p 

The constructed T defines the transformation on the subscripts of all the 

variables that are contained in ~ . 

By (Q) the modified specification constructed in step 2, phase II, of the 

algorithm is C-lex-positive and algorithm C can be applied. 

We now describe the construction of T. 

-i 's Unfortunately we cannot use the given v as the desired ~i's and will have 

to use instead: 
-i .~i 
U = hil + ~ h vJ 

j<i ij h..ll > 0 i = i .... p 

for some coefficients Note that for every such combination h o 
~3 
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i. For every cycle c in~ C 3, j > i with the label ~(c), ~(c)~ l = 0. 

2. For every cycle c in C i [(c)u i ~ 0 and there exists a cycle c in ~i such 
• o 

that ~(c )u I # 0 . 
o 

Then by [F~ there exists ~i ~ 0 such that ul,bl satisfy equations (Q). Con- 

sequently every such combination solves the system Q. 

The particular h., and ~p+l -d =[~i d] .... u will be chosen so as to make T 
13 

nonnegative and unimodular. 

Without loss of generality we can preorder the subscript positions so that the 

sequence Qi .... ~p is ~raded . By this we mean that for every subsequent Ql,.. .,~t 

1 $ t $ p there exists an s=s(t) such that 
i 

For every 1 { i $ t, j > s,Vj = 0 

and for every 1 $ j $ s there exists an i $ t such that V~ > 0. 
] 

This implies that in adding ~t+l to the set ~lo..Qt there is an s'=s(t+l)$s=s[t) 

vt+l t+l > 0 and t+l = 0 for all k > s' such that s+l,.°.Vs, V k 

The equations (Q) satisfied by the ~i's show that every subset ~i,. ..~t is 

linearly independent. This implies that for every t ~ p s(t) 9 t. We will con- 

struc~ the [i and T by successive construction of T ° = I , TIr...,T p = T each 

-t+l -I -t 
step adding a new u to the already constructed u ...u 

Throughout the construction T t will maintain the following properties: 

a) T t has the following partitioned form: 

[o Zd_sj 
where s=s(t) is the grade number associated with ~l...~t. X t is an sxs matrix. 

(s) 
Id_ s is the (d-s)x(d-s) unit matrix. 

b) T t ~s unimodular and nonnegative. 

-i -t C) T t [~i -t-t+l .u~ where u ..u = ...u ,u ,.. . satisfy (with the corresponding 

~i 's) equations (Q). 

Obviously T ° = I satisfies all the above requirements for t= 0. 

Consider now the general step of going from T t, t < p to T t+l . Let now 

Qt+l [VI...Vt,Vt+ 1 .... V~ T The vector Qt+l = . can be represented as 

d 
Qt+l= Tt((Tt)-l~t+l) = Tt~ = ~ ~iw. 

1 
i=l 

where w =(Tt)-Iv t+l 

Note that because of the partitioned structure of T t w. = v. for i > s 
1 l 

Define x =~ [0...0,wt+ 1 ..... ~Wd] /g where g = gcd(wt+ 1 .... ,w d) 
t 

Let y Ttx , then y ! ~ -i -t+l = = u w. and v = [ ulw,+gy . 
gi=t+l ± i=l i 

Consequently for every cycle c in C j j > t+l, ~(c)~ = 0 and for every cycle 

c in C t+l [(c)y = ~ ~(C)V t+l h 0 and there exists some cycle c in C t+l such 
g 

that [(Co) 9 # 0, then by [FF] there exists a ~t+is.t. ~,~t+isatisfy equation (Q). 

t+l. 
Note also that for i > s Yi = Vi /g ~ 0. Let s' = s(t+l). By the basic lemma 
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there exists an (s'-t) x (s'-t) unJ.modular matrix V whose first column is 

[Wt+l...Ws j T 
g 

Let U be: 

Fv 0 1 
Obviously U 

U = L0 ±d-s' ] 
is unimodular. 

Obviously 

Consider now: 

o o  l 
T ~ = T t [ t V 0 

L'° o Id_s, j L o 

t Here rx( ) 0 ] < 01 
Y(s') = x 

L0 Is'-t] [0 V] 

T' is unimodu!ar. 

0 I (s') 

!d-s, I 

T' has the following colu~u~ structure: 

T' [~i -t - =t+2 ~ 
: , ---v u ~y,u ,---r 

=t+2 =t+2 ~d 
for some u ,...,u ,...,u To show this we note first that in the transformation 

of T t the first block was I which preserves the first t columns. The t+l'sT 
t 

- T t column in T' is formed by multiplying T t by the column x, i.e. x : y . 

To finalize our construction of Tt+lwe only need to ensure the nonnegativity 

of the elements. This is accomplished by a transformation of T' which consists 

of addition of the first t+l columns to columns t+l,...,s' . Such a transform- 

ation is obviously expressible as a unimodular transformation which preserves 

the unimodularity of T t+l. 

We start by ensuring that the t+l'st column is nonnegative. For i > s we have 
t+l. 

already observed that Yi = Vi /g ~ 0 , For i ( s there is always some j S t 

such that u? > 0 and we add the j'th eol~mn sufficiently many times to the t+l'st 
i 

t+l t+l 
column until u. becomes positive. After these additions u. > 0 for every 

1 l 

i=l,...~s' By adding the t+l~st column to the subsequent columns we can now en- 

sure a nonnegative unimodular matrix 

r t+l l 
Tt+l = |X(s,) 0 } 

!0 Id-s~ i 

whet[ T t+l [[i -t -t~l 
= , . " ~ is a combination of the form 

~+ Z~ ~ 
i- 1 
-~inee y,b t+l satisfy equ=_l< 5 :Q) for :L: :+l we can find ~t+l ~ 0 such 

that [t+l ~t+l satisfy equations ~0) for u+lo 

This completes the construction< step~ and for t:p we have the desired T=T p. 

Theorem 3: Every complete specification can be scheduled. 

By preliminary analysis of an ~bitrary specification we can detect incomplete 

parts which always folTl whole stron%iy connected components on v~ieh no comn!ete 

part depend. A program for the complete part can be constructed by Algorithm T. 
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Any program of the form: 

A [ I  1 . . . . .  I ~  = A [ I  1 . . . . .  Id ]  

will do for the incomplete parts. 

Therefore we have, 

Theorem 4: Every specification can be realized. 

Extensions and Discussion 

The presented analysis completely resolves the problem of realizability of 

specifications which fit into the syntactic framework studied here. Many possible 

extensions suggest themselves as relaxation of some of the restrictions. One possible 

extension is to allow constant subscripts as well as having several equations for 

disjoint ranges of a single variable. An example of such extended specification is: 

A[0,~ = F(J) 

A[!+l,0] = G(A[I,I]) 

A[I+I,J+~ = H(A[I,g(A[I+I,j] )]) . 

The problem of deciding whether a given specification in the extended form is complete 

is undecidable. It is not difficult to see that for an arbitrary program P in a 

simple programming language [M] we can define a specification S in our extended 
P 

form such that: 

I. P halts for each input if and only if S is complete; 
P 

2. P halts for input (al...a d) if and only if A(a I ..... a d) (A an array var- 

iable of Sp) is computable. 

Thus it is undecidable even for a single element whether the element is com- 

patable. 

Another possible extension is to allow constant subscripts only on the right 

hand side of the equations and to require a single equation for each array variable. 

Consider for example the following specification: 

S 

A[i,~] ~ F(A[I+I,J-~, B[I,~ ) 

B[I,~ = G(B[I-2,J+~ , C[I-l,~ ) 

C[I,~ = H(C[I+3, J-~ , A[O,~ ) 

The extended edge matrix is: 

[-ll000l 
001-i0 

ME= 2-2000 
i001-i 

-31000 
[ 00-I01 ] 

Algorithm T will fail to find $i because the sum of the rows is [~,0,0,0,0]. 

But is can be verified that there is no cycle. 

A(Io ) ÷ ...... ÷ A(~p) 
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such that Ip >. I and I~. >. 0 for 1 .< j .< p. 
o ] 

One can easily see that it is also impossible to define A(0,J) by another array 

variable to get two scc such that each component is schedulable by algorithm T. 

By defining A',B',C' - transformed array variable for A,B,C: 

A' [I+J,J] = All,J] 

B' [!+J,I] = B[I,J] 

C'[~,I] = C[i,J] 

We get the following loop program for S : 

FOR I ' >~ 0 DO 

FOR J' >. 0 TO I' DO 

B[I',J'] = G(B'[I',J'-~ , C'[I'-J',J'-l] ) 

END J' ; 

FOR J' >. 0 TO I' DO 

A'[~I',J'] = F(A'[I',J'-I] , B'[I',I'-J'] ) 

END J'; 

FOR J ' >~ 0 DO 

C'[I',J'] = H(C[I'-I,J'+3] , A'[I',I']) 

END J' ; 

END I'; 

The example shows that allowing constant subscripts on the right hand side of 

the equations makes the scheduling problem much more difficult, and that the criteria 

and methods presented here are inadequate to deal with such specifications. 

The algorithms presented here will be incorated in the next version of the 

MODEL translator system. 
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