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ABSTRACT 

A concept of uniform complexity is defined and a class of functions is 

shown to have uniform complexity. A special case of these results is 

used to develop a new digital signature method, which makes forging 

signatures as hard as factoring a large number and which allows to 

sign all messages directly. The signature production involves only 

one exponentiation modulo a large number and the signature check- 

ing the comparison of a fourth and a second power modulo a large 

number. Therefore this new method is faster than known methods 

with the same degree of safety. 

1. Introduction 
Signatures should give the parties involved three kinds of protection. (Let A be 

the originator and B the receiver of a message.) 

(i) (Authenticity) 

Both party A and party B should be protected against forged messages, planted 

into the communication channel by party C which pretends to be party A. 

(ii) (Unforgeability) 

Party A should be protected against forged messages by party B, which B 

claims to have received (properly signed) from party A. 

(iii) (No repudiation) 

It must not be possible for party A to subsequently disclaim authorship of a 

signed message sent to B. 

With digital signatures, the first kind of protection can be guaranteed by using 

appropriate coding techniques which are only known to A and B. The second kind 

of protection is harder to obtain, since B should know enough about the way A 

t This research partially supported by National Science Foundation grant MCS80- 
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signs its messages in order to recognize them, and yet should be unable to generate 

them. 

The third kind of protection is very hard to achieve with digital signatures since 

the validity of a digital signature on a message is only as safe as the entire future 

protection of the private key used to produce the signature. Unfortunately the 

author of a digital signature can effectively disavow and repudiate his signatures at 

any time, merely by causing his secret key to be made public or "compromised".  

When such an event occurs, either by accident or intention, all messages previously 

"s igned" using the given private key are invalidated, since the only proof of vali- 

dity has been destroyed (Saltzer(1978)). This paper does not provide a solution for 

this very important problem. It is assumed in the remainder that secret keys are 

not lost. 

Proposals for digital signatures are given in Rabin (1976, see Rabin (1978)), 

Merkle et al. (1978), Rivest et al. (1978), Shamir (1978), Shamir (1979), Rabin 

(1979). The system proposed in Rabin (1978) is too complicated and it can be 

simplified considerably while making it safer at the same time. The simplified sys- 

tem is a version of a public-key system with multiple keys which are used only 

once. The key idea of the simplification is that if a party A has to reveal, say 20, 

keys to a party B for checking of 20 encodings, this does not imply that party B is 

able to produce efficiently 20 correct encodings for another message. This effect 

can easily be achieved with trapdoor one-way functions. 

I f  the network of communicating parties is sufficiently big it is impractical to 

use a distinct and secret signature algorithm for every pair of potential users. In 

their innovative paper (Diffie et aL (1976)), Ditiie and Hellman introduce the 

notion of a "public key cryptosystem," in which (among other things) each user 

makes public a quick method for recognizing his signatures. The resultant "signa- 

ture directory" is available to anyone, and thus two participating parties can start 

sending signed messages without any special preparation. 

As explained in (Rabin (1977)), the viability of a digital signature system 

requires that the relevant system-breaking computations be intractable in a sense 

stronger than the one usually defined in complexity theory. Even if the problem 

were proved to be exponentially complex (no such result was proved to date), this 

would only be a worst case or average case complexity result. It does not preclude 

the possibility that for one key in a thousand the system cannot be broken by an 

algorithm not known to the user. 

Ideally, we want the signature forging function to be intractable almost without 

exception. Thus we want to capture the idea that signature forging should be uni- 

formly intractable. Since complexity theory is far from an intractability proof of a 

problem in NP, it is worth-while to consider signature methods which can be pro- 

ven to have uniform complexity for forging. Intuitively, a problem has uniform 
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complexity, if even the solution of  a few (random) instances would imply the solu- 

tion of  a problem which is expected (or proven) to be difficult. From another point 

of  view, a problem for which no polynomial algorithm is known, has uniform com- 

plexity, if the solution of  a few (random) instances is likely to imply that all 

instances can be solved in polynomial time. 

In order to define uniformity we need to introduce the class o f  functions aR (a 

generalization of  a definition given in Adleman et aL (1977), see also Gill (1974)). 

Babai (1979) defines ttR to be the class of  functions which have an efficient Las 

Vegas algorithm. A L a s  Vegas algorithm is a randomized algorithm which always, 

if it arrives at an answer, computes a correct output (with known success probabil- 

ity), but sometimes it gives no answer (with known failure probability). 

A randomized algorithm is an algorithm which can use coin-tossing in some of  

its decisions. Let N denote the natural numbers  and let Ft:N~N be a function for 

which F~(x)=y can be checked in polynomial time. Ft is said to be in aR if there is 

a polynomial randomized algorithm A~ which computes F~ with success probability 

y>0. By iterating/11 we can make its success probability arbitrary close to 1. 

E.g. a function FI:D~R ~ is in AR if there is a polynomial p and a polynomial 

time computable function 

(? for no answer) such that 

(1) 

F2 : (DI,D 2)~ RIU{? ] 

for some constant y>0  and 

(2) there is a polynomial algorithm to check, given x,y whether F~(x) - y .  

With Ix l we denote the length of  the string x over a binary alphabet. It is assumed 

that F~(x)-O (Ix I k°) for some constant ko. 

Example: 

To compute square roots modulo a prime is in AR Lehmer (1969), Berlekamp 

(1970), Shanks (1972), Rabin (1980). 

For a Las Vegas algorithm A~ which computes a function F~ ¢AR the expected 

number of  iterations until F~(x) is found is < 1 since 
Y 

~/-y-(l--y)i-l----.  
i - 0  ~' 

The probability that F~(x) is not found after __c iterations of  A I is < e  - c .  
Y 

I{wED 2 [ lw l~<p(Ix [) and F2(x,w)-Fl(x)}l>~y 
VxEDI: 

t{w~D2 t twl~<pflxt)}l 
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Let 

x: (N,f l ) - .N,  Y: N--N 

be two functions computable in exponential time. X and Y are allowed to have 

several function values for the same argument, i.e. they are relations. X(j,n) is 

defined for n6fl~N (equal the domain of the second argument of X) and all j 

(0<j< n). Assume that I{xU,n)} I - o  (in I) and l{ Y(n)} I - o  (In I). 

X is said to be Y-unbeorm, if for all n~fJ and for all j (0<j<n), 

(1) if all values of  X(i,n) are given by an oracle then Y(n) can be computed in 

polynomial time in tnl and 

(2) if one value of Y(n) is given by an oracle then XO',n) can be computed by a 

polynomial randomized algorithm with success probability ~>'h, i.e. XcA R. 

x is said to be randomly Y-umform, if 

(1) if one value of x~i,n) is given by an oracle then Y(n) can be computed by a 

polynomial randomized algorithm with success probability >~,, i.e. Y~A R. (~, a 

constant depending on X, (0<~,~< 1)). 

(2) as (2) above. 

Immediate consequences of these definitions are 

a) If  X and Y are polynomial time computable then X is Y-uniform. 

b) If X is randomly uniform (for some V which is not important here) and if,r(n) 

is an algorithm which computes XO',n) in time T(n) for the fraction ~>0 of the 

j ' s  in the interval 0< j<n  then there is a 

J---'T(n)+q(lnl) 
~"?t 

randomized algorithm to compute X(j,n) for any j in the interval 0<j<n. q is 

a polynomial guaranteed by condition (2) of the definition of random unifor- 

mity. (Rabin (1979), Shamir (1979)). 

Rabin (1979) presents a problem which he shows to be randomly factoring- 

uniform, namely essentially square root extraction modulo a composite number. 

The resulting signature method has the property that about ]A of all messages can 

be signed directly (without randomization). In this paper a new signature system is 
proposed which has several advantages 

a) with respect to Rabin's system (Rabin (1979)): 

1) All messages can be signed directly without randomization. (This saves 
about a factor of four for signature production.) 
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2) It is faster. To produce a signature only requires one exponentiation 

modulo a large number as in the RSA public key cryptosystem (Rivest et 

a1.(1978)). Signature checking is slightly slower. 

b) with respect to other systems (for an overview see Lempel (1979), Popek et al. 

(1979), Simmons (1979)): 

The signature forging function is proven to be randomly factoring uniform, 

which means that signature forging is as difficult as factoring a large number. 

The following two technical lemmata are used later. 

Lemma A 

Let s~, s2, (s~>s2>0) be positive integers, and let p~, p2 . . . . .  p,, 

so that 

Pl--1 I s|--s2 

P2-1 I s l - s2  

p , , -1  [" s l - s  2. 

Then 

Vj>~O : jsl:---j s2 (mod pl P2 " " "Pro )" 

Proof: 

Let n - p i p 2 . . ,  pro. 

Case 1: gcd( j ,n )  --- 1. 

By Fermat ' s  theorem 

for certain k~, k2 . . . .  , k,,. 

Case 2: gcd ( j ,n )  > 1. 

a) 

b) 

j s l = j s 2 + k l % - l ) ~ j  ~2 (rood Pl) 

jsl-~--js2+k:~p2-1;::--.j ~2 (rood .0 l) 

js  l=jx2+k~ {p~- l)_js~ (rood p,, ) 

gcd( j ,n )=n --js~=--jS2~O (mod n). 

g c d ( j , n ) s p l  ~ j=--O (rood Pl) --  J~l=J s2:-O (rood Pl). 

For the other primes we have by case 1: 

j~l~sS2 (mod Pi) (2~<i~<m). 

The result follows by the Chinese remainder theorem. 
ra 

be m distinct primes, 
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The following lemma will be important for the digital signature method described 

later. 

Lemma 11 

Let n be the product of 2 distinct primes of the form p~f4k~-l, p2ffi4k~-I and let 

k, ,~-~-2klk2+l  (n2klk2-kl-k2+l). 

Then 

a) v j>.>-0:j4k=.j2 (rood t,l) 

b) ¥c (c a quadratic residue ): c~=4-~ (moo n). 

Proof: 

a) is a special case of lemma A. 

b) c is a quadratic residue mod n, iff t-~-Iffi [~f-~2 ]=1, where [~] is the gegendre sym - 

I c l  1 iff c~Pt-l~/2=l This implies that d ' - I = l  hence bol. ~'l ffi ' (mod pt). (raod pl), 

c2k~c (mod Pl). 

A similar argument holds for p2 and therefore (by the Chinese remainder 
theorem) for all quadratic residues c modulo n: 

C2t"=~c (rood n), 

which implies 

c* ==.x['c (mad n }. 

[] 

2. Uniformity Results 

In this section four uniformity results are given which are relevant to the 

unforgeability of digital signatures. Proposition 1 is a generalization of an observa- 

tion made by Legendre (Legendre (1798), or see Knuth (1969), page 351) and 
Corallary 2 generalizes a result by Rabin (Rabin (1979)). Theorem 3 and Corallary 
4 are the main results of this paper. 

First six functions are defined which will be employed in the uniformity 
results. The arguments of a function are denoted as " input"  and the function 
value as "output ."  
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F A C T O R I N G d ,  (d>~ 2) 

input: n - p ~ ' i p 2  ~2 • • .  p,V' ,  r>~2,  the primes ok, p2 . . . . .  p, all distinct,  odd and of  the 

form dk+l. 

output:  f ,  a nontrivial  factor o f  n. 

F A C T O R I N G e d ,  (d>>. 2) 

input:  n - p l ' t p 2  ~2 . • • 1o,", r>~2, the primes p~, p2 . . . . .  /,r all distinct,  odd and having 

the property that d l ( p - l )  and g c d ( ( p - l ) / d , d ) - l .  (E.g for d -2  the primes 

P~, P2 . . . . .  p, must  be of  the form 4 k - l ,  for d,-3 of  the form 18k+13 or 

tSk+'l.) 

output :  f ,  a nontrivial  factor of  n. 

R O O T d A I . L  , (d>~2) 

input: n - p i t ' p 2  ~2 . . . pr~', r>~2, the primes plV~p2 ~'2 . • . prv' all distinct, odd and of  the 

form dk+l. 

c, ( 0 < c < , )  a d 'h power residue rood n. 

output:  All  d 'h roots  o f  c rood n. 

Example:  

a -2 ,  the 4 square roots  of  4 (mod 21) are *-2, ±5. 

R O O T ~ I ,  (d>~ 2)  

As R O O T d ~ L L  , but only one d 'h root  is required as output.  

Sa2JdALL , (d>~ 2) 

input: n f p ~ V l p 2  ~2 • • . p r ' , r > ~ 2 ,  the primes p l~ 'p2  v2 . • • prv' all distinct, odd and having 

the property that d l ( p - l )  and g c d ( ( p - l ) / d , d ) - l .  

j ,  ( 0< j<  n). 

output :  All solut ions for s o f  s d 2 = f l  (rood , ) .  

Example:  

d-2,  the 4 solut ions of  s4----j ~ ( m o d  21) for j--2 are s - ± 4 ,  s - ±  10. 

s d 2 J d l ,  (d>~2) AS S " 2 J d A L L ,  but only one solution is required as output.  
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Proposition 1 

If ROOTaALL (n,c) is known then FACTORINGd(n) can be computed  efficiently. 

Proof: 

If  gcd(c,n)~l  (gcd(d,n)¢=l) then gca(c,n) (gcd(d,n)) is a nontrivial  factor of  n. If 

g c d ( c , n ) - l ,  then if n contains r distinct odd primes then there are d '  distinct a"  

roots  of  c modulo  n. Namely,  j~=-c (rood pi~ ' ) , ( i~ l ,2  . . . . .  r) has a distinct solut ions 

s i n c e  gcd(d,pi-1)=d. Each r- tuple of  solut ions for the • distinct prime powers gives.a 

distinct solution modulo  n and therefore  there are d r distinct solut ions modulo  n. 

(Note that if p is an odd prime~ p does not  divide c and p does  not divide d, then if 

j~=c (rood p) is solvable,  so is ja=-c (rood p") f o r  all v>_.l and there is the same 

number  of  solutions (see e.g. Ireland et al. (1972), section 4.2,3)). 

Now let t - c  va (rood n) and consider 

j d - - t a = ( j - - t ) ( j a - l + j a - 2 t +  " ' "  +jta-2+t a-~) (rood n).  

The number  of  distinct solut ions of  

( j - - t ) ( j a - I + j a - 2 t +  "" • +jta-2+td-l)~-O (rood n) 

for j (t fixed) is at most  ( d - l ) %  since there are at most  d-1 solut ions modulo  p~',, 

( i=1,2  . . . . .  r). (Namely,  if f ( x )  is a polynomial  of  degree d and the coi~fficient of  

x s is 1 then the congruence f ( x )=O (moa p) has no more than d distinct solutions 

modulo  p, where p is a prime.)  j-t=-O (rood n) has one solution and so at least 

o(d,r)=d'-((d-1)'+l) solutions j yield zero divisors modulo  n, i.e. for at least 

oJ(d,r) solutions j :  

( j - - t ) ( j a - l + j a - 2 t +  " ' "  +j ta-2+ta- I )~O (rood n) 

without the factors being zero. Hence gcd( j - t ,n)  yields a nontrivial  factor of  n for 

such a 3. 
ra 

Corollary 2 

If  there  is an oracle which computes  gOOT~l(n,c) for a random c then 

FACTORINGa(n) c a n  be computed  efficiently with probabili ty >Iv(d)>0. 

Proof:  

Let  c - j  d rood n be a d a' power residue,  j ( 0 < j < n )  randomly chosen. Let  t be the 

d 'j, root  re turned by ROOTdl on input c. A simple counting argument  shows that at 

least with probabili ty 

~(d , r ) ,  d ' - ( ( d - l ) r + l )  
d r 
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the number  g c d ( t - j , n )  is a nontrivial  factor of  n. 

t3 

Theorem 3 

Sd2JdALL iS FACTORINGR -un i form for r - 2 .  

Proof: 

First  it is shown that property (1) o f  the definition of  uniformity holds for arbitrary 

r. W.l.o.g it is assumed that gcd(d,n);~l a n d  gcd(j,n)~l. First  it is shown that, given 

a j ( 0 < j < n ) ,  there is an s, so that 

sa2=j a (rood n). 

This congruence holds, iff it holds modulo the prime powers p~'~ ,(i=1,2 . . . . .  r). 

If  p is a prime,  then c is a d 2 power residue (rood p),  iff 

z=! 
c g =1 (rood p), 

where g-gcd(d2,p-1),  c is a d 'h power res idue (mod p), iff 

e=L 
c h =1 (mod p), 

w h e r e  h-gcd(d,p-1) ( s e e  e.g. Ireland et al. (1972)). Hence any d" power residue is 

a d 2 power residue,  iff gmh, which holds if p-l=dk 1, where k~ satisfies gcd(d,kl)=l. 

The primes prescribed in the definition of  FACTORINGR~ have this property. 

Let s~, s2 . . . . .  s~, be the d' solut ions of  s~2--j d (rood n), where • is the number  

of  distinct primes in n. (To de termine  the number  of  distinct solutions,  use the fact 

that if s~=c (rood p) is solvable there are exactly gcd(d,p-1) solutions,  if p is a prime 

(see e.g. Ireland et al. (1972), page 47)). 

First it is shown that the d" powers of  these solutions are congruent  modulo  n, 

i.e. 

d= d= -- (mod n). $ 1 - - $ 2 -  " " " ~-- -$d r d  

Let c=j ~ rood n. Then c==-s~ (rood n) and c=-s ~ (mod n) have both d' distinct solu- 

tions. The claim follows by a simple counting argument.  

Now, since all d" roots  of  s d are known, Proposit ion 1 shows that a factor can 

be de te rmined  efficiently. 

It remains  to be shown that property (2) of  the definition o f  uniformity holds. 

Berlekamp (1970) gives an efficient randomized algori thm to compute  d 'h roots 

modulo  primes or prime powers (see also Rabin (1980)). For  square roots Lehmer  
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(1969) and Shanks (1972) give other efficient randomized algorithms. Square roots 

modulo primes of the form 4k-I  can be computed by one exponentiation (this fact 

is exploited in Lemma B). Therefore, by Chinese remaindering, the functions 

which compute a ,h roots modulo composite numbers (for which the factorization is 

given) are in ~R. 
[] 

Corollary 4 

S~2J~ is randomly FACTORINGed-uniform for r=2. 

Proof: 

Property (1) of the definition of uniformity holds for arbitrary r. The proof is simi- 

lar to the proof of Corollary 2. Let s-be a solution and let 

t~=$d~--(.]d) lid (rood n) 

be an easily computed d 'h root of y .  Since the prime factors of n are of the form 

dk+l, again a counting argument shows that the probability is at least ct(d,r) that 

gcd(t-j ,n) is a nontrivial factor of n for a random j. (E.g. a(2,2)=1/2, a(3,2)-4/9, 

a (2,3)=3/4, ,~ (3,3)=2/3.) 

Property (2), for which the assumption r=2 is necessary, is shown in the same 

way as in the proof of theorem 3. 
[] 

3. A new signature method 

A new signature method (suitable for a public key crypto system) is given in 

which all messages can be signed directly (without randomization) and for which 

the signature forging function is randomly factoring uniform. This implies that 

even if only a few signatures (say 3) could be forged, then it would be that a large 

number could be efficiently factored. Since factoring is apparently a difficult task 

for certain carefully chosen composite numbers (Rivest et aL (1978), Williams et 

al. (1979)) and since signature producing and checking can be done efficiently, it is 

believed that the proposed method and its variants are of practical value. 

Williams (1979b) (also influenced by Rabin (1979)) has given a digital signa- 

ture method which has similar properties as the one presented here. But it is con- 

siderably more complicated and less convenient to use. 

The proposed signature method allows four distinct legal signatures for the 

same message. Furthermore the signature method allows an opponent to produce 

arbitrary many message/signature pairs, but the messages he can sign are very 

likely messages he is not interested in. Two messages are said to be equivalent, if 
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they express the same meaning. 

The messages which are signed must have a maximal length of  say c---256 bits. 

Usually messages are longer and are compressed by a hashing function h known to 

parties A and B (Rabin (1978, 1979)). h must be a " g o o d "  hashing function as 

expressed in the following engineering assumption: 

Assumption 1: 

During the lifetime of  the hashing function it is never observed that two mes- 

sages are mapped on the same compressed message. 

Signature algorithm S4J4,,j, (M ) 

input: Message M. 

n and 2 distinct primes p~, p2, where p~ = 4k~-I (iffil,2), such that plpr~n. 

Hashing function h. 

output: Signature s for M. 

secret: The factorization of  n. 

public: (or at least known to other party) 

n,h and an efficient algorithm for signature checking. 

1. Compress message M to a smaller message j ,  so that Iyl<~c by using the hash- 

ing function h. 

2. Compute s, so that s4~j  2 (rood n) .  Lemma B shows that the s computed by 

S :~ j k  mod  n, 

where k ffi 2 k l k 2 - k l - k 2 + l  has the desired property, 

If  gcd( j ,n)>l  (which is very unlikely), then message M should be slightly 

changed before it is signed. 

Complexity of signature production 

Signature production involves applying the hashing function h, plus one k 'h power 

exponentiation modulo n, tc < n. (For low level complexity see Knuth (1969).) 

Complexity of signature checking 

s is the signature of  message M, iff 

s4~-h(M) 2 (rood n). 

Therefore signature checking costs: 

1 application o f  the hashing function h 

1 4" power modulo n 

1 2 "~ power modulo n 
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1 comparison of  numbers  ~< n. 

Complexity of signature forging 

Before we can apply the uniformity result (Corollary 4), we have to make the fol- 

lowing assumption: 

Assumption 2: 

Let M be a message. To find a signature for a message which is equivalent to 

M is as hard as finding a signature for a random message of  length c. 

Theorem 5 

Signature forging when using method s'J 2 is randomly FACTORINGt%-uniform. 

Proof: 

Let M be a message which an opponent would like to sign. The opponent has two 

possibilities: 

a) He can exploit the existence of  the hashing function and use a signature which 

he knows or which he can easily generate. 

This attack is ruled out by assumption 1. 

b) Without using the existence of  the hashing function. 

By assumption 2 this is as hard as finding a signature for a random message of  

length c and therefore (by Corollary 4, with d = 2) signature forging for this 

method is randomly FACTORINGR2-uniform. 

[] 

Security requirement 

A signature for a message M is never sent to a person who already has another 

signature for M. 

In order to satisfy this, it is necessary that e.g. a message which was prepared by 

somebody else who might already have a signature for that message is slightly 

changed in an unpredictable way (without changing the meaning) before it is 

signed. It has to be avoided that the signature algorithm can be misused as a 

square root extraction algorithm. (Recall that s 2 is a square root of  j2 (rood n).) 
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Correction: Jim Finn pointed out that the signature method is 

only safe to use for compressed messages j for which the 

JaGobi symbol (j/n)=l . Hence only one half of the compressed 

messages (not all) can be signed directly. 
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