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A~stract 

We exl~ibit a large class of machines with polynomial time decidable 

containment and equivalence problems. The machines in the class accept 

more than the regular sets. We know of no other class (different from 

the finite-state acceptors) for which the containment and equivalence 

problems have been shown polynomially decidable. We also discuss the 

complexity of other decision problems. 

I. Introduction 

It is well-known that the equivalence problem I for (one-way) deter- 

ministic finite-turn pushdown automata is decidable [17]. Equivalence 

is also decidable for deterministic one-counter machines [18]. On the 

other hand, for both cases, the containment problem is undecidable [16]. 

In this paper, we investigate the decidable properties of a large 

subclass of two-way multicounter machines. For positive integers m, r, 

k, let NCM(m,r,k) be the class of two-way nondeterministic m-counter 

machines M (with input endmarkers ~ and $) [I,4,8,13] satisfying the 

following conditions for each input 2 ~x$: 

(I) Any computation on ~x$ (accepting or not) 3 leads to a halting state. 

(2) In any computation on ~x$, M makes at more r turns (i.e. alterna- 

tions between increasing and decreasing modes, and vice-versa) in 
each of the m counters. 

Work supported in part by NSF Grant MCS79-09967. 
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ILet C be a class of machines. The emptiness, disjointness, containment, 
and equivalence problems are the problems of deciding for arbitrary 
machines M I and M 2 in C whether T(MI)=~, T(MI)nT(M2)=~, T(MI)sT(M2) , 

and T(MI)=T(M2) , respectively, where T(M) denotes the set of inputs 

accepted by M. 

~For convenience, we include the endmarkers as part of the input. 
Since M is nondeterministic, there may be more than one computation 
(i.e., sequence of moves). 
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r,1) 

When 

(3) In any computation on @x$, no boundary (between input symbols) is 

crossed by the input head more than k times. (Note that the number 

of reversals the input head makes may be unbounded.) 

The deterministic class is denoted by DCM(m,r,k). For convenience NCM(m, 

and DCM(m,r,I) are written NCM(m,r) and DCM(m,r), respectively. 

the input is two-way unrestricted, k==. 

The following are the main results of the paperz 

(I) Let m,r, and k be fixed positive integers. Then the containment 

and equivalence problems for DCM(m,r,k) are decidable in polynomial 

time. 

As far as we know, DCM(m,r,k) is the first class of one (input)- 

tape machines which accept more than the regular sets for which the 

containment and equivalence problems can be shown polynomially de- 

cidable. An example of a nonregular language accepted by a machine 

in DCM(I,I,5) is the set 

L={~x$1x in {a,b,c,d} +, the sum of lengths of all runs of c's 

occurring between symbols a and b (in this order) equals the 

number of d's} 

We note that recently, a polynomial time algorithm for deciding 

equivalence of two-tape deterministic finite automata was shown in 

[5]. 

(2) Let m, r, and k be fixed positive integers. Then the emptiness and 

disjoin,hess problems for NCM(m,r,k) are decidable in polynomial 

time. 

(3) Let m, r, and k be fixed positive integers. Then the nonemptiness, 

nondisjointness, noncontainment, and inequivalence problems for 

DCM(m,E,k) are nondeterministic log-space complete. (See [lq] for 

the definition of log-space complete.) 

(4) The nonemptiness problem for uDCM(2,r) is NP-hard, even for machines 
r 

with unary input alphabet. The result also holds for uDCM(m,I). 

(See [7] for the definition of NP-hard.) m 

(5) The nonemptiness problem for u DCM(m,r) is PSPACE-haEd, even for 
mtr 

machines with unary input alphabet. (See [7] for the definition 

of PSPACE-hard.) 

(6) The languages accepted by machines in u NCM(m,r,~) and u DCM(m,r, ~) 
m,r m,r 

are in NSPACE(Iog n) and DSPACE(IOg n), respectively. Thus, these 

languages can be accepted by polynomial time-bounded deterministic 

Turing machines. 

The decidability of the emptiness and disjointness problems (respec- 

tively, containment and equivalence problems) for two-way nondeterministic 

(respectively, deterministic) multicounter machines with finite-turn 
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counters and reversal-bounded inputs have already been shown in [13]. 

~owever, no complexity analysis have been shown in [13]. The key con- 

structions in this paper which are different from those in [13] permit 

us to give sharp complexity bounds. In particular, the construction in 

Lemma 2 uses a technique similar to the one developed in [I] and later 

generalized in [10]. We conclude this section with the following lemma 

which is easily verified (see e.g., [I]). 

Lemma I. Let M be in NCM(m,r,k) and n be the size (i.e., length of 

t/le representation) of M. We can construct, in time polynomial in n, m, 

and r, a machine M' in NCM (m[(r+1)/2~,1,k) such that T(M')=T(M)o (The 

result also holds for the deterministic class.) 

2. One-way Multicounter Machines 

Recall that machines in classes NCM(m,r) and DCM(m,r) are one- 

crossing bounded and therefore have one-way input tape. In this section, 

we show that for fixed m and r, DCM(m,r) has polynomial time decidable 

containment and equivalence problems. 

We begin with the following important lemma that sharpens a similar 

result in [10]. 

Lemma 2. There is a fixed positive constant c with the following property: 

Let M be in NCM(m,I). Let s be the number of transition rules of M. 

Then T(M)~@ if and only if M accepts some input within time (i.e. number 

of moves) (ms) cm. 

Proof. The "if" part is obvious. To prove the "only if" part, let 

M=<K,Z,6,q0,F> be in NCM(m,I), where K, Z, and F are finite nonempty 

sets of states, input alphabet, and accepting states, respectively, q0 

in K is the start state, and each transition rule in 6 is a mapping from 

Kx~x{=0,~0} m to Kx{0,+l}x{-1,0,+1} m. For (q,u,~1,...,~m) in KxZx{=0, 

M0} m, if 6(q,u,~1,...,Wm) contains (p,d,ll,...,lm) and M in state q 

scanning "u" on the input tape and for each 1~i~m the value of the i'th 

counter is 0 if and only if ~i is =0, then M may move its input head 

d (=0 or +I) position to the right, change the value of the i'th counter, 

1~i~m, by ~i' and enter state p. In addition, abs(~1) + ..o+ abs(lm)~1. 

Without loss of generality it is assumed that on entering an accepting 

configuration all of the counters are zero. At any given instant of the 

computation, each counter is in one of three modes: zero mode, i ncreasin~ 

mode, or decreasing mode depending on whether it is zero, it is nonzero 

and the last change in its value was by +I, or it is nonzero and the last 

change in its value was by -I, respectively. A counter-mode vector is a 

vector representing the modes of the m counters. Now let T by any accept- 

ing computation. Clearly, T can be decomposed into at most 3m+I sub- 

computations TI,...,T£. Each T i corresponds to a distinct counter mode 
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vector vi8 and the sequence of moves (i°e.r transition rules) used in 

T i are all made with the counters having mode vi. 

Now consider any T . T i is just a sequence of (not necessarily 
1 

distinct) transition rules~ say, ai,~2,...,~ u. For each transition 

rule that appears in the sequence ~i,~2,...~u arbitrarily mark exactly 

one of its occurrences. Clearly, there will be at most s(= number of 

transition rules in M) marked positions° Suppose that between two 

marked transition rules there is a sequence of unmarked transition rules 

~1,...~k, where k>1, ~1=~k , and u2,...,Uk are distinct~ (Thus k~s+l.) 

~y deleting the sequence ~2,.~.~k from T i a new sequence of transition 

rules is obtained. The new sequence preserves the proper order of transi- 

tion rules corresponding to counter-mode vector v.. However, the new 

sequence does not correspond to a valid computation if the counters con- 

tain "improper" values. The above process of elimination of transition 

rules from T. can be iterated until no further deletion can be done. 
1 

Let S i be the multiset containing exactly the sequences (of transition 
A 

rules) deleted from T i and T i be the remainder of T i after all the de- 
^ 

letions nave been made. Note that T. has at most (s+1) 2 transition rules 
1 

and contains all the marked transition rules. In general, a sequence 

may occur several times in S i. Define an equivalence relation on the 

sequences in S i as follows: Two sequences in S i are equivalent if and 

only if they start with the same transition rules and end with the same 

transition rules, and they have the same net effect on the counters. 

All the sequences in S correspond to the same counter-mode vector v. 
1 1 

and therefore for each counter the net effects are either all nonnegative 

or all nonpositive. Moreover, the absolute values of these net effects 

are no greater than s because each sequence in S i has length at most 

s. It follows that the equivalence relation induces a partition of S 
1 

into equivalence classes whose cardinality is no greater than (number 

of possible distinct transition rules at the start of the sequence) • 

(number of possible distinct transition rules at the end of the sequence) • 

(1+maximum of the absolute value of the net effect of the sequences on 

each of the counter values)m=s2(s+1) m. 

From the partition of SI,...,S ~ an ordered set of, say, p distinct 

equivalence classes can be obtained. Clearly, p~Is2(s+1) m. For 1~jsp, 

choose a fixed sequence of transition rules tj in the j'th equivalence 
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class. 

is 

Then the net change in the q~th counter, 1~q~m, due to Ti~ 1~i~Z, 

P A 

biq + [ a.. (x..+I) 
j=1 13q x3 

where 

(I) If S i contains a t which is equivalent to tj, then let aij q be 

the net change in the q'th counter of M due to t . If no such 
3 

t appears in S i then let aijq=0. 
A 

(2) biq is the net change in the q'th counter due to T i, 
^ 

(3) xij+1 equals the number of times sequences that are equivalent to 
^ 

tj appear in S i. (If aijq=0 then let the value of xij+1 be equal 

to I.) 

Moreover, for each 1~q~m 

P 
[b + ~ a (~ ÷1)J=o. 

i=I lq j=1 13q x3 

Hence, the system 

P 
[ [bo + [ a. (x +I)]=0, 1~q~m 

i=I lq j=1 x3q 13 

has a nonnegative integral solution. Then, by [11] (see also [2])s the 

system also has a nonnegative integral solution (x11,...~Xlp,.®.,x11 , 

...,X~p) in which each xij is no greater than 3d~ 2, where d is the 

number of variables in the system and ~ is the maximum of the absolute 

values of all subdeterminants of the augmented matrix formed by the sys- 

tem. Now Xn the above system, ds£2s2(s+1) m, £$3m+I, laijql~S, and 

!biqI~(s+1)2. Thus, xij~3dd2~(ms)Clm for some fixed positive constant 

c I • 

The desired shorter accepting computation ~ can now be constructed 

as a sequence of i subcomputations: TI,...,T£. Each Ti is constructed 
^ 

from T i as follows: For each tj, if a t equivalent to tj appears in S i 

then xij+l copies of tj are inserted directly to the right of the marked 
^ 

transition rule in T i which is identical to the last transition rule in 

tj. Clearly, T has length at most (ms) cm for some fixed positive con~ 

stant c~c I . 

By construction, Ti corresponds to a proper order of transition 

rules for moves on counter=mode vector v i. In addition, Ti includes a 
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transition rule that increases (respectively, decreases) the q'th counter, 

1~q~m, if and only if T i includes a (possible different) transition rule 

that increases (respectively, decreases) the q'th counter. However the 

net change in the q'th counter due to T is zero. Therefore, Ti is in 

zero mode, increasing mode, or decreasing mode if and only if T i is so. 

Hence, T is a valid computation. | 

We can now use Lemma 2 to prove the following result. 

Theorem I. Let m and r be fixed positive integers. Then the emptiness 

problem for NCM(m,E) is decidable in polynomial time. 

Proof. By Lemma I, it is sufficient to prove the result for the class 

NCM(m,I). We describe a nondeterministic Turing machine (NTM) Z which 

when given (the representation of) M of size n accepts M if and only if 

T(M)~@. Moreover, Z is 0(log n)-tape bounded. 

Given M, Z simulates the computation of M on some input string ~x$ 

by guessing x symbol by symbol. By Lemma 2, T(M)@0 if and only if M 

accepts some input within time (ms) cm. It follows that in the computa- 

tion on such an input, the maximum integer stored in any counter of M is 

no greater than (ms) cm. Uence, Z can do the simulation on ~x$ using at 

most space log((ms)Cm)=0(m log n), since n~m,s. For fixed m, 0(m log n)= 

0(log n). Thus, Z is 0(log n)-tape bounded. From Z, we can construct 

a deterministic Turing machine Z' which accepts M if and only if T(M)=~, 

and Z' operates in p(n) time for some polynomial p [12]. | 

Corollary I. Let m and r be fixed positive integers. The disjointness 

problem for NCM(m,r) is decidable in polynomial time. 

Proof. Clearly, given two machines M I and M 2 in NCM(m,r), we can con- 

struct (in time polynomial in the sum of the sizes of M I and M2) a machine 

M in NCM(2m,r) such that T(M)=T(MI)nT(M2). The result follows from 

Theorem 1. | 

Next, we have 

Theorem 2. Let m and r be fixed positive integers. Then the contain- 

ment and equivalence problems for DCM(m,r) are decidable in polynomial 

time. 

Proof. Clearly, we only need consider ~ze containment problem. Given 

two machines M I and M 2 in DCM(m,r), we can easily construct (in poly- 

nomial time) a machine M in DCM(2m,r) which accepts an input string 

~x$ if and only if ¢x$ is in T(MI)-T(M2). Then T(M)=@ if and only if 

T(MI)ST(M2). ~ence, from Theorem I, containment is decidable in poly- 

nomial time. • 

Remark. The equivalence problem for NCM(I,I) is undecidable. In fact, 

the problem of determining if a machine M in NCM(I,I) accepts the set 

¢Z*$ (£ is the input alphabet of M) is undecidable [1,9]. 
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It follows from Theorem I and Corollary 1 that the emptiness and 

~isjointness problems for u NCM(m,r) are decidable. Also, from Theorem 
m,r 

2, the containment and equivalence problems for u DCM(m,r) are decidable. 
m,r 

Although the problems are decidable, the next two results show that 

polynomial time algorithms are unlikely. 

Theorem 3. The nonemptiness problem for the class uDCM(2,r) is NP-hard, 
r 

even for machines with unar~ input alphabet. The result also holds for 

the class uDCM(m,1). 
m 

Proof. The construction is similar to one given in [6]. | 

The nonemptiness problem for one-way deterministic two-counter 

machines over a unary input alphabet (whose counters are not finite-turn) 

is undecidable [15]. On the other hand, for one-way nondeterministic 

one-counter machines, emptiness is decidable in polynomial time. In 

fact, the emptiness problem for one-way nondeterministic pushdown auto- 

mata is decidable in polynomial time [12]. 

Our next result concerns the class u DCM(m,r). 
m,r 

Theorem 4. The nonemptiness problem for u DCM(m,r) is PSPACE-hard, 
m,r 

even for machines with unar[ input alphabet. 

Proof. Let Z be a deterministic linear bounded automaton with state 

set Q and tape alphabet F (~ and $ are not in F). Assume that Qn(Fu{~, 

$})=g. Let s=IQ I, t=IFl~2 and k=s+to Also assume that Z halts on all 

inputs. For any input ~al,...,an_2$ to Z, we can construct in polynomial 

time (in n) a machine M in DCM(m,r) which accepts some input string if 

and only if Z accepts @al,...,an_2$. Moreover, m and r can be chosen 

to be [log2~ (n+l) and s.n-t n-2, respectively. The construction of M 

is straightforward. M encodes each tape symbol of Qu(Fu{~,$}) as a 

binary string of length [log2kT. Thus, the initial instantaneous des- 

cription (ID) q0~al,...,an_2$ of Z can be encoded as a binary string of 

length [log2k](n+1). This binary string can be represented in M's 

counters. (M has exactly [log2k~(n+1 ) counters.) The computation of Z 

can then be simulated by M using its counters to construct successive 

ID's of Z. Since Z is deterministic and always halts, the number of ID's 

in the sequence is at most s-n-t n-2. (The end markers are not changed°) 

Hence, each counter of M makes at most s.n.t n-2 turns. It is easy to 

verify that M's size is at most p(n) for some polynomial p. • 



502 

3. ~Multicounter Machines 

The results of Section 2 can be generalized to hold for the classes 

NCM(m,r,k) and DCM(m,r,k). The key result is the following theorem. 

Theorem 5. Let M be in NCM(m,I,k). We can effectively construct a 

machine M' in NCM(2m, I,I) (i.e. M' is one-way) such that T(M')=T(M). If 

M has size n, then M' has size n'~cn k for some fixed positive constant 

c independent of M. Moreover, M' can be constructed in time polynomial 

in n ~ . 

Proof. Every accepting computation of M can be described by a time- 

input graph which shows the sequence of transition rules used during 

the computation (see Figure 1(a)). A node is at coordinate (~,~) in 

the graph if and only if it corresponds to the transition rule associated 

with the ~'th move in the computation and just before this move the in- 

put head of M was at the ~'th symbol of the input string. 

Now, consider any accepting computation of M. Then a linear tree, 

say, T, which describes the computation, can also be constructed (see 

Figure I (b)). Each node in T corresponds to an ordered set of at most 

k transition rules. The i~th node in T is associated with the i'th 

symbol of the input string, say, ai, where the ordered set of transition 

rules are exactly those used to move the input head from a i (in the 

given order). 

Thus in simulating an accepting computation of M the device M' need 

only nondeterministically determine a sequence of ordered sets of transi- 

tion rules, where the sequence (of these sets) corresponds to the linear 

tree which describes the desired computation. (Note that the number of 
k 

distinct nodes in T does not exceed the value s , where s is the 

number of transition rules of M.) Corresponding to each counter, say, 

C of M the counter machine M' uses two counters, say C and C. C is 

used to record the increases in C while 6 is used to record the de- 

creases in C. Thus once M' ~ompletes the simulation of an accepting 

computation of M bot21C and C must contain the same value. | 

Theorem 5 does not hold for DCM(m,l,k). For example, the language 

L={~x$1x in (a,btc,d} +, the sum of the lengths of all runs of c's occurring 

between symbols a and b (in this order) equals the number of d's} is in 

DCM(I,I,5). However, L cannot be accepted by a deterministic multi- 

counter machine with finite-turn counters, even if the input head can 

make a fixed number of reversals. 

From Lemma I, Theorems I and 5, and the construction in Corollary 

I, we have 

Theorem 6. Let m, r, and k be fixed positive integers. Then the empti- 

ness and disjointness problems for NCM(m,r,k) are decidable in poly- 

nomial time. 
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a I a2(=a#) a 3 a 4 a 5 a 6 a 7 i n p u t  

~5 

C ~ 1 5 ~  

~ 1 7  

0~19 

(~) 

(b) 

F_~ure I. A description of an accepting computation of a 
nondeterministic two-way multicounter machine by 
(a) a graph; and (b) a linear tree. 

Theorem 6 and the construction in Theorem 2 yield 

Theorem 7. Let m, r, and k be fixed positive integers. Then the con- 

tainment and equivalence problems for DCM(m,r,k) are decidable in poly m 

nomial time. 

Remark. It follows from Theorem 6 that the emptiness and disjointness 

problems for u NCM(m,r,k) are decidable. Also, from Theorem 7, the 
m,r,k 

containment and equivalence problems for u DCM(m,r,k) are decidable~ 
m,r,k 

When the input is two-way unrestricted (i.e. k= ~) or the input is one s 

way but the counters are unrestricted (i.e. k=1 and r=~), the problems 

are undecidable. In fact, we can show the following using the proof 
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techniques in [13] and [15], respectively: 

(I) For some fixed r, the emptiness problem for DCM(2,r, =) is unde¢idable. 

(2) The emptiness problem for DCM(2,=,I) is undecidable. 

Theorem 8. Let m, r, and k be fixed positive integers. Then the non- 

emptiness, nondisjointness, noncontainment, and inequivalence problems 

for DCM(m,r,k) are nondeterministic log-space complete. 

Proof. From Lemmas I and 2 and Theorem 5 and constructions similar to 

those in Theorem I, Corollary I, and Theorem 2, the problems are solvable 

in nondeterministic log-space. The theorem now follows because the 

nonemptiness problem for (one-way) deterministic finite automata is 

nondeterministic log-space complete [14]. | 

Finally, using Lemma 2 we have 

Theorem 9. The languages accepted by machines in u NCM(m,r,=) and 
mrr 

u DCM(m,r,~) are in NSPACE(Iog n) and DSPACE(Iog n), respectively. 
m,r 

Thus, these languages can be accepted by polynomial time-bounded deter- 

ministic Turing machines. 

Remark. Theorem 9 has also been shown in [3] using a different technique. 
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