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ABSTRACT. An embedding of the graph G in the graph H is a one-to-one association of the vertices of G 

with the vertices of H. There are two natural measures of the cost of a graph embedding, namely, the 
dilation-cost of the embedding: the maximum distance in H between the images of vertices that are adjacent in 
G, and the expansion-cost of the embedding: the ratio of the size of H to the size of G. The main results of  

this paper illustrate three situations wherein one of these costs can be minimized only at the expense of a 
dramatic increase in the other cost. The first result establishes the following: there is an embedding of n-node 
complete ternary trees in complete binary trees with dilation-cost 2 and expansion-cost  O(n x) where 

h=log3(4/3) ;  but  any embedding of these ternary trees in binary trees that has expansion-cost <2  must, 
infinitely often, have dilation-cost > (const)log log log n. The second result provides a stronger but  less easily 
stated example of the same type of tradeoff. The third result concerns generic binary trees, that is, complete 
binary trees into which all n-node binary trees are "efficiently" embeddable. There is a generic binary tree 
into which all n-node binary trees are embeddable with dilation-cost O(1) and expansion-cost O(n c) for some 

fixed constant c; if one insists on embeddings whose dilation-cost is exactly 1, then these embeddings must 
have expansion-cost  f/(n (l°g n)/2); if one insists on embeddings whose expansion-cost  is <2,  then these 

embeddings must,  infinitely often, have dilation-cost > (const)log log log n. An interesting application of the 
polynomial size genetic binary tree in the first part of this three-part result is to yield simplified proofs of 

several results concerning computational systems with an intrinsic notion of "computat ion tree", such as 
alternating and nondeterministic Tuting machines and context-free grammars. 

1. INTRODUCTION 

An embedding of the graph G in the graph H is a one-to-one association of the vertices of G with the 

vertices of H. Two natural costs of a graph embedding are the dilation-cost: the maximum distance in H 

between the images of adjacent vertices of G, and the expansion-cost: the ratio of the size (i.e., number of 

vertices) of H to the size of G. Typical problems studied in the area of graph embeddings are: to find the 

best embedding of a given G in a given H; to find the best embedding of a given G in any of a given family of 

H's;  to find the best embeddings of a family of G's in any single member of a given family of H's .  

Graph embedding problems arise naturally when one studies a variety of computational situations. 

Among the "real-life" problem areas that give rise to graph embedding mathematical counterparts are the 

problems of finding storage representations for data structures [7,12,16,18], of finding efficient layouts of 

circuits on chips [22,23], of  finding efficient structured versions of programs [12], and of organizing 

computations on networks of processors [10] In addition, numerous specific problems can be fruitfully 

formulated as graph embedding problems [14]. The wide applieability of concepts related to graph embed- 

dings has given rise to a number  of  recent papers that  s tudy basic questions concerning embeddings, 

independent of any specific motivating situation [5,9,13,18]; and we are beginning to amass a body of basic 
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knowledge about embeddings, that can be applied to many "real-life" problem areas. This paper continues in 

the footsteps of these last-cited papers. In this paper we study cost tradeoffs in graph embeddings. 

Cost tradeoffs occur in a variety of computational situations: Cobham [6] discovered a time-space 

tradeoff for palindrome recognition; Borodin et al. [2] found a similar tradeoff for sorting; Thompson [22} 

discovered an area-time tradeoff for implementing the DFT in VLSI; and Hong [8] found a tradeoff involving 

reversal and space complexity for Turing machines. It is not a priori obvious that cost tradeoffs occur in the 

simple world of graph embeddings; in fact, they can be found easily. 

Consider embedding the n-vertex line-graph L(n) [whose vertex-set is [n] =def [1,2,..,n} and whose 

edge-set is the set of all pairs (i, i+ 1)] in a complete binary tree. One finds the following. 

Proposition. (a) There is an embedding of L(n) in the height-n complete binary tree with dilation-cost 1 (but, of  

course, with expansion-cost ~(2n/n)). (b) [18] Any embedding of L(2h-1) in the height-(h-1) complete binary tree 

(which has expansion-cost 1) has dilation-cost at least 3. 

Part (b) is proved by showing that the root of the tree is a bottleneck when one tries to "snake" the line 

into the tree: any attempt to lay out the line with dilation-cost 2 gets trapped in a subtree with no way to 

continue the layout. Sekanina [2t] proves that dilation-cost 3 is always attainable. 

Now, the tradeoff exposed in the Proposition is a simple one and is far from dramatic: one trades an 

exponential increase in expansion for a factor of 3 in dilation. The basic questions are: 

1. Are there cost tradeoffs in graph embedding problems where the savings (or penalties) are unbounded 

in both alternatives? 

2. Are there extremal cost tradeoffs, i.e., situations where the choices are between (roughly) maximal 

dilation and (roughly) maximal expansion? 

3. Are there cost-product tradeoffs analogous to the time-space and area-time tradeoffs cited earlier? 

4. Are there spectral cost tradeoffs, i.e., situations where there are compromise choices rather than just 

the choice of optimizing either expansion or dilation? 

5. What gives rise to cost tradeoffs in graph embeddings; i.e., are there identifiable structural features of 

the guest and host graphs that lead to cost tradeoffs? 

This paper is devoted to studying the above questions. For several reasons, we concentrate on embed- 

dings of graphs in tree-like graphs. First, many real-life situations that are studied using graph embeddings 

seek tree-like target graphs since such graphs are often easy to deal with in a computational environment. 

Second, certain of our results have unexpected applications to the study of computational systems having an 

inherent notion of %omputation tree"; and there are many such systems. Finally, trees are generally a 

reasonable place to begin studying any graph-theoretic phenomenon. 

In Section 2A we answer question 1 in the affirmative. Specifically, we show that the height-h complete 

ternary tree can be embedded in the height-2h complete binary tree with dilation-cost 2 and expansion-cost n h 
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where X=log3(4/3); but for infinitely many h, any expansion-cost-(c<2) embedding of that ternary tree in a 

complete binary tree must have dilation-cost > (const)log log h. 

In Section 2B we answer questions 2 and 3 in the affirmative. We consider embeddings of the side-n 

pyramid graph in the family of "leap trees", trees with certain auxiliary edges added. We show that the side-n 

pyramid can be embedded in the height-n leap tree with dilation-cost 1 (and expansion-cost f~(2~/n2)); but 

any embedding of that pyramid in a leap tree of height m (which has expansion-cost o(2m/n2))  must have 

dilation-cost f~(log n/m).  When m=n 1-~, this is a maximal dilation-cost, since any embedding of the side-n 

pyramid in a leap tree has dilation-cost O(log n). Moreover, when m>41og n, this result yields the cost- 

product tradeoff: for some absolute positive constant c, 

log(expansion-cost) • c d i l a t i ° n - c ° s t  _> n/2.  

In Section 3A we answer question 4 in the affirmative. We consider the problem of finding, for each 

integer n, an efficient n-generic binary tree, i.e., a complete binary tree into which all n-node binary trees can 

be embedded with small dilation-cost and small expansion-cost. We show that generic trees exist, into which 

any n-node binary tree can be embedded with dilation-cost O(1) and expansion~cost O(n c) for some fixed 

integer c; but any generic tree that admits roughly optimal embeddings with respect to either cost measure 

must be very inefficient with respect to the other measure: a generic tree that admits embeddings with 

dilation-costs 1 requires that expansion-costs be ~(n (l°g n)/2); and infinitely often, a generic tree that admits 

embeddings with expansion-costs < 2 requires that dilation-costs be _> (const)log log log n. 

In the course of answering questions 1-4, we shall implicitly be answering question 5. 

Section 3B is devoted to an unexpected dividend of the work in Section 3A. Using the compromise 

(polynomial size, constant dilation) generic tree, we are able to formulate simplified proofs of a number of 

results in the literature concerning alternating Turing machines [19], the relationship between deterministic 

and nondeterministic space [20], and the space requirements of context-free parsing [t 1]. Indeed, it appears 

that this tree will be useful whenever one is studying computational systems in which there is a notion of a 

computation tree and in which short bushy trees are preferable to tall scrawny ones. 

2. TRADEOFFS IN SIMPLE GRAPH EMBEDDINGS 

A. An Unbounded Tradeoff 

Our first tradeoff arises from considering the problem of embedding complete ternary trees in complete 

binary trees. To avoid misunderstandings, let us define the graphs in question formally. 

An a-ary tree (a>0 an integer) is a graph whose vertex-set is a prefix-closed set of strings over the 

alphabet [a] (the string x is in the set whenever any extension xa, ae[a], is in the set), and whose edges 

connect vertices x and xa for all strings x and ~ [a]. An a-ary tree is complete if its vertex-set comprises the 

set of all strings over [a] of length less than some integer h, which is called the height of the tree. B(h) (resp., 

T(h)) denotes the height-h complete binary -- i.e., 2-ary -- (resp., ternary -- i.e., 3-ary) tree. 
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Theorem 1. (a) For all h, there is an embedding of  T(h) in B(2h) with dilation-cost 2 (and expansion-cost ~2(n x) 

where X -- 1og3(4/3)). (b) There is a constant a>O such that, for infinitely many heights h, any expansion-cost- 

(c<2) embedding of  T(h) in a complete binary tree must have dilation-cost > tflog log h. 

Proof Sketch. Part (a) of the theorem is obvious and is left to the reader. 

We sketch the proof of Part (b) in some detail. Note that any embedding of a graph G in a complete 

binary tree partitions G into two sets: those vertices with images in the left half of the tree and all other 

vertices; call these two sets, respectively, the left and right parts of G. Say that we have embedded G in a 

complete binary tree and that k of the vertices in the left part of G are adjacent to vertices in the right part of 

G. Since at least one of these k vertices must reside (i.e. have its image under the embedding) at distance 

[~(log k) from the root of the binary tree, the cost of the embedding must be ~(log k). 

The preceding observations form the basis for proving part (b). To continue the proof we must look in 

detail at the source graphs we want to embed in complete binary trees, namely complete ternary trees, and at 

the complete binary trees we want to embed them in, namely the smallest possible ones (for it is only they 

that will yield the desired expansion-cost <2); that is, we want to embed T(h) in B(h') where h' = 

1 log t T(h) [ q. (All logarithms in this paper are to the base 2 unless otherwise signified.) 

Let us look at a fixed but arbitrary h. Assume that we have embedded T = T(h) in B(h'). For each 

le {0,...,h-I}, let e t denote the number of level-/edges of T having one end in the left part of T and the other 

end in the right part. Further, define the "correction" function x as follows: for each 1, 

x(l) = ~O<i<h-l-1 3-iel+i , 

Let us look at an arbitrary level l of T. There are 3 / copies of T(h-l) -- each having 1/2(3h-1+1-1) nodes 

-- rooted at this level of T. Since 3 t is odd, at least [3t/2q of the roots of these subtrees belong either to the 

left part of T or to the right part; say they belong to the left part, call it L. Now, each of the el+ i "split" 

edges at level t+i of T (i~ {0,...,h-l-l}) can transfer no more than 1 T(h-t- i-1)  i = 1~2(3h-l-C1) nodes from 

the set L to the right part T-L of T. Hence the cardinality of L must satisfy 

] L [ -> l / 2 r  31/2 ] (3h-t+l-1) - Ix(l) where It(l) <_ ~o<i<_h-t-1 1/2(3h-l-i--1)el+i < 3~--~ - / x ( l ) '  

Now look more closely at our source and target trees. It is well known (say from the theory of continued 

fractions -- of. [3]) that there exist constants c>0 such that for infinitely many integers m and n >0, 

l<2n-3m<3m/cm.  If m, n is such a pair, then I T(m-1) I < IB(n-2) I, so the ternary tree fits in the binary 

tree. Now consider what happens when our ternary tree T(h) has height h = m-1 and our binary tree B(h') 

has height h' = n-2 for such an m, n pair. If such a T(h) had a level l 0 < 1/2 log3h for which x(lo) < 1/4, 

then we would have Ix(lo)<3h-t°/8 so that 

1 (3 h+l ILl  > -~_ + 53h-t°--31°2 -- 1). 

By choice of h, h', m and n, we know that 
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3m 
[Lt < [B(h'-l) i < 2 n - 2 -  < + 4cm 

These inequalities combine with our lower bound on I L I to yield (recalling that h=m-1)  

53h- lo_31o_1< 3 h+l 
2 c(h + 1) 

from which it follows that (since 10 < 1/2 log3h ) 

3 - 1 o _ 2 ( h l / 2  + 1)3-h<  6 
5 5c(h + 1) 

which, for sufficiently large h, implies that 10 > I /2 log3h, contrary to assumption. We conclude therefore 

that x(I) > 1 /4  for all l < 1/2 log3h. 

This bound on x's behavior yields the following estimate for the number of edges of T(h) having one end 

in L and the other in T-L  (which is just the sum of the el's): 

~O<l<h-1 el > 2/3~0<1<.h-1 ~¢(l) > 1/12 !og3h. 

Part (b), hence the Theorem, now follows directly from our earlier reasoning. []  

B. A Maximal Tradeoff 

Theorem 1 illustrates that one can incur unbounded increase in one of the costs of an embedding by 

insisting on too tow a rate of growth for the other cost. How large can these unbounded increases be? We 

now present a situation where a moderate decrease in one of the costs causes the other to jump from its 

lowest possible value to its maximum rate of growth. Some preliminary definitions are needed. 

The side-n pyramid P(n) is the graph whose vertex-set is the set of ordered pairs of integers 

{ < i , j >  I i + j < n  ] 

and whose edges connect vertices <i, j >  and <k,  1> just when I i -k  I + I j - I  I < 1. (See Figure 1.) Note that 

P(n) has O(n 2) vertices. 

The height-h leap-tree L(h) is obtained from the height-h complete binary tree B(h) by adding the 

following edges. At each level m of the tree, there are edges connecting vertices 2Cl rn'c and 2 c+l I m-c-1 (a 0 = 

the null string, and a c+l = ao c) for all c~{0, 1 . . . . .  m - l } .  See Figure 2. 

Our maximal tradeoff concerns embeddings of pyramids in leap trees. 

Theorem 2. (a) For all n, there is an embedding o f  P(n) in L(n) with dilation-cost 1 (and expansion-cost 

f~(2n/n2)). (b) Any embedding o f  P(n) in L(n/X(n)) for any function ~, (perforce, h(x) = O(x/log x)) must have 

dilation-cost [2(log h(n)). (c) In particular, any embedding o f  P(n) in L(n ~) for any ~< 1, must have dilation-cost 

~2(log n). 

The dilation-cost in part (c) of Theorem 2 is worst possible in the sense that any embedding of P(n) in 

any leap tree has dilation-cost O(log n). 
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Proof Sketch. Part (a) is obvious since P(n) is a subgraph of L(n); and Part (c) is a special case of Part (b); 

therefore, we need prove only Part (b). 

Using techniques that are now standard [12,18], one can show that under any embedding of the pyramid 

P = P(n) in the leap tree L = L(n/~(n)), there must be some height-(h<n/~,(n)) sub-leap-tree L' of L that 

contains images of between n2/4 and n2/2 vertices of P. 

Now, only h + l  edges connect L' with the rest of L. Using results in [12, 16], one verifies that no matter 

how one cuts the pyramid P into two pieces, one of which has between n2/4 and n2/2 vertices, there must be 

~2(n) edges of P having one end in one of the pieces and the other end in the other piece; hence, f~(n) of the 

vertices of P that have images in L' are adjacent to vertices of P that have images in L-L'.  Of these f~(n) 

vertices, some subset S of cardinality ~(n/h) = ~2(k(n)) must satisfy the following: there is some one vertex v 

in L-L' and some vertex v' in L' that is adjacent to v such that the shortest paths from the images of the 

vertices in S to the images of their neighbors in L-L'  pass through both v and v' (since there are h candidates 

for v' and h + l  candidates for v). But now the bottleneck argument of Theorem 1 applies: some one of the 

images of the vertices in S must lie at distance ~2(log X(n)) from v' because of L"s bounded vertex-degrees. 

Hence the dilation-cost of the embedding must be f~(log X(n)). []  

Remark. The lower bounds in Theorem 2, namely Parts (b) and (c), remain valid when we embed pyramids in 

breadth-first trees rather than in leap trees: the height-h breadth-first tree is obtained from the height-h 

complete binary tree by adding edges going across each level of the tree. In fact the bounds remain valid for 

any embellishment of trees that allows only O(h) edges to connect a height-h subtree to the rest of the tree. 

Theorem 2 says the following. At the price of expansion-cost ~(2n/n2), we can embed P(n) in L(n) and 

attain minimum (= unit) dilation-cost. If we decrease this expansion-cost by the ruth root, by embedding 

P(n) in L(n/m), then we suffer dilation-cost ~2(log m). If we get the expansion-cost down below exponential 

by embedding P(n) in L(n ~) for some e< l ,  then we suffer dilation-cost f~(log n), which is within a constant 

factor of worst possible. In this last case, we may as well embed P(n) in the smallest leap tree that is big 

enough to hold it, namely L( [-log n(n + 1 ) ] ); the associated dilation cost is still only f~ (log n). 
2 

Theorem 2 has in it the hint of a cost-product tradeoff; and such a tradeoff follows from the Theorem. 

Corollary. There is an absolute constant c such that, for all n and all m >_ 4log n: for any embedding e of the 

pyramid P(n) in the leap tree L(m), 

log(expansion-cost(e)) "c dilati°n-c°st(E) >_ n/2o 

Proof Sketch. By definition of P(n) and L(m), expansion-cost(e)>_2m/n2; by Theorem 2(b), there is a 

constant d>0 such that dilation-cost(e)_>dlog n/m. Now let c = 21/d, and do the required arithmetic. []  

C. Conclusions and Open Problems 

This completes our study of cost tradeoffs in "standard" graph embeddings. At least two structural 

characteristics of the source and target families in an embedding can lead to tradeoffs: the tradeoff in the 

Introduction is due to bottlenecks formed by the roots of the subtrees of trees; the more dramatic tradeoffs in 
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Theorems I and 2 result from mismatches in the separator characteristics of the families: in Theorem 1, binary 

trees are easy to split in half, while ternary trees are hard to split in half; in Theorem 2, pyramids are densely 

connected in that there are usually many edge-disjoint paths connecting one section of the graph with any 

other, while trees, even with leap edges or breadth-first edges, are sparsely connected. 

Open Problem. We leave to the reader the challenge of extending Part (b) of Theorem 1 to the case where the 

expansion-cost is allowed to be _< any fixed constant c. 

It would be worthwhile to seek and try to understand cost tradeoffs in embeddings in other families of 

graphs having strong connections with real-world applications. An obvious candidate is the family of 

(two-dimensional) grids, which is used to study problems concerning VLSI circuit layout (see, e.g., [1, 23]). 

3. TRADEOFFS IN GENERIC GRAPHS 

A. Generic Binary Trees 

The tradeoffs in the previous sections dealt with a scenario in which one has a family of guest (= source) 

graphs {G} and a family of candidate host (= target) graphs {H}, and one's task is to find a congenial host H 

for each guest G. The situation we consider now is different, in that we are now going to measure the 

congeniality of a host H in terms of how well we can embed in H all small graphs from the family {G}. Our 

family of guests will be the family of all binary trees, and our candidate hosts will be the family of all 

complete binary trees. Our task will be to find, for each integer n, a complete binary tree B n that is a 

congenial host for all binary trees having n nodes; that is, we wish all such trees to be embeddable in B n with 

small expansion-cost and small dilation-cost. (Since n and the tree B~ are fixed here, the expansion-cost of 

each of the proposed embeddings is just Size(Bn)/n. ) We term any tree B n satisfying our efficiency criteria a 

generic binary tree. The motivation for studying generic graphs is discussed in [7] where a variety of notions 

of "generic" are considered, in [17], in [1] where generic rectangular grids of various dilation-costs and 

expansion-costs are constructed, and in [5] where dilation-cost 1 is demanded and expansion-cost is studied. 

(When one insists on dilation-cost 1, generic graphs are often termed universal.) 

Theorem 3. (a) There are generic trees B n into which all n-node binary trees are embeddable with dilation-cost 

0(1) and expansion-cost O(n c) for some fixed constant c. (b) [5] Any universal binary tree has size f2(n (l°g n)/2), 

even i f  the definition of  universal is relaxed so the tree need not be complete. (c) There is a constant a>O such 

that, for infinitely man)" n, i f  the generic tree B has size < 2n, then there are n-node binary trees T such that any 

embedding of  T into B has dilation-cost > alog Iog log n. 

Thus we can find generic binary trees of moderate efficiency providing that we are not too greedy; but if 

we try to optimize either of the cost measures, the other measure must grow insufferably large. 

Proof Sketch. 

Part (b) is proved (by a very clever argument) in [5], to which source the reader is referred. 
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Part (c) is proved by means of a variant of the proof of Theorem 1. We '~transliterate" each n-node 

complete ternary tree T into a (2n-1)-node binary tree /3(T) by replacing each nonleaf node of T by the 

height-3 binary tree depicted in the following figure. 

in the ternary tree in the binary tree 

We then emulate the proof of Theorem 1: We note that for infinitely many heights h, the tree S(h)=[J(T(h)) 

has a number of nodes that is almost a power of 2. Any embedding of such an S(h) in a small binary tree 

cuts S(h) roughly in half. But S(h) is hard to partition into two pieces of roughly equal sizes: ~(log h) edges 

must be cut to effect the partition. Hence, the bottleneck argument of Theorem 1 applies. 

We turn now to Part (a). Since this result seems to have numerous applications, we describe in detail the 

recursive construction that proves it. 

Lemma 1. There is a constant c such that every n-vertex line-graph L(n) with integer-valued vertex-weighting 

function w can be embedded into the infinite binary tree in such way that (a) the dilation-cost of  the embedding is 

< 2c; (b) the depth (= distance from the root) of  the image of  vertex v of  L(n) in the host tree is < (3 + log 

W/w(v))c where W = w(t)+w(2)+._ +w(n). 

Proof. It is proved in [15] that, given any sequence of integers w 1, w 2, ..., w n summing to W, there is a binary 

tree T* with n leaves such that the depth of the ith leaf (numbered from left to right) is < 2+log W / w  i. We 

use the line-graph's vertex weights as our sequence of integers, and construct the tree T*. 

Now, consecutively numbered leaves of 7"* may be very far apart. We remedy this by augmenting T* 

with inorder edges: we connect each leaf t of T* that is a left (right) son to its closest ancestor which is exited 

via a right (resp., left) link on the path from the root of T* to L Consecutive leaves in the resulting graph are 

close to each other (in fact, distance 2), but the graph is no longer a tree. However, the graph is outerplanar 

(it can be embedded in the plane so that all vertices lie on the outer face), and it has maximum vertex-degree 

4. Therefore, we can invoke the following result from [9], with the root of T* as the "designated vertex", to 

obtain the embedding sought in the statement of the lemma. 

Theorem 4.[9] Given any outerplanar graph G, there is an embedding of  G in a binary tree with 

dilation-cost < 31og(2maxdegree(G)). 

Moreover, this embedding can be chosen to place any designated vertex o f  G at the root of the host tree. 

The lemma follows by composing the embedding of L(n) in (the augmented version of) T* with Theorem 

4's embedding of T* in a binary tree. [ ] -Lemma 

Lemma 1 affords us the basic step in our construction; the remainder resides in the following lemma. 



49 

Lemma 2. There is a constant c > 0 such that every n-node binary tree T can be embedded in the infinite binary 

tree with dilation-cost <_ 8c+3,  in such a way that the image o f  the root o f  T is at depth at most 8c+1 in the host 

tree, and the image o f  every node o f  T is at depth at most ( lOc+l) log  n in the host tree. 

Remark.  By carefully analyzing the construction used in [9] to prove Theorem 4, one can show that the 

constant c we have been talking about need not exceed 6. 

P r o o f  We proceed by induction on n. The claim is obvious for nffi2, so assume n>2. 

Let v 0 (the root of T), el, ..., v k be a root-to-leaf path in T such that for each i>0, the subtree of T 

rooted at node v i has at least as many nodes as the subtree -- eaU it D i -- rooted at vi's brother. (Dj  is empty 

if vj has no brother.) View our root-to-leaf path as a line-graph, and weight its nodes as follows. 

w(v o) -- n; w(vl) ( i#0)  ffi max(l ,  I D/I ) .  

Note the following properties of these vertex-weights: 

n < W ----def ~?~iw(vi) < 2n; 

for i>0, w(vi) < n / 2 ;  

f o r i>0 ,  W / w ( v i )  >_ (W(Vo)+W(gl)) /w(vi)  >_ 3. 

Finally, note that each D i has at most w(vi) < n / 2  nodes. Hence, by our inductive hypothesis, D i is 

embeddabte in the infinite binary tree as claimed in the statement of the lemma. 

Now let us embed the line-graph v0, ..., v k into the infinite binary tree in the way described in Lemma 1. 

Let c be the constant guaranteed by that lemma. Then our line is embedded so that 

the dilation-cost is < 2c; 

the depth of the image of vertex v i in the host tree is _< (3 + log W / w ( v i ) ) c ;  

in particular, the depth of the image of v 0 is < (3 + log 2 n / n ) c  = 4c. 

Assume that we have embedded our line-graph and, by reeursive invocation of the lemma, the trees D i. W e  

wish to combine the embeddings; and in order to do so, we must "stretch" the embedding of the line-graph to 

make room for the embeddings of the Di's. We accomplish this as follows. 

Say that we have two copies B and B' of the infinite binary tree. Embed B in B ~ as follows. Each node 

v = aoa I " • . a  m (E {1,2}*) of B is mapped onto node ¢ ffi ( l a 0 ) ( l a l ) "  • " ( lam)l  of B' (e.g., the root node 

h of B is mapped onto node 1 of B', nodes 1 and 2 Of B are mapped onto nodes 111 and 121 of B', 

respectively, and so on). This embedding has dilation-cost 2; and it maps a node at depth d in B to a node at 

depth 2d+l  in B'. Moreover, if the node v' = v"l of B' is in the range of the embedding, then the subtree of 

B' rooted at the brother v"2 of v' contains no image points under the embedding. 

We can now describe completely our embedding of the tree T in the infinite binary tree. 

1. Embed the weighted line-graph Vo, v I . . . .  , v k in the infinite binary tree by first embedding it 

according to Lemma 1 and then composing this embedding with the just-described embedding of the 

infinite binary tree into itself. This composite embedding satisfies: 

dilation-cost < 4c; 

depth(image(v/)) _< 2c(3+1og W/w(vi ) )+ l ;  

depth(image(v0)) < 8c+1. 
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2. Embed each D i (in the manner prescribed by the lemma) into the subtrees of the infinite binary tree 

that are left "unused" by the embedding of the Iine-graph. More precisely, if image(vi) = v"l, then 

embed D i in the subtree rooted at v"2. 

It remains to verify that the described embedding has the properties claimed in the statement of the 

lemma. We address each claim in turn. 

First, we have already noted that the depth of T's root in the host tree is at most 8c+ 1. 

Second, looking at the dilation-cost of the embedding, there are three cases to consider. Let nodes v a and 

v b be adjacent in T. (a) If both nodes lie on the root-to-leaf path ~r, then we remarked earlier that their 

images are distance at most 4c apart in the host tree. (b) If both nodes reside in one of the subtrees D i of T, 

then by the induction hypothesis, their images are distance at most 8c+3 apart in the host tree. (c) If one of 

the nodes is on the path ~r and the other is in one of the subtrees Di, then it must be that, say, v a is one of the 

v i on the path, while v b is the root of D i. But then the image of v a has the form v " l ,  and the image of v b must 

reside (by our induction hypothesis) at distance at most 8c+ 1 from the node v"2. Hence, the distance in the 

host tree between the images of v a and v b is at most 8c+3. 

Finally, we must estimate the maximal depth in the host tree of the image of any node of 7". To this end, 

let us consider an arbitrary node v of T. If v is one of the nodes of our line-graph, say v=vi,  then 

depth(image(v)) < 2c(3+Iog W / w ( v ) ) + l  < 2c(3+1og 2n)+ l  < (10c+l)log n, 

the last inequality following since n>_2. If, instead, v is a node of the subtree Di, then we note that the depth 

of v is no greater than the sum of the depth of the image of v i under the embedding and the depth of the 

image of v relative to the embedding of D i in its host subtree. By our earlier remarks, the former quantity is at 

most 2c(3+1og W / w ( v i ) ) + l ;  by our bound On the size of D i and by the inductive hypothesis, the latter 

quantity is at most (10e+ 1)log min(w(vi), n/2).  It follows that 

depth(image(v)) _< t+2c(4+1og n / w ( v i ) ) + ( l O c + l ) l o g  min(w(vi), n / 2 ) .  

Now, if i=0, so w ( v i ) = n ,  then this sum is bounded above by 

8c+ l+(10c+ t ) log  n / 2  < (10c+l)log n; 

if i>0, so w(v i )<_n /2  , then the sum is bounded above by 

8c+ 1 +2clog n-2clog w(vi) + ( t 0c+  1)log w(vi) < (8c+ 1)(1 +tog n / 2 )  +2clog n < (10c+ 1)log n. 

This completes the proof of Lemma 2. D-Lemma 

Part (a) of the theorem follows immediately. We have embedded an arbitrary n-node binary tree in the 

infinite binary tree in such a way that adjacent nodes in the guest tree are within fixed constant distance in the 

host tree; and every node of the guest tree is within depth O(log n) in the host tree. If we prune the infinite 

binary tree at level (10c+ 1)log n to yield a complete binary tree of that depth, then the embedding technique 

of Lemma 2 assures us that the resulting complete tree is the generic tree claimed in Part (a). [ ]  
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B. Applications o f  Small Generic Trees 

A number of results appear in the literature that have as their intuitive content the message that "tail but 

sparse computation trees may be transformed into short, bushy ones" [19(b), p. 356]. But this same remark 

(without the word "computation") describes the content of Theorem 3(a). Indeed, the proof of Theorem 3(a) 

yields a single general construction that leads to simplified proofs of a number of results concerning situations 

where computational systems operate by generating computation trees and where added efficiency is attainable 

if these trees are short and fat rather than long and skinny. We cite one such situation, namely the problem 

of efficiently simulating space-tree-size efficient alternating Tnring machines by time-space efficient ones [191. 

The reader is referred also to the problems of parsing (or recognizing) context-free languages [11] and of 

simulating nondeterministic automata by deterministic ones [20]. 

Theorem 5.[19] For S(n) > log n, any language that is recognizable by an alternating Turing machine operating 

simultaneously in space S(n) and tree-size Z(n) is recognizable by an alternating Turing machine operating 

simultaneously in time S(n)" tog Z(n) and space S(n). 

We illustrate the use of our generic tree construction by presenting a detailed sketch of the proof of 

Theorem 5. The reader can easily apply the same proof strategy to the results of [11, 20] and, indeed,/to any 

computational problem desiring bushy trees to replace scrawny ones. 

Proof Sketch. We assume familiarity with alternating Turing machines (ATM's, for short); see, e.g., [4, 19]. 

It follows easily from these sources that we lose no generality by assuming that the ATM's we consider 

operate as follows: (1) An ATM that operates in space S(n)  = f~(log n) can clock itself so that it never goes 

into an infinite loop, by counting its computational steps and aborting any computation that takes more than 

c s(n) steps, where the constant c depends on the internal characterisitics of the ATM. (2) Whenever an ATM 

splits in either an existential or universal state, it splits into two copies. Thus the computation tree of the ATM 

is a binary tree. It is in this computation tree that we find the connection between alternating Turing 

machines and our generic trees. Let us make this connection precise. 

An ATM A that operates in space S(n) and tree-size Z(n)  accepts an input string x of length n if and 

only if there is (a) a binary tree T = T(x) having at most Z(n) nodes and (b) a labelling function 

X: Nodes(T) -~ CONFIG, 

where CONFIG is the set of configurations of the ATM using space at most S(n),  such that 

(a) the root of T is labelled with the initial configuration of A on input x; 

(b) the leaves of T are labelled by accepting configurations of A; 

(c) if v is any nonleaf node of T that is labelled by a universal (resp., existential) configuration of A, 

then v's descendants include both (resp., one) of the successors of that configuration. 

The tree T(x) is called the computation tree of  A on input x. 

Now let e: T(x) -~ B be any embedding of T in the infinite binary tree B that satisfies the conditions of 

Lemma 2. Define the contents function 

)4: Nodes(B) -~ CONFIG O {#} 

where # is a new symbol, as follows. 
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X(V) = ff v is the image of a node u of T then h(u) else #; 

thus we label the images of the nodes of T according to ~, and we label all nonimages by the special symbol #. 

The mapping X has the following properties that are crucial to our task. 

Lemma 3. (a) The infinite labelled binary tree x(B) has the following properties, where c is the constant o f  Lemma 

2. 

i.) There is a node v 0 at depth < 8c+1 such that X(V) is the initial configuration o f  the A T M  A on input x; 

ii.) i f  X(v) is a nonaccepting existential (resp., universaO configuration of  the A T M  A, then there is a node 

v 1 (resp., and a node v 2) within distance 8c+3 of  v such that X(v 1) (resp., and X(v2)) is a (resp., are both) 

successors o f  X(v). 

iii.) X(v) --- # f o r  all v at depth > (lOc+ l)log Z(n). 

(b) Conversely, i f  X: Nodes(B) -~ CONFIG U [#] is any mapping satisfying conditwns (i)-(iii) o f  Part (a), then 

the A T M  .4 accepts input x. 

Proof. Part (a) is immediate from Lemma 2 and from the properties of the tree T and the mapping ~,. Part 

(b) is proved by induction, using the fact that the ATM is docked., Details appear in the full paper. [ ]  

Lemma 3 shows that A accepts input x i f  and only i f  there is a labelling X of the infinite binary tree B 

satisfying properties (i)-(iii). We shall now indicate how an ATM of time-complexity S ( n ) " Z ( n )  and 

space-complexity S(n) can, when confronted with input x, check for the existence of such a labelling function 

by guessing the mapping in pieces and verifying its guesses in parallel. 

The ball in T centered at node v is the set of all nodes of T that are at distance at most 8c+3 from node v 

(where c is the constant of Lemma 2). 

The total state of the ATM A* will be a ball in T, a mapping X defined on the nodes of the ball (with 

values in CONFIG U {#}), and an integer variable whose value will be the depth in B of the image of the 

center of the current ball. A* operates by guessing the contents of a ball (via existential moves), verifying 

that this new ball is consonant with the previous ball (via deterministic moves), and then splitting to check 

successors to the current ball centered deeper in B (via universal moves). This simulation starts with a guess 

of the ball centered at the root o r b  and ends when the depth variable indicates a depth of (10c+l)log Z(n),  

at which point A* checks that all nodes at that depth in B are labelled with #. In more detail: 

be0n 

Initialize, and Check Condition (i) o f  Lemma 3. 

v ~- root(B); d 4- 0; 

Guess (via existential moves) the mapping X on the nodes of the ball of B centered at v; 

ff no node w in the current ball has x(w) = initial configuration of A on input x 

then stop and reject; 

Move Down B and Check Condition (ii) o f  Lemma 3. 
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while d _< (10c+l)log Z(n) 

do if X(v) ~ # and X(v) is a nonaccepting configuration of A and X(v) is universal (resp., existential) 

and there are not two (resp., one) nodes in the current ball labelled, by X, with successors of 

configuration X(v) 

then stop and reject; 

v ~- a son of v (via universal branching); 

Guess (existentially) the value of X on all nodes of the ball centered at the new v that were not in 

the ball centered at the old v; and discard all nodes that were in the ball centered at the old v that 

are not in the ball centered at the new v; 

d ~- d + l ;  

od; 

Check Condition (iii) o f  Lemma 3. 

if x(u) -- # for all nodes u in the ball whose depth is at least equal to that of v 

then stop and accept 

else stop and reject 

end 

The ATM A* directly implements Lemma 3(a) and so must operate correctly by Lemma 3(b). We need 

thus only show that A* operates within the claimed complexity bounds. 

Space Bound. At each stage of its computation, A* has stored (a) at most two overlapping bails, each 

containing a bounded number of tree nodes, (b) the values of X on each of these nodes, each value taking 

space O(S(n)), and (c) the depth e0unter whose size need be at most log log Z(n) ~. O(S(n)); this bound on 

the size of the counter follows since the ATM A has at most exp aS(n) distinct configurations for some 

constant a, so that an accepting computation tree of A has size at most exp exp aS(n). It follows that the 

ATM A* uses space O(S(n)). 

Time Bound. The computation of A* comprises a highly parallel exploration of the first O(log Z(n)) 

levels of the infinite binary tree B. When processing each visited node of B, A* spends time O(S(n)) guessing 

configurations of A and checking the compatibility of the new guesses with previous ones. Thus, A* computes 

for a total of O(S(n) • log Z(n)) steps. 

The proof of the theorem is now completed by invoking the standard time- and space-compression 

("speedup") theorems for Turing machines. []  

Remark. Our simulation algorithm as presented needs to know the tree-size Z(n) and the space S(n). In fact, 

the result still holds if less is known: since log log Z(n) ~ O(S(n)), knowledge of Z(n) is unnecessary; and 

even S(n) need not be known, since the algorithm could try, in turn, S(n) = 1,2,4,8, . . . .  
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Figure i. The side-5 pyramid P(5). 

Figure 2. The depth-4 leap tree L(4). 


