A COOK!S TOUR OF COUNTABLE NONDETERMINISM

(extended abstract) by

K.R. Apt
Faculty of Economics, Erasmus University, Rotterdam

and

G. D. Plotkin
Dept. of Computer Science, University of Edinburgh

ABSTRACT

We provide four semantics for a small programming language involving un-
bounded {but countable) nondeterminism. These comprise an operational one, two
denotational ones based on the Egli-Miiner and Smyth orders, respectively, and a
weakest precondition semantics. Their equivalence is proved. We also introduce a
Hoare-like proof system for total correctness and show its soundness and complete~
ness in an appropriate sense. Admission of countable nondeterminism results in a
lack of continuity of various semantic functions; moreover some of the partial or-
ders considered are in general not ¢po's and in proofs of total correctness one has
to resort to the use of {countable) ordinals. Proofs will appear in the full version

of the paper.

1. INTRODUCTION

One of the natural assumptions concerning the execution of a nondetermini~
stic or parallel program is that of fairness. In its simplest form it states that no
process is forever denied its turn for execution. The assumption of fairness implies
unbounded nondeterminism. To see this, consider the well-known program, b : = true;
x:1=0; dobsx:=x+1 [0 bwb:=7false od (seeDijkstra [8], p. 76), which al-
ways terminates, under the assumption of fairness, and assigns to x an arbitrary
natural number depending on the sequence of execution steps. What is more, every
nondeterministic program of this kind can be translated into an appropriate unbound-
ed nondeterministic program using the random assignment command x : = ?
which sets x to an arbitrary integer. This close relation between fairness and un-

bounded (but countable) nondeterminism motivates us to a thorough study of the latter.

480

As is also well-known, unbounded nondeterminism resulis in a lack of continuity of
various semantic functions. For example, in Dijkstra [8], Ch. 9, one can find an
argument showing that admitting unbounded nondeterminism results in a nonconti-
nuity of the weakest precondition semantics. On the other hand, Boom [5] realized
that this weakest precondition semantics still can be straightforwardly defined by
considering least fixed~points of monotone but non-continuous functions. Both Broy
et al [6] and Back [4] gave semantics for unbounded nondeterminism, employing
variants of the discrete powerdomains in [158]. The former paper used least fixed~
points but the latter {unfortunately) only used the first w iterates. Similar issues

are addressed in Park [14] where the asgumption of fair merging is also analysed.

In other papers the issue of complexity of these properties is raised. In particular
Chandra [7] has shown that the halting problem for programs admitting unbounded
nondeterminism is of higher complexity than truth in the standard model of natural
numbers. Similar results concerning various assumptions of fairness and inevitabil~

ity about simple nondeterministic programs were proved in Emerson and Clarke [9]

In the present paper we try to consider all these issues together, concentrating on

a simple programming language with atomic commands allowing countable nondeter-
minism {such as random assignment). In section 2 we define discrete powerdomains
considering both the Egli-Milner ordering and the Smyth ordering, where we no lon-
ger obtain a cpo. The section concludes with a systematic presentation of predicate
transformers which adapts Dijkstra's healthiness conditions to the present frame-
work and shows the connection with Smyth powerdomains (in analogy with Plotkin [16]).
In section 3 we present two denotational semantics, a predicate transformer seman-
tics and an operational one. The relationships between all four are shown. In section
4 we consider a Hoare-style logic for total correctness and present soundness and
relative completeness results; this involves the use of countable ordinals in the asser-
tions. In a fuller version of the paper we would like to integrate Chandra's ideas on

computablility into our framework.

What we have shown here is that unbounded nondeterminism admits a simple and na~
tural characterization which can be studied by generalizing techniques used for the

case of deterministic or bounded nondeterministic programs.

The present work can be easily extended to cover some other constructs omitted in
our analysis such as or commands, Dijkstra's guarded commands or recursive pro-
cedures. For example, the proof system we consider is a simple refinement of the
corresponding system for total correctness of while programs and an appropriate
system covering the case of recursion is a similar refinement of a system dealing

with total correctness of recursive procedures (see for example Apt [1]).

481

In principle our paper also provides a framework for studying fairness via transia-
tion into a language for countable nondeterminism. A proof theoretic approach to the
problem of total correctness of fair nondeterministic programs based on this idea

has been recently worked out in Apt and QOlderog [2]. Even though such methods are

operational in nature, they turn out to be natural and easy to apply in practice.

2. POWERDOMAINS AND PREDICATE TRANSFORMERS

In this section we gather some general information on fixed-points that we
will need later. Then we give the basic definitions and properties of discrete power~
domains, suitably adapted from these in Plotkin [16] and Smyth [17] to handle count—
able non~determinism. Finally we consider adapting the predicate transformers in
Dijkstra [8] to handle countable non-determirism and show, following the ideas in

Plotkin [16], how they connect up with the discrete Smyth powerdomain,

Definition 2. 1 L.et P be a partial order and let A be subset of P. Then A is

directed if every finite subset of A has an upper bound in Aj it is countably directed

{w-directed) if every countable subset of A has an upper bound in A. The partial order
P is a cpo (complete partial order) if every directed subset, A, of P has a lub (least
upper bound), denoted by]_] A, and If P has a least element, denoted by 1. A sub-

set of P is eventually constant if it contains its own least upper bound.

For example for any set, X, there is the flat cpo X_L which is the set X ¥ {1} or~
deredby ! xcyifix=1 orx=y.

Definition 2. 2 Let P, Q be partial orders and let f : P - Q be a monotone func~
tion. Then f is continuous if whenever A ¢ P is a directed subset with a lub, then
f(A) has a lub, namely f{] A) (i.e. f preserves lubs of directed subsets); f is
strict whenever it preserves the least element.

Definition 2. 3 Let P, Q be partial orders, X a countable set, Then P xQ is
the Cartesian product of P and Q ordered coordinatewise; X - P is the partial or-
der of all functions from X to P ordered pointwise.

Fact 2. 1 IfPisacpothensois X -» P} if PandQ are cpo's so is P x Q.

Fixed Points For any partial order P, any monotore f: P - P and all ordinals
A, define f* by:

482

=
Of course f}‘ need not exist since K L<"{}L k need not exist, If f}' does not exist then
for any }! > X f>L does not exist either; is monotone in e I {f}‘} stabilizes at
k, then f is the least (pre-)fixed~point of f. If P is a cpo then f;k a!ways exists and

{fl}K stabilizes. If additionally f is continuous then {f }k stabilizes at w.

Discrete Powerdomains

We explore Egli-Milner and Smyth powerdomains of flat cpo's, X , with enocugh sub-~
sets to handle countable nondeterminism. To avoid some tickiish probiems we re-
strict X to being countable, Note that, even so, the Smyth powerdomain s not a
cpo; we do not understand what significance this has for a possible more general

theory of powerdomains for countable nondeterminism.

Egli-Milner Order

Let € (X.L) be the set of non—empty subsets of X ordered by:
AcBIiff(Vvac A, ZbéB.acb) A (VbEB. 3acA.agh)
{which is the same as A= B (if L § Aloras A~ [1} cB{ifl ¢ A}

Proposition 2. 1 € (X,) is a cpo with least element {L1 ; every w-directed subset

is eventually constant; it is closed under arbitrary unions. &

Useful Functiions

Singleton {°}: X =& (XJ_)

Union u:etxg P aee (><_[~). It is continuous.

Extension ForfiX ¢ (Y.L) define f* : ¢ (X.L) - & (Y_L) by:
A =UfA-{LHDU{L]LecA]

Proposition 2. 2 Every ' is continuous. However, f Is not continuous as a func-
tions of f although it is monotonic. X

Composition For X f, & (YJ_ LY g e (ZJ_) define X f;->g e (Z..L) by:

483

Proposition 2.3 The composition f; g is continuous in f and monotonic, but not con-

tinuous in g. Also it is associative with units the singleton functions (i. e. we get a

category).
Note It is the lack of continuity of f;g in g that will force us {in the semantics of

while commands) to consider least fixed-points of non-continuous functionals.
Smyth Order
et d (X_L) be
[AcX |AZ£B] U (X}
ordered by the Superset ordering:
AeBIffARB
{for motivalions for this definition see Plotkin [16].

Proposition 2. 4 3 (X,) has least element X, but need not be a cpo (although If

3§ has an upper bound, its lub exists and isNJ); every w-directed subset is eventually

constant; it is closed under arbitrary unions.

Note Greatest lower bounds of non-empty families, §, always exist being given by:

8 =ugd.

Useful Functions

Singleton {*}:X->3(X)
Union Usd (>(_|_)2 -3 (X). It is continuous.
Extension For f: X 53 (Y_i_) define f7: 3 (X_L) 38 (Y_L)} by:

JFiA) (L g A)

F =
(A Y, (e A)
Propgsition 2. 5 Every f* Is monotone, but not necessarily continuous; function

extension, (*)" is monotonic,but not necessarily continuous.®

Composition For X LU (Y_L) andy 25 (Z_L) define X f;..)g S(Zl) by:

-+

fig =g of

484

Proposition 2. 6 The composition f; g is monotonicin each argument, but need not

be continuous in either. Also it is associative with the singleton as unit. X

From e (X;)to 3 (X)

Define e € (X_L) - S(XJ_) by:
A (L €A

X (L € A)

ex(A) = N

(That is, ex(A) ={beX, |3a€Aacb}h.
Then ey X

is why we can live with the fact that & (X_L) is not a cpo - enough directed sets, for

is strict and continuous. It is very important that e, is continuous as this

our purpose, will have limits as they will be images under e
e (x,).

x of directed sets in

Fact 2.2 The following diagram commutes:

e(x) 33 ()
X

Dd

Fact 2.3 Foranyf:X-se(Y)andg: e (Z)), e, ® (f;9) = (eY°); (eZ°g). 5%

Smyth Powerdomains and Predicate Transformers

A predicate transformer from X to Y is any map p : P {Y) - P (X) such that:

(1) Law of Excluded Miracle p (@) = @

(2) Countable Multiplicativity p (i Enw Bi) =,

eﬂ p (B;)

w
These are the appropriate healthiness conditions. The usual healthiness conditions
imply them (recall here that X, Y are taken as countable) but non-continuous trans-
formers are allowed - and as is, essentially, pointed out in Dijkstra [8], Ch. 9,
must be. That they are exactly the right conditions will appear from the isomorphism
with the Smyth powerdomain functions that we will show and from the role they play

in the various semantics.

We take F’Tx v to be the set of predicate transformers from X to Y {dropping the
2

subscripts when they can be understood from the context) and ordered pointwise thus:

485
pcqiffV BcY.p(B)cqlB)
The "Smyth state transformers! from X to Y are all functions m: X - J (Y_L), also
ordered pointwise: this collection is called STX v MNow for any such m define
¥
for B¢ Y:
wp (m, B) ={a€ X | m(a)cB}

Note If L € m (a) then never a € wp (m, B).

Lemma 2.1 The function wp {m, *)} is a predicate transformer and wp {m, *}

is monotonicin m, X

So now we have a monotonic g : ST » PT where w{m) (B) = wp (m, B), and the next

theorem even shows it is an isomorphism.

Theorem 2,1 (Isomorphism) The function @i ST = PT is an isomorphism of partial
orders. X

3. SEMANTIC ISSUES

In this section we consider four semantics of a simple programming language
of commands allowing countable nondeterminism and establish the relationships be-
tween the various semantics. The first semantics is operational being given as a tran-
sition relation between configurations and specified axiomatically. The next two are
standard denotational semantics based on the two discrete powerdomains we consider

in section 2. The last is a denotational predicate transformer semantics.

We disagree with Back [4] who defines a semantics also based on & (X) but different
from ours in that the semantics of while-loops is defined as the limit of the first
iterates., He correctly points out that this does not capture the correct notion of ter-—
mination and blames that on a failure of & (xl); we rather blame it on the semantics
he gives to while~loops and prefer to carry the iterates to enough stages {at most all
countable ordinals) to reach the least fixed-point as in [6]. Then with this definition,

theorem 3. 1 below shows the operational and denotational semantics are identical.

Further fact 3. 1 shows the semantics based on the Smyth order is a projection, un-
der ey of the semantics based on the Egli~-Milner ordering and corollary 3. 1 then
relates it to the operational semantics., Finally we give a predicate transformer se-

mantics, again iterating through suitable ordinals, following Boom [5], and show in

486

theorem 3. 2 and coroifiary 3. 2 that it is isomorphic to the semantics based on the

Smyth order {following the ideas in Plotkin [16]},

Throughout the rest of the paper we consider a simple programming language whose

set of commands is parameterised on two sets:

ACom is the set of atomic commands ranged over by the metavariable A,

BExp is the set of Boolean expressions ranged over by B.

Now, Com is the set of commands of the language, ranged over by S and generated by

the foliowing grammars:

S:i=skip | A|S;S |iBihenS giseS fi | while B do S od

We assume a countable unanalysed set X of states and we further assume we are given

two semantic functions:

jo]

ACom - X » P (X} - {@})
B : BExp - (X - {tt, ff})

where {tt, ff} is of course the set of fruthvalues.

The assumption that for any ¢ € X, @ [A T{c) is a non~empty and {necessarily) count-
able subset of X means that atomic commands are assumed to be always terminating
and countably nondeterministic statements. A particular choice for A might be the
statement x : = 7, meaning set x to any value, If there were only one variable that

could appear in the language we could give the semantics of x : = ? by putting for any

G
G [Ix:a‘?.ﬂ (o} = X
We now provide three different semantics for commands.

Operational Semantics

We define a function
Op : Com » (X =& (X))

by considering a transition relation Il - " between configurations, that is pairs <3S, o>

consisting of a command and a state. We define ' 5 " by the following clauses:

487

i. <A, o> - <skip, o> ifg' 20 [A T (o)
i, IF <Sy, 0> »<S11, 0'> then <S;; S, 6> <SS, o'>
i <{skip; S, 0> » <S5, o>
. 1. <JifB then S; else S fi,o> 5<S;, o> (&3 [B] (o) =tt}
2. <if Bthen S; else Sy fi,0> » <Sz, o> {ifa [B (o) =ff)
V. 1. <whileBdoSod, 6> »<S;whileBdoSod, o> {(ifs [B] (o} =11

2. <while B do S od, o> - <{skip, ¢> (ifd [B] (o) =)

Intuitively, <S;, o> - <Sz, o¢'> means that one step of execution of S; in state ¢ can

lead to state g! with Sy being the remainder of S; to be executed.

Definition 3. 1 S can diverge from g [ff there exisis an infinite sequence
{Si, 0:2{i=0,1.....) suchthat <S, o> =<S;, 66> ><S1, 01> ><Sz, 0> »...

Note a) If S # skip then for any o there are S! and g' such that <S, g> » <S8!, ¢'>
(that is, S can be executed for at least one step)
b} The set {<S!', ¢'>| S, o> 5<S', ¢o'>} is always countable (since X Is
assumed to be countable).
Definition 3.2 We define the function Op by:
op [5] (o) = {o' | <8, o> 5™ <skip, 0>} U { L | S can diverge from g].

Of course '5* 1 jg the transitive reflexive closure of 51,

Denotational Semantics

We define now two functions
8;: Com - Xse (XN
and

Byt Com » (X -3 (xl))

by the same type of equations. lLLet 1 be, Indifferently, € or 5. We define

i ;&n [skip] ={-} ({*} isthe singleton function defined in section 2}
i. s,n{[A]=xaex.G[Aﬂ {a)

. 8. [s538: T =9, [s: 758, [s:7
V. 8, [if Bthen S; elseS:fi] (gl =if8 [](G)thﬁ‘&n [s: 1] (o) else 8, [s: 1)

488

Note 3 (X) need not be a cpo, so 493. might be not well-defined in case V. But this
is not the case because of the following fact which also shows the relationship be-

tween the two denotational semantics.
Fact 3.1 For all S, 87 is well-defined and e, ° ;38{{ s]=s8;[s]. ®

The equivalence of the denotational and operational semantics is expressed in the

foliowing theorem:

Theorem 3.1 396 =Qp. X
Corollary 3.1 {Operational characterisation of AQJ)
i) If $ cannot diverge from ¢ then
o' = 8; [S J{o) iff <S, o> 5* <skip, o'>
i) 1 € 8;[s] (o) iff S can diverge from o

Proof By fact 3.1 and theorem 3.1. X

Weakest Precondition Semantics

Let PT be the set of all predicate transformers from X to X as defined in section 2.
We define now a function ¥ : Com » PT which we shall call the weakest precondition

semantics (wp semantics).

i. v skip] =id
. VIAT(R) =wp (GLAT,R) (where wp is the function defined in section 2).

. v[s;38:] =v[s.] cv[s:]

BIs]rE)nv]s:] R)

V. v [while Bdo S od [(R) =
pacx (@Bl nvisl@u@[B]?) NR)

It is clear that I is well-defined, as U I[S] is monotone and so the corresponding
function in case V is monotone as well, and therefore has a least fixed-point. How-
ever, we also wish to prove that for each S, ¥ [S] is a predicate transformer.
This follows directly from the next theorem which also establishes the relationship

with the semantics based on the Smyth powerdomain.
Theorem 3. 2 For all $ € Com and R ¢ X we have:

wp Wz [sT,RI=Vv[sT(R

489

Corollary 3.2 For all S in Com and R ¢ X we have:
;[sT=w*v[sT]

Proof By theorems 3.2 and 3.1. X

Corollary 3.3 (Operational characterisation of wp semantics)

o€ ¥ [S](R)iff S cannot diverge from g and
v ol. [<S, 0> 5% <skip, o!> 5 o' € R]

Proof By corollary 3.1 and theorem 3. 2. X

4, PROOF THEORY

In this section we consider a Hoare logic for thetotal correctness of programs
and indicate the soundness of the logic and a relative completeness theorem after the
fashion of Cook (see Apt [1] for a survey of results of this kind). As our assertion
language, L, we take any many-sorted logic whose sort set contains a sort data (for
program data) and ord (for ordinals); we also assume a constant 0, of sord ord, and
a binary predicate symbol, <, over ord. We use x, y, z as variables of sort data

and ¢, B, y as variables of sort ord; we use p, g, r to range over L-formulae,

Now we can finish specifying the syntax of our programming language. For conveni-
ence we will only consider a fixed finite set of data variables, Var = {x; ... , % }.
Boolean expressions are taken to be those quantifier-free lL-formulae whose variables
are all in Var and whose symbols have sorts only involving data. L.ett range over
expressions of sort data whose symbols have sorts only involving data. Atomic com-

mands are taken to be of the form x : = t (ordinary assignment) or x : = ? {random

assignment).

Before turning to semantic issues we give our logic and work out an example. The

formulae of the logic are all L-formulae together with all those of the form

{p} S {a}

(the latter meaning that, for all values of parameters, if ¢ is a state satisfying p,
then every execution sequence of S from ¢ terminates and ends in a state satisfying

a). The axioms and rules of the logic are as follows:

480

1. Assignment
{plt/x]} x:=1t{p}
whepe p[t/x] s the result of substituting t for all free occurrences of x in p.

2. Random Assignment

{p} x:=7 {p}
provided x is not free in p.

3. f-Then-Else Rule
{pAB)}Si{a}, {PpA-B} Sz {a}

{p} If B then S; eise Sz fi {q]

4, Composition Rule
{p} S1 {a}, {a} Sz {r}

{p} S1;92 {r}

5. While Rule
pla) A 0<q » B, {pla)} S [3p <a. p(B)}, pl0) » =B

{3a.ply)} while B do S od {p(0)}
We call plg) the loop invariant.
6. Consequence Rule
p=p', {p'} S {d'}, d-aq
{p} s {a}

Call the above proof system T; we write F }7_- {p} S [qa} to mean that {p} S {q} can
be proved in T from the formulae in E. The above while rule Is a straightforwanrd
generalization of the following while rule for total correctness of the usual while

programs given in Harel [10].

7. While Rule 11
plat+!) » B, {pla+1)} S {pla)},pl0) > B

{3 q. pla)} while B do S od {p(0)}
(A slightly different vocabulary is assumed here, viz. g ranges over the natural
numbers). We shall show in a moment that while rule Il is not sufficient for proofs

of total correctness of programs.

As an example proof in T consider the following program:

491

S = while B do S, od, where

B=E=x=0v0<y
and
So = ff x=0thenyi=7; xt=1¢glseyi=y~1 fi (see Dijkstra [8], Ch,9}.

We now wish to prove in T that [true} S {y = 0} holds. To this end we assume L con-
tains equality symbois of all sorts, the language of Peano arithmetic {(and we use x < vy
as an abbreviation), a one-argument (conversion) function . of sort {data, ord} and

a constant y of sort ord.

Define pla) by:
pla) = (x=0-q=w A X£0 5o =Y)

Intuitively speaking, for a state g, ply) (o) holds if 5 is the smallest ordinal bigger

or equal to the number of possible iterations performed by the loop when started in g.

Then ply) satisfies the premises of the while rule so {2g.ply)} S {p{0)} holds. Also
both Jg. pla) and p(0) » y = 0 hold, so by the consequence rule {true} S {y = 0} holds.

Note While rule Il is not sufficient to prove the formula {true} S {y = 0} from

arithmetical assumptions.

The use of parameterized loop invariants combines the technique of using loop in-
variants and loop counters. The while rule Il uses integer-valued loop counters as
opposed to the while rule from T which uses ordinal-valued loop counters. The in-
sufficiency of integer-valued loop counters to prove the above formula {true} S

{y = 0} was first observed by Back [3], The use of ordinal-valued loop counters
was in fact proposed already in Floyd [10]. In the proof-theoretic framework it was
first incorporated in Manna and Pnueli [13} where so-called convergence functions
with a range being a well-founded set are used. In the framework of weakest pre-
condition semantics the use of ordinal-valued loop counters was advocated in Boom
[5L

We now pass to the problem of soundness and completeness of T and consider inter—
pretation, Lof L.. These are ordinary many-sorted structures of the
appropriate type, but subject to the following three conditions:

1. The domain, | , of sort data is countable.

data
2. The domain, lor*d , of sort ord is an initial segment of the ordinals.
3. The constant, 0, denotes the least ordinal and the relation symbol, <,

denotes the strict ordering of the ordinals, restricted to ‘or‘d’

492

Let us fix on such an interpretation | and finish specifying the semantics of our pro-

gramming language. The set of states is:

X = Var -”data

where | is the domain of sort data. Let m range over maps from all L-variables,

data
other than those in Var, to elements of I-domains of the appropriate sort, We write:

‘ﬁop

to mean that p is true in | when the free variables of p denote the values specified by
T and ¢g; we write | {n:n p for vg. I f‘?‘T’cp. The definition of B: BExp - (X - {tt, ff})

is now obvious and for 8 we have:

Q@ [x:=t]{c)={o[I[tTlc)/x]}

using an obvious notation and
Gf[x=12]()={o" [Bi€1 .- 0" =oli/x]]

Now all four semantics considered in the previous section are at our disposal; we
concentrate on the weakest precondition semantics, Ir. For the truth of Hoare asser-
tions we put for any p, m:
pl.={o}l p
[p]ﬂ { i ﬁ-rc }
and then:

fr (P} S {a} V. [p] cU [S] [al_.

By corollary 3.3 this is the same as

F{p} S {a} iffYmoloe [p]rr - {S cannot diverge from o

A (Vo' <S, 0> »* <skip, ¢'> > o' € [a]y)))

which is the usual definition of total correctness., We set Trl to be the set of all sen—~

tences true in |,

Soundness Theorem For any formulae p, q of L. and command S if Tr‘l {p}S {a}
then B {p} S {a}. 3

We now state a completeness theorem for assertion languages of a special form; let
L. include second order set variables a, b, ¢, Set variables are of arbitrary
arity. We writep{a,, ... , @, 22, ++.+ , Zzn) todenotethat &, , @, Z1, +..

, z, are all among free variables of p. The set variables cannot be quantified over.

493

However, they can be bound by the least fixed-point operator: for any formulae

pla, xa; «».. , xx } where a is a k-ary set variable which always occurs positively
in p, pa.p is also a formula. (Here a variable always occurs positively in a formula
if none of its occurrences in a disjunctive normal form of the formula are in the
scope of a negation sign.} ua. p has one free variable less than p {a is bound in ya.p)

and gets the following meaning:

| ?’c pa.p iff i E[R/a], o

= k . H
where R =uQ ¢ (I 4.) . [I {TT [Q/a] (P © (5, i0evensees,)& a})]. For our in-
terpretation | we now impose the following two additional conditions:

4, The domains of each of the set sorts contain all sets of the appropriate kind.

5. The domain Io consists of all countable ordinals.

rd

We are now in position to state the completeness theorem.

Completeness Theorem For any command S and formulae p, g if }T {p} S {q] then
Try 5 {p} S {a}. ®

The assertion language we have used here is based on the y-calculus of Hitchcock
and Park [12]. It would be Interesting to establish what strength of assertion lan~

guage is really needed for the completeness theorem.

Acknowledgements

This work was carried out with the aid of a Sclence Research Council grant. We are
grateful to A.de Bruin and the other referees for detailed comments; they will be in-

corporated in the full version of the paper.,

494

REFERENCES

(1]

(2]
(3]

[4]

[s]
(6]

(7]
(e]
(o]

[10]
[11]
[12]
[13]
[14]

[15]
[16]

[17]

Apt, K.R., Ten Years of Hoare's Logic, A Survey, Part |
Fac. of Economics, Univ. of Rotterdam, Technical Report {to appear In
TOPLAS), 1979

Apt, K.R. and Olderog, E.R., Proof Rules Dealing With Fairness
Bericht Nr. wu, Inst, Inf. Prakt. Math., Univ. of Kiel (1981}

Back, R.J., Proving Total Correctness of Non-Deterministic Programs in
Infinitary L.ogic, Computing Centre, Univ. of Helsinki, Research Report No.9
(to appear in Acta Informatica), 1979

Back, R.J., Semantics of Unbounded Non-Determinism, in: Proc., 7th Collo-
quium Automata, Languages and Programming, Lecture Notes In Computer
Science 85, Springer-Veriag, pp. 51-63, 1980

Boom, H.J., A Weaker Precondition for L.oops
Mathematisch Centrum Report W 104/78, 1978

Broy, M., Gratz, R. and Wirsing, M., Semantics of Non-Deterministic and
Non—-Continuous Constructs in Bauer, F.L. and Broy, M. {eds.} Program
Construction, International Summer School Markioberdorf, July 1978
L.ecture Notes in Computer Science 69, Springer-Verlag, pp. 553-591, 1979

Chandra, A., Computable Non-Deterministic Functions,in: Proc 19th Annuaf
Symposium on Foundations of Computer Science, pp. 127-131, 1978

Dijkstra, E.W., A Discipline of Programming,
Prentice-Hall, 1976

Emerson, E.A. and Clarke, E.M., Characterizing Correctness Properties
of Parallel Programs Using Fixpoints, in: Proc 7th Colloguium Automata,
Languages and Programming, L.ecture Notes in Computer Science 85,
Springer-Verlag, pp. 169-181, 1980

Floyd, R.W., Assigning Meanings to Programs, in: Proc. AMS Symposium
in Applied Mathematics 19, pp. 19-31, 1967

Harel, D., First-Order Dynamic Logic, Lecture Motes in Computer
Science 68, Springer-Verlag, 1979

Hitchcock, P., Park, D., Induction Rules and Termination Proofs, in:
Automata, lLanguages and Programming {ed. M. Nivat} North Holland, 1973

Manna, Z. and Pnueli, A., Axiomatic Approach to Total Correctness of
Programs, Acta Informatica 3, pp. 253-262, 1974

Park, D., On The Semantic of Fair Paralielism, in: Proc. Winter School
on Formal Software Specification, Lecture Notes in Computer Science 86,
Springer-Verlag, pp. 504-526, 1980

Plotkin, G.D., A Powerdomain Construction, SIAM Journal on Computation
Vol. 5, No. 3, pp. 452-487, 1976

Plotkin, G.D., Dijkstra's Predicate Transformer and Smyth's Powerdomain
int Proc. Winter Schoo! on Formal Software Specification, L ecture Noies
in Computer Science 86, Springer-Verlag, pp. 527-553, 1980

Smyth, M., Powerdomains,JCSS, Vol. 16, No., 1, 1978

