
REALIZING AN EQUATIONAL SPECIFICATION

by

A. Pnueli, R. Zarhi

Department of Applied Mathematics

The Weizmann Institute of Science

Rehovot 76100, Israel

I. INTRODUCTION

In this work we address ourselves to the problem of translating an

equational specification into an equivalent working program.

An equational specification is given by a set of equations of the form:

Al[I 1 Idl] : fl(Al[El Edl] Am[E ~ E~])m

f P .,E~I] ~[i I i d] : m(al[E I ~[E~,.. E t]
" "'d '

m m

where I I, are free indices ranging over the nonnegative integers and E~ ..., are
3

integer valued subscript expressions. This set of equations defines therefore

(recursively) the values of the elements of the possibly infinite arrays

Al,...,A m

Our interest in this problem stems from the thesis that an equational

specification represents a higher level, non-procedural statement of the problem

as compared to a program in a procedural language such as PL/I, Pascal, etc. for

the same task.

This approach is taken by several non-procedural assignment-less high level

languages such as the family of Data flow languages [AG], LUCID [AW] and MODEL

[PPS] . On the other hand it seems a special case of a more general functional

definition as is present in functional languages such as LISP, POP, etc.

The main task of a compiler for such a language is to analyze a specific-

ation for being consistent and complete, and construct a program in a more

conventional language for the computation of the values of the array elements as

defined by the specification. The algorithms described here were developed as

part of a compiling processor for the language MODEL. Closely related questions

have to be solved for any compiler of a non-procedural language, and in fact,

our results form an extension of the algorithms developed for the compilation of

LUCID programs [HOd.

There are several reasons for restricting our recursive equations to arrays

i.e. functions over the natural numbers and imposing further limitations on the

forms that the subscript expressions may assume.

The areas of applications that the MODEL system addresses are data process-

ing and economic modelling. In both these areas, arrays and structures in gen-

eral play an important role and the direct specification of relations between

460

input and output structures seems both natural and adequate.

The restrictions imposed on the syntax of a specification enable us to per -

form a much deeper analysis of the specification and derive a conclusive result

which is presented here. In one sense our results can be interpreted as another

case of recursion removal since a recursive definition is replaced by an equi-

valent iterative program. Moreover the terms we allow on the right are definitely

nonlinear which in the general case implies the impossibility of such a trans-

lation. Consequently the restriction to integer arguments of restricted form

introduces another family of recursive functions for which recursion elimination

is feasible and effective.

A preliminary investigation of translability of equational specification is

reported in [PPZ]. There, all the right-hand subscript expressions were restrict-

ed to the form I - c with c ~ 0. The results presented there gave sufficient

conditions for translatability.

In this work we extend the framework by allowing much more general subscript

expressions. The results presented here give a set of sufficient and necessary

conditions for translatability.

The framework in which we study the problem of translatability is schematic

and somewhat abstract in order to ensure solutions which do not depend on specific

properties of particular functions.

A strongly related, even though differently motivated work is the one pre-

sented in [KMW]. They are interested in the question of whether recurrence rel-

ations arising in differential and difference equations can be scheduled to yield

an orderly evaluation scheme of the elements defined. Based on the alternative

theorem for linear equalities, they also conclude that an evaluation is possible

iff the recurrence relations are noncircular° However they did not investigate

the existence of a compact loop program for carrying out the computation in a

reasonable way, a problem which is the main theme of our work.

Equational S~ecifications -Syntax and Semantics

A specification is given by a set of m simultaneously recursive equations

for the array variables AI,...,A m of the form:

AI[~ I, ,~dl] = qC...~j AI[B ~ E ~dl] ...Am[E~ ,E%s])

.,Edl] u])
%t l = ' ' t

m

The variables Ii~...,Id. are called free indices and range over the nonnegative
1

integers. The E~ are subscrl~t expressions which assume the following forms:
3

IZ± e c % 0 where Iz is a free index in the equation in which the

E = { expression appears

. 'Idt 1 Are[El Edm g(~l' "

461

The F.'S are function symbols standing for functions into the domain over
1

which the A.'s vary.
l

The g's appearing in subscript expressions are function symbols standing for

integer functions. Their arguments, as shown in the definition, may be free ind-

ices as well as subscripted variables.

The free indices which appear on the left-hand side are assumed to be all

distinct.

Following is an example of a schematic representation of Ackerman's function

as a specification:

SI: A[I,~ = F(I,J,A[I-I,J+I] , A[I-I , g(A[I,J-~)]).

An interpretation I for a specification consists of:

I. A domain D over which the array elements will vary.

2. An assignment of concrete D functions to the symbols {F .} ,
l

di + k + F i accepts d. integer arguments and i.e. I[F~ : (Z) x(O) ÷ D where
1

kF D arguments. Here D + = D U {I}

3. An assignment of concrete integer valued functions to the symbols {gj} , i.e.

I[gj] : (Z +)di× (D +) ~ ÷ Z +
i

Computability: Given a specification S and an interpretation I , a comp-

utation of S under I is a finite sequence of instances of the equations of S

[q"'~di]
m Ai[v I Vd2 = F i [Vl. "'vd]

l

n

Here in the m-th line we have an instance of the equation for A. obtained by sub-
1

stituting nonnegative integers Vl,...,Vd~ for the free indices, I i to Id~ .
l l

After substitution we evaluate the right- hand side as follows:

i. Replace every u ± c by its value (u being an integer).

2. Replace every F.I or gi all of whose arguments are known, by its

value.

3. Replace every A[...u] with u < 0 or A[...I ..~ by I .

4. Replace every A[Ul,...~u ~ , Ul,-..,u d ~ 0 which appears on the left-

hand side of an earlier line, by its value.

A sequence is called a computation if every element A [Ul,...,u d] ,

Ul,...,u d ~ 0 arising in the evaluation of line m appears on the left-hand side

of an earlier line.

Consider the following interpretation for S 1 :

462

D -- Nonegative integers,

F(I,J,dl,d2) =

if I=0 then J+l

else if J=0 then d 1 e l s e , d 2

g (d):d .

Under this interpretation S is identical to the definition of Ackerman~s
1

function. Below is a computation of S 1 under this interpretation:

i. A(0,1) = 2

2. A(0,2) = 3

3. A(0,3) = 4

4. A(I,0) : A(0,1) = 2

5. A(I,I) = A(O,A(1,0)) = A(0,2) = 3

6. A(I,2) = A(0,A(I,I)) = A(0,3) = 4

A computation under I whose last line is A[v I vj = 6 6 D + is called

an I-computation for A[Vl,...,Vd] . We write Comp<S,I,A[Vl, Vd]> = 6 . If

there is not I-computation for A[Vl,...,v ~ we write Comp<S,I,~v I ,v d] > = i.

An element A[Vl,...,Vd] is said to be co~utable under I if it has an I-computa-

tion.

A[Vl,...,v d] is said to be computable if it is computable under every

interpretation.

A specification is said to be complete if every element Ai[Vlr...~Vd] for
l

every i = l,...,m and Vl,...,Vd. ~ 0 is computable.
1

The following specification is incomplete:

A[I]= F(A[I+I]) .

Loop Programs

Having discussed the source language for our translation~ namely specifications,

we proceed to define our object language.

A loop program is recursively defined as a list of statements, where a state-

ment may be of the following types:

i. Assignment statement --

hIE 1 E d] : =F(...L...B[G 1 G s] ...)

where EIr...,E d , GI,...,G s are subscript expressions which may be nonnegative

constants, L is a loop variable.

2. For loop --

FOR I ~ El[TO E 2] DO

SI;$2;--- S n

END I

where SI,.~.,S n are statements, E 1 and E 2 are integer expressions, which may

463

only depend on loop variables. The upper limit 'TO E 2 is optional and when it

is absent we refer to this as an infinite loop.

The only variables in the propram are array variables and loop variables which

may be combined in expressions. Following is an example of a loop program:

P : FOR J~0 DO
1

A[0,J] : :F(O,J,A[-I,J+~ ,A[-i,g(A[0,J-1])])

END J ;

FOR I~l DO

A[I,0] : =F(I,0,A[I-l~l] ,A[I-l,g(A[I,-1])]) ;

FOR J~l DO

A[I,J] : =F(I,J,A[I-1,J+]] ,A~-I,g(A[I,J-~)])
END J ;
END I ;

An interpretation I of a loop program consists as before of a domain D and

assignment to the function symbols {F i} and {gi }

Given an interpreted program pI we define the N-truncation of pI , pI i as
N

the program obtained by replacing every finite loop by an N-bounded loop:

FOR I~E 1 DO ... ~ FOR I~E 1 TO N DO .

B I can be executed in a conventional way where expressions are evaluated
N

using the following rules:

I. The initial values of all A[Vl, vj _ = ±

2. Every A[...u...] for u < 0 or A[...A...] is evaluated to I .

Obviously the execution of pI must terminate since the loop bound expressions
N

depend only on constants and other loop variables. We denote the value of

A [V l , . . . , v d] a f t e r pI has terminated by
N

< I
Val PN, I,A[Vl, v~ > (for v I ,v d ~ 0) .

Obviously for N @ N' VaI<pI,I,A[Vl Vd]>_ c Val(<pI''I'A[Vl'''''Vd I N > where c
N+ --

is the partial order over D by which

a c b ~=~ a = ± or a = b .

We may thus define

I
VaI<P ,l,A[v I v d] > = lub Val<P~ ,I,A[v I Vd]> .

N

That is, the value of an element computed by the infinite program is defined to be

the least upper bound of the sequence (chain) of values computed by the N-truncations

of the program.

A program P is said to realize a specification S if they are defined over

the same array variables, and for every common interpretation !

Comp<S,I,A[v I Vd]> = Val<PZ,I,A[v I ,v~ >

for every element A[Vl,...,Vd] , v I v d ~ 0 .

The basic question investigated in this paper is : Given a specification,

464

does there exist a loop program realizing it?

To this question we give an affirmative answer, i.e. every specification

can be realized by a program. Furthermore, we give an algorithm for constructing

the program which realizes the given specification.

Without loss of generality we will deal only with complete specifications.

S~ecifications i D Normal Form

A further restriction placed on the form of admissible specification is:

Every two subscript expressions of the form I.± c , Ii± d appearing in diff-
3

erent subscript positions of the same variable instance must be disjoint, i.e.

A specification is in normal form if:

i. All variables have the same dimension, d.

2. Every subscript expression of the form I k ± c appearing in subscript position

9 of a variable must satisfy k = j .

The important point in 2. is that the same free index occupies the same pos-

ition in all the variables in an equation.

Claim: Every specification can be brought to normal form.

In every specification which does not satisfy I. we can extend the dimensions

of every variable to a common maximum d . The extension is performed by adding

extra dimensions which are arbitrarily subscripted by free indices not occupying

the previous positions.

To handle inconsistent subscripting consider the following specification:

All,J] = F(I,J,A[I-I,~ , A[J-I,I]) .

Define a new array B by

B[I,~ = A[J,I]

Then the following is a consistently subscripted specification which extends the

original one.

All,J] = F(I,J,A[I-I,~ , B[I,J-1])

S[I,J] = ~(J,I,S[i,J-I] , A[I-l,~]).

This transformation can be applied to the general case to produce a subscript con-

sistent specifications.

Re2rgsentation of a Specification by a Dependency Graph

A key concept in the analysis of specifications is the dependency graph. For

a given specification S we define the dependency graph G s = (Vs,E s, I s) which is

an edge labelled directed graph as follows:

V -- The set of nodes, having a node for each array variable.
s

For every dependency of the form:

A [t 1 ~d] = ~ C . . . s [E 1 ~ . . . ~ .

We draw a labelled edge e

4 6 5

(ll(e) Id(e))

@- G
e

The l a b e l ~ (e) = (t l (e) , Xd(e)) i s d e f i n e d by

-c if E k = I k +c

I k (e) ={
-~ if E k = g(...) .

Clearly a path H in the graph

~i ~m

with ~(~) = ~i + . . . + ~m and ICH) = (£1,..O,Zd) represents a dependency:

A[I 1 I~ ÷ B[II-£ 1 Id-£d]

which is implied by the specification. A -~ component implies a dependency on an

arbitrary higher value of a subscript.

In particular if H is a cycle, ~(H) represents a self dependency. A cycle

C is called non~ositive if l.(c) ~ 0 for i = 1 ,d .
1

Claim: The existence of a nonpositive cycle implies an incomplete specifica-

tion.

A nonpositive cycle implies a self dependency which can be extended into an

infinite chain:

A[~ ÷ A[i- ~] ÷ A[i-2~ ...

This claim prevents any computation for A[0,0,...,0] .

Realizing by Scheduling

Our approach to constructing a program which realizes a specification is by

scheduling. In this approach we attempt to construct a program out of the equations

of the specification which are properly sequenced and combined into an appropriate

loop structure, where we clearly must have a loop variable identified with each

free index. The constraints in sequencing the equations as assignment statement

are the dependency constraints represented in the dependency graph. An equation

computing the value of an array element must be executed prior to an equation which

needs this value.

As a first stage in the construction we decompose the dependency graph G(s)

into its maximal strongly connected components. Furthermore it is possible to

sort these components into a linear order:

G(s) = GI,G 2 G
P

such that any edge from G. to G. must satisfy i ~ j .
z]

466

Let us denote the program realizing a specification represented by a depend-

ency graph G by P(G). Then if we have realizing program P(G1)~...,P(Gp) , then

a realizing program for G is:

P(G) = P(GI) ;o..;P(Gp) .

This is so because every value needed in G. which is not defined in G. is
3 3

defined in G. ~ i < j and is already computed by P(G.)
1 1

Consequently it is sufficient to consider strongly connected specifications.

A Positive Edge Algorithm

Assume that one subscript position~ the first say, is such that ll(e) 9 0

Then, we claim a program for G may be derived which is of for all edges in G .

the form:

FOR Ii~ 0 DO

P(G')

END I
1

G' is a modified form of G obtained by deleting from G all edges e such that

ll(e) > 0 ~ and then retaining on the remaining edges the labels 1213,.o.~Id .

Let us explain the reason for this modification. By enclosing the program in

a loop on I 1 we have decided to compute all the elements defined in G by layers

corresponding to ascending values of I 1 The fact that ll(e) 9 0 for all edges

ensured us that no element of an I 1 -th layer may depend on an element from Ii+c ,

c > 0 layer. This implies that if the elements are computable, they are computable

in order of increasing I 1 layers° On the other hand, any dependency of the form

A[II,...] + .ooB[II-C] ,...c > 0 which corresponds to an edge e with

ll(e) = c > 0 , will be automatically fulfilled by an ascending I 1 loop so that

we may drop it from the graph and not consider it any longer.

The modified graph G' may now be further decomposable into strongly con-

nected components which we may proceed to analyze and program.

This leads to the following algorithm:

Algorithm E - Construct a program P(G) for a given specification G

i. Decompose G into SCC (strongly connected components)topologically sorted

GI,..°,G P . Apply the following steps to construct P(GI),...,P(G P) and then

combine into P(G) = P(GI);...;P(Gp)-

2. Here we are presented with a strongly connected component which for convenience

we will call G. Locate a position

G t li(e) ~ 0 .

3. Construct the modified graph G i

l . (e) > 0 .
l

4. Construct the program:

i , 1 .< i .< d such that for all edges e in

obtained from G by deleting all edges e with

467

FOR I. ~>0 DO
1

P(G i)

END I.
1

In order to obtain P(G l) we apply algorithm E recursive!y to G I . Consider

the specification:

A[I;J] = F(B[I,J-I])

B[I,J] = H(B[I,J-I] ,A[Z-l,J+2] >.

Its dependency graph is given by

(0,i)

(i,-2)

The steps in the construction are:

FOR I>~0 DO

END I

FOR I>~0 DO

END I

FOR I>~0 DO

FOR J>~0 DO

B[I,J] : :H(B[I,J-1] ~A[I-I,J+2])

END J ;

FOR J>~O DO

A[I,J] : =F(B[I,J-i])

END J ;

END I ;

A vector (kl,... ,l d) is defined to be lexicographically p_ositive if for

some i , 1 ,< i 6 d , kl=,...,=/i_l = 0 and ~ .> 0
1

The edge matrix of a dependency graph G is the matrix whose rows are

all the vectors ~ (e) for all the edges e in G ,

468

ECG, = r (ell]

L ~(ek)] -

Thus we obtain:

Theorem I: A specification S whose edge matrix is lexicographioally posit-

ive, i.e. all rows are lex-positive, is realizable.

This is easily extended to a specification such that a column permutation of

its edge matrix is lex-positive. In fact, the condition for success of algorithm

E is more general than that. It requires only the existence of a nonnegative

column in each encountered strongly connected component. Once the graph has been

split into components, the permutations achieving positivity may be different for

the different components.

A Positive Cycle Algorithm

Consider the following specification:

A[I,J] : F(B[I+I,J-~)

B[I,~ = G(B[I,J-I] ,A[I-2,J+~)

It has the dependency graph:

(-l,1)

(0,i)

(+2, -2)

Algorithm E fails to schedule this specification because each subscript position

has an edge with a negative label in this position.

However by defining a transformed array

A[!,J] = A'[I+I,J]

we obtain the specification

A' [I+l,~ = F(B[I+I,J-I])

B[X,J] = G(B[I,J-~ ,A'[I-1,J+2])

NOW by I' = i+i we get:

A,[I',J] = F'(~[I',J-~)

B[I,J] = G(B[I,J-I],A' [I-i,J+2])

where F' is F where F is defined and ± otherwise (I' = 0) .

Consequently the graph representation of the transformed specification is

(0,i)

(0,11

(1,-2)

469

This specification is now lex-positive and hence schedulable. Trying to generalize

the transformation above, and concentrating on the first subscript position, we

look for a general transformation

~ i r~ 1 ~d] : , i ~d] , k l i > - o - Ai[ll+kl , 12 ,

The transformation should be such that the labels on all the edges of the modified

graph should have nonnegative first component.

Let

Ai[I 1 IJ + ...Aj[II-ll(e)]

be any dependency in the old graph corresponding to an edge e . In the new graph

this will be transformed to
i (z~ = + I l k I)

A i [q z~ , , i j ' ' ÷ ...Aj [Ii-kl+kl-ll (e)] ...

Thus the new label of e is given by

14 (e) i j = 11 (e)+(kl-k I) .

The k i's we are looking for should therefore satisfy

j i
kl-k I .< ll(e) -

for all edges e: A. + A..
z 3

i By [FF] a necessary and sufficient condition for the existence of such k I >. 0

is that for every cycle in the graph C = el,e2, ,e m II(C) = ll(el)+...+ll(em)>.0

Motivated by this we consider an extended edge matrix. Let e!...e m be the edges

of G.
r x (el)l r 6(e$)]

Let E (G) = R(G) =

Lx:(em)] [6(~m)]
where l(ei) is the label for edge ei: uj + uz, and 6(ei) j

6(ei) t = 0 t#£,J

= 1 , 6(ei)£ = -i

We define ME(G) the extended matrix to be

ME(G) = [E(G) ;R(G)]

Mc(G) the cycle matrix of G is defined by

Mc(G) = ." where ~(c i) is the label of the cycle c i of G, and

c l..Cs are all the basic cycles of G.

A specification S is called cycle-lexicographically positive (c-lex-positive

for short) if the matrix Mc(G) is lex-positive. By [FF] if S is c-lex-positive

then there exists a t-unit-vector v=(O 0,i 0) and constants k i t B 0 l$i~n,

s.t.

ME(G)- [~] ~ 0

470

Algorithm C -

1. Decompose G into a sorted list of strongly connected components: G = G1..o

Apply the following steps to each component which for brevity, we denote by G

2. Find a position t and nonnegative constants k. for each array variable

A such that for each edge e in G e: A~ <A(e) i . , A~ the following holds
i m]

i k j
It(e) + k - 9 0

3. Modify the specification by substituting:

A i [I 1 I ~ = A i [. I t + k i] ,

The modified specification would now have

l[(e) ~ 0

for every edge in the graph.

4. Construct the program

FOR It~ 0 DO

p(G i)

END I t

P(G i) is the program constructed for the graph

~G
P

G i by a reeursive application

of algorithm C . G i is obtained from G by deleting all edges e such that

l~(e) > 0 .

Theorem 2: Every specification which is cycle-lex-positive is realizable.

Again, the actual condition required is less restrictive than lex-positivity

even after transformation.

The General Case

Consider the following specification

A[z,~ = F(A[Z-I,J+I] , B[I,~)

B[I,J]= G(B[I+I,J-~ , A[I~O-~) .

Its graph representation is:

(i,-i) ~ (-i~i)

Here neither t/~e first nor the second label is nonnegative for each cycle. Con-

sequently algorithm C will fail to schedule this specification. However by the

following substitution:

All,J] = A'[I+J,I]

B[I,J] : B'[I+J,J] .

We obtain a modified specification:

A' [I+J,I] = F(A' [I+~,I-1], B' [I+~,J])

B'[I+J,J] : G(B'[I+J,J-I] , A'[I+J-I,I])

471

Resubstitute l+J = I' and I = J' in the first equation and l+J = I'

in the second equation to obtain

A'[I' ,J'] =r(A'[i ~ ,J~-~, ~'[I',I'-J']) !'~ J' ~ o

B'[I' ,J'] = G(B'[I' ,J'-~ , A'[i'-l,Z'-J']) I' % J' % 0 .

and J = J~

Treating the expression I'- J' as g(I' ,J~) we obtain the following dependency

graph:

(0,1) ~ _ (0,i)

with the extended edge matrix

0100]
[0-~ l-1

M E (G) =

[i -~-i 1 0100 j

The new specification is c-lex-positive and therefore schedulabie by Algorithm C.

Generalizing this example we will look for a linear dxd transformation T I,

one for each variable A. such that:
i >~ 01all are integers. a. The entries Tk, Z

b. T i is unimodular, i.e. det(T i) = ± 1 .

c. Perform the following:

I. Substitute A.[~]= A~[~'T i] for each variable Ai;
i • 1

2. substitute ~ ' T 1 : I ' i n t h e e q u a t i o n f o r A. ;
1

3. substitute each dependency AS I] ÷A.[I-~ by A[[['] ÷A~[I' (Ti)-l-~) T~
3 • 3

Then the r e s u l t i n g s p e c i g i c a t i o n i s c - l e x - p o s i t i v e .

The transformations T i are constructed incrementally by columns. For two variables

A and B , T A and T B will be identical in the first j columns if A

and B stayed in the same strongly connected component for the first j steps.

The basic construction step is that of finding columns v~0 and k~0 such that

M(v,k)~ 0 where M is the current extended edge matrix. In this we refer to the

basic alternative theorem [T] which is the theorem underlying the duality theorem

for linear programming:

For a given matrix M , there either exists a nonnegative column v~0 such that

M~0 and Mv~0 or there exists an all positive row u>0 such that ~M~0 .

We show that the second alternative implies the existence of a non-positive

cycle which as shown above is impossible in a complete specification.

Suppose there exists a J>0 such that uM= ~[E;R]~0 , in particular urn0, by

the definition of R the sum of it's columns is 0, this implies ~R 0. Let
<

be a vertex of G and let E I be the set of edges leading int~ v and E O the

set of edges leading out of v . Then uR- = 0 implies ~u. = ~u.. ~ is a • l l
• 6E I i6E^

combination of all the edges of G (u>0) with the incoming weight o~ each vertex

(number of incoming edges counting repetitions) equal to the outgoing weight.

472

This means that the combination ~ of edges is a circuit in G, and uE~0 . Thus

the combination u defines a nonpositive circuit.

Algorithm T - for scheduling a complete specification.

Let G be the dependency graph.

The algorithm operates in two phases. In the first phase we find for each

~i ~2
array variable A.I a list of transformation vectors L i = (~i,~i, ~ ..) . The list

will be used in the second phase to construct for each array an individual unimod-

ular nonnegative transformation such that the transformed specification will be

c-lex-positive.

Initially Li= @ for every variable A..
l

Phase I

Denote Gt=G and repeatedly perform steps 1-4, for t=l,2,..until the exit

condition described in step 1 is fulfilled.

i. Decompose G t into strongly connected components:

G t t t
= C 1 , . . . C q t

If all the components are singular, i.e. contain no edges then exit this

phase.

Otherwise, perform steps 2,3,4 for each nonsingular component C~.
3

2, Find column vectors ~ ~ 0, k ~ 0 such that

E~÷~0, ~,~,0
3 3 3]

where [E~ , R~] is the extended edge matrix for the nonsingular component C~ .
] 3

3. Append the obtained vector ~ to the vector list L~ of each variable A.£C~ .
l 1 3

4. For each edge e connecting A.l e+ ~ Z where both Ai,Az6C ~ compute the weight:

w(e) = ~(e),v + kz-k i

Here ~(e) is the row in E~ corresponding to the edge e .
1

Delete e from C~(G t) ~ if w(e) > 0 .
1

The graph obtained from G t by the deletions performed in step 4 is G t+l

Phase II

!. For each array variable A. use the list L. to construct a unimodular nonneg-
l l

ative dxd transformation T l (the construction is described below)

2. Substitute each dependency

Ai(i) + A (~ - ~) by:
3 , i -i - j

Ai(~ ') ÷ Aj((I (T) -I)T)

to get an equivalent C-lex-positive specification S'

3. Apply algorithm C to S' -

Below we describe the construction of T i (step 1 or phase II)

Basic Lemma

Let v be a vector of length d ,

and gcd(vl,...,Vd) = 1 , then there exists a dxd matrix M such that:

1. det(~ = ± 1 .

473

2. the first column of M is ~ .

Proof

by induction on d .

For d=l - obvious.

Assuming that the lemma is true for a certain d ~ i, consider d+l: Denote

g=gcd(v2, Vd+ I) and I i = Vi/g 2 $ i $ d. Obviously gcd(%2...Id+l) = 1 and by

the induction hypothesis there is a dxd unimodular matrix Ml whose first column

is [%2,..~,Id+ ~T gcd(v 2 Vd+l)= 1 implies gcd(Vl,g)= 1 ~ Consequently

there exist integers ~,6 such that

~v I - 6g = 1

We define M by

rl 0 01 rvl B 0 01
M = 0 g ~ 0 . . 0

x0

Ml I

Clearly: det{M) = det(Ml).(Vl~ - Sg) = ± 1

and the first column of M is [vl,g~ T = ~ .

Consider a list L of vectors L=(v -I, ...~) corresponding to an array variable

A. Let ~i ... kP be the corresponding vectors found in step 2. We denote by

CI...C p the sequence of strongly connected components generated by the algorithm,

such that C i+l is a subgraph of C i, ~i is the transformation vector found for the

component C i and A is contained in each C i . Associating with each C i its

extended edge matrix [Ei,R~ the ~i ~i's E i R i , 's, and 's, 's are related by

E]~l+R3kl=0 for every 1 $ i < j ~ p .

~i,~i ~ 0 E~ ~ + RiK i ~ 0 , EI~I+RSK ! $ 0 for 1 ~ i ~ p

Our aim is to construct a unimodular nonnegative tranformation T= [~i,.. .~p,...~%

such that the ~i's with a corresponding ~l,..~p satisfy the same requirements as

the ~i ~i's 'S, above, i.e.:

EJu i + RJb i = 0 for every 1 $ i < j $ p

(Q) Ei~ i + Ri~ i ~ 0, Eiu i + ~i~i $ 0 . 1 ~ i $ p

The constructed T defines the transformation on the subscripts of all the

variables that are contained in ~ .

By (Q) the modified specification constructed in step 2, phase II, of the

algorithm is C-lex-positive and algorithm C can be applied.

We now describe the construction of T.

-i 's Unfortunately we cannot use the given v as the desired ~i's and will have

to use instead:
-i .~i
U = hil + ~ h vJ

j<i ij h..ll > 0 i = i p

for some coefficients Note that for every such combination h o
~3

474

i. For every cycle c in~ C 3, j > i with the label ~(c), ~(c)~ l = 0.

2. For every cycle c in C i [(c)u i ~ 0 and there exists a cycle c in ~i such
• o

that ~(c)u I # 0 .
o

Then by [F~ there exists ~i ~ 0 such that ul,bl satisfy equations (Q). Con-

sequently every such combination solves the system Q.

The particular h., and ~p+l -d =[~i d] u will be chosen so as to make T
13

nonnegative and unimodular.

Without loss of generality we can preorder the subscript positions so that the

sequence Qi ~p is ~raded . By this we mean that for every subsequent Ql,.. .,~t

1 $ t $ p there exists an s=s(t) such that
i

For every 1 { i $ t, j > s,Vj = 0

and for every 1 $ j $ s there exists an i $ t such that V~ > 0.
]

This implies that in adding ~t+l to the set ~lo..Qt there is an s'=s(t+l)$s=s[t)

vt+l t+l > 0 and t+l = 0 for all k > s' such that s+l,.°.Vs, V k

The equations (Q) satisfied by the ~i's show that every subset ~i,. ..~t is

linearly independent. This implies that for every t ~ p s(t) 9 t. We will con-

struc~ the [i and T by successive construction of T ° = I , TIr...,T p = T each

-t+l -I -t
step adding a new u to the already constructed u ...u

Throughout the construction T t will maintain the following properties:

a) T t has the following partitioned form:

[o Zd_sj
where s=s(t) is the grade number associated with ~l...~t. X t is an sxs matrix.

(s)
Id_ s is the (d-s)x(d-s) unit matrix.

b) T t ~s unimodular and nonnegative.

-i -t C) T t [~i -t-t+l .u~ where u ..u = ...u ,u ,.. . satisfy (with the corresponding

~i 's) equations (Q).

Obviously T ° = I satisfies all the above requirements for t= 0.

Consider now the general step of going from T t, t < p to T t+l . Let now

Qt+l [VI...Vt,Vt+ 1 V~ T The vector Qt+l = . can be represented as

d
Qt+l= Tt((Tt)-l~t+l) = Tt~ = ~ ~iw.

1
i=l

where w =(Tt)-Iv t+l

Note that because of the partitioned structure of T t w. = v. for i > s
1 l

Define x =~ [0...0,wt+ 1 ~Wd] /g where g = gcd(wt+ 1 ,w d)
t

Let y Ttx , then y ! ~ -i -t+l = = u w. and v = [ulw,+gy .
gi=t+l ± i=l i

Consequently for every cycle c in C j j > t+l, ~(c)~ = 0 and for every cycle

c in C t+l [(c)y = ~ ~(C)V t+l h 0 and there exists some cycle c in C t+l such
g

that [(Co) 9 # 0, then by [FF] there exists a ~t+is.t. ~,~t+isatisfy equation (Q).

t+l.
Note also that for i > s Yi = Vi /g ~ 0. Let s' = s(t+l). By the basic lemma

475

there exists an (s'-t) x (s'-t) unJ.modular matrix V whose first column is

[Wt+l...Ws j T
g

Let U be:

Fv 0 1
Obviously U

U = L0 ±d-s']
is unimodular.

Obviously

Consider now:

o o l
T ~ = T t [t V 0

L'° o Id_s, j L o

t Here rx() 0] < 01
Y(s') = x

L0 Is'-t] [0 V]

T' is unimodu!ar.

0 I (s')

!d-s, I

T' has the following colu~u~ structure:

T' [~i -t - =t+2 ~
: , ---v u ~y,u ,---r

=t+2 =t+2 ~d
for some u ,...,u ,...,u To show this we note first that in the transformation

of T t the first block was I which preserves the first t columns. The t+l'sT
t

- T t column in T' is formed by multiplying T t by the column x, i.e. x : y .

To finalize our construction of Tt+lwe only need to ensure the nonnegativity

of the elements. This is accomplished by a transformation of T' which consists

of addition of the first t+l columns to columns t+l,...,s' . Such a transform-

ation is obviously expressible as a unimodular transformation which preserves

the unimodularity of T t+l.

We start by ensuring that the t+l'st column is nonnegative. For i > s we have
t+l.

already observed that Yi = Vi /g ~ 0 , For i (s there is always some j S t

such that u? > 0 and we add the j'th eol~mn sufficiently many times to the t+l'st
i

t+l t+l
column until u. becomes positive. After these additions u. > 0 for every

1 l

i=l,...~s' By adding the t+l~st column to the subsequent columns we can now en-

sure a nonnegative unimodular matrix

r t+l l
Tt+l = |X(s,) 0 }

!0 Id-s~ i

whet[T t+l [[i -t -t~l
= , . " ~ is a combination of the form

~+ Z~ ~
i- 1
-~inee y,b t+l satisfy equ=_l< 5 :Q) for :L: :+l we can find ~t+l ~ 0 such

that [t+l ~t+l satisfy equations ~0) for u+lo

This completes the construction< step~ and for t:p we have the desired T=T p.

Theorem 3: Every complete specification can be scheduled.

By preliminary analysis of an ~bitrary specification we can detect incomplete

parts which always folTl whole stron%iy connected components on v~ieh no comn!ete

part depend. A program for the complete part can be constructed by Algorithm T.

476

Any program of the form:

A [I 1 I ~ = A [I 1 Id]

will do for the incomplete parts.

Therefore we have,

Theorem 4: Every specification can be realized.

Extensions and Discussion

The presented analysis completely resolves the problem of realizability of

specifications which fit into the syntactic framework studied here. Many possible

extensions suggest themselves as relaxation of some of the restrictions. One possible

extension is to allow constant subscripts as well as having several equations for

disjoint ranges of a single variable. An example of such extended specification is:

A[0,~ = F(J)

A[!+l,0] = G(A[I,I])

A[I+I,J+~ = H(A[I,g(A[I+I,j])]) .

The problem of deciding whether a given specification in the extended form is complete

is undecidable. It is not difficult to see that for an arbitrary program P in a

simple programming language [M] we can define a specification S in our extended
P

form such that:

I. P halts for each input if and only if S is complete;
P

2. P halts for input (al...a d) if and only if A(a I a d) (A an array var-

iable of Sp) is computable.

Thus it is undecidable even for a single element whether the element is com-

patable.

Another possible extension is to allow constant subscripts only on the right

hand side of the equations and to require a single equation for each array variable.

Consider for example the following specification:

S

A[i,~] ~ F(A[I+I,J-~, B[I,~)

B[I,~ = G(B[I-2,J+~ , C[I-l,~)

C[I,~ = H(C[I+3, J-~ , A[O,~)

The extended edge matrix is:

[-ll000l
001-i0

ME= 2-2000
i001-i

-31000
[00-I01]

Algorithm T will fail to find $i because the sum of the rows is [~,0,0,0,0].

But is can be verified that there is no cycle.

A(Io) ÷ ÷ A(~p)

477

such that Ip >. I and I~. >. 0 for 1 .< j .< p.
o]

One can easily see that it is also impossible to define A(0,J) by another array

variable to get two scc such that each component is schedulable by algorithm T.

By defining A',B',C' - transformed array variable for A,B,C:

A' [I+J,J] = All,J]

B' [!+J,I] = B[I,J]

C'[~,I] = C[i,J]

We get the following loop program for S :

FOR I ' >~ 0 DO

FOR J' >. 0 TO I' DO

B[I',J'] = G(B'[I',J'-~ , C'[I'-J',J'-l])

END J' ;

FOR J' >. 0 TO I' DO

A'[~I',J'] = F(A'[I',J'-I] , B'[I',I'-J'])

END J';

FOR J ' >~ 0 DO

C'[I',J'] = H(C[I'-I,J'+3] , A'[I',I'])

END J' ;

END I';

The example shows that allowing constant subscripts on the right hand side of

the equations makes the scheduling problem much more difficult, and that the criteria

and methods presented here are inadequate to deal with such specifications.

The algorithms presented here will be incorated in the next version of the

MODEL translator system.

478

REFERENCES

[A~ Arvind, Gostelow, "Data,low computer Architecture: Research and Goals",
Technica~ Report No. i13, Department of CIS, University of California, Irvine.

[AW] Ashcroft, E.A. and Wadge, W., "LUCID, A nonprocedural Language with Iterations",
CACM 20, Noo 7, pp. 519,526.

[E~ Ford, I.R. and Fulkeson, D.R., Flows in Networks, Princeton University Press,
1962.

[HO~ Hoffman, C.M., "Design and Correctness of a Compiler for a Nonprocedural Lang-
uage", Acta Informatica 2, PP- 217-241, 1978.

[KM~ Karp, M.R., Miller, E.R., Winograd, S., "The Organization of Computations for
Uniform Recurrence Equations", ACM Journal, Vol, 14, No. 3, 11967, pp. 563-590.

[M] Minsky, M.L., "Computation Finite and Infinite Machines", Prentice-Hall, 1967.

[PMM] Prywes, N~S., "Model II - Automatic Program Generator, User Manual", Office of
Planning and Research, Internal Revenue Service, TIR-77-41, July 1978,,
Available from CIS Department, University of Pennsylvania.

[PP~ Prywes, N.S~, Pnueli, A° and Shastry, S., "Use of a Nonprocedural Specification
Language and Associated Program Generator in Software Development", to appear
in ACM TOPLAS.

[PPZ] Pnuelif A., Prywes, N. and Zarhi, R., "Scheduling an Equational Specification",
International Workshop on Program Construction, Chateau de Bonast France,
September 1980; (ed. Inria).

[SH~ Shastry, S., Pnueli, A. and Pr~es, N.S., "Basic Algorithms Used in the MODEL
System for Design of Programs", Moore School Report, CIS Department,
University of Pennsylvania.

[4 Tucker, A.W., "Dual Systems of Homogeneous Linear Relations", Linear Inequal-
ities and Related Systems, H.W. Kuhn and A.W~ Tuckers Princeton University
Press, 1956, pp. 3-18.

[WAD] Wadge , W., "An Extentional Treatment of Data,low Deadlocks", Proceedings:
Semantics of Concurrent Computation, Eviand, France, 1979, Springer-Verlag.

