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Abstract 

In this paper we show how to generate from a short random seed S a long se- 

quence of pseudo-random numbers R i in which the problem of computing one more R i 

value given an arbitrarily large subset of the other values is provably equivalent to 

the cryptanalysis of the associated Rivest-Shamir-Adleman encryption function. 

I. Introduction 

The simplest and safest cryptosystem is undoubtedly the one-time pad, invented 

by G. S. Vernam in 1917. Its secret key is a long sequence of randomly chosen bits. 

A cleartext is encrypted by XOR'ing its bits with an initial segment of the key, and 

the resultant cyphertext is decrypted by XOR'ing its bits again with the same seg- 

ment. Each segment is deleted after a single use, so that the key is gradually 

consumed (see Fig. I). It is easy to show that without knowing the relevant segment 

of the key, a cryptanalyst cannot determine the cleartext, and thus the system is 

secure in theory as well as in practice. 

#i #2 
A 

cleartexts: i i 0 0 1 0 0 0 1 1 ... 

key: 0 1 0 0 1 0 1 1 0 1 0 ... 

cyphertexts: 0 0 1 0 1 1 1 1 0 0 1 ... 

#i #2 

Fig. i 
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The main drawback of one-time pads is the huge key which has to be generated, 

distributed and stored by the communicating parties in complete secrecy. In practice~ 

this truly random key is replaced by a pseudo-random running key derived during the 

encryption/decryption process from an initial seed by a sequence generator such as a 

shift register with non-linear feedbacks. The seed (which is a relatively short 

randomly chosen number describing the initial state of the sequence generator) is the 

only secret element in this scheme, and it can be used in the encryption of an almost 

unbounded number of cleartexts. 

In order to be cryptographically strong, the pseudo-random running key must be 

unpredictable. The main problem is to guarantee that even when the cryptanalyst 

obtains long segments of the running key (by XOR'ing together known cleartext/cypher- 

text pairs) he should have no knowledge whatsoever about any other segment. Note that 

the long running key is deterministically generated from the short seed, and thus 

pure information-theoretic ambiguity arguments become inapplicable once the crypt- 

analyst obtains enough segments. 

The notion of "cryptographic knowledge" is notoriously slippery, and it can be 

defined in any one of the following forms: 

(i) The classical notion: the ability to retrieve the desired value from 

memory. 

(ii) The complexity-theoretic notion: The ability to compute the desired value 

within certain time and space complexity bounds. 

(iii) The information-theoretic notion: the ability to sharpen the a-priori 

probability distribution of candidate values. 

The analysis of pseudo-random sequences in this paper is based on definition (ii). 

Consequently, we do not analyse the statistical biases and autocorrelations of our 

sequences, and we do not consider the possibilXty of obtaining partial information 

about some sequence elements (e.g., that their sum is always even). This is admitted- 

ly a simplified version of reality, but it is the only one about which we were able 

to get concrete results. One of the most challenging open problems of cryptography 

is to develop a unified theory of knowledge that analyses the information/complexity 

tradeoffs of cryptographic systems - how much information can be gained by investing 

a given amount of computational resources. 

While one can argue heuristically that almost any sequence generated by a com- 

plicated multipass randomizing procedure is likely to be cryptographically secure 

under definition (ii), the challenge is to generate a sequence which is provably 

secure. At this stage, complexity theory lacks tools for proving the absolute 

difficulty of computational tasks, and thus a more realistic goal is to develop 

pseudo-random sequence generators which are secure modulo some plausible but unproved 

assumption (such as NP # P , the existence of one-way functions, or the difficulty 
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of factoring integers). By clearly indentifying the fundamental sources of security 

and insecurity, such an analysis can put cryptocomplexity on a firmer theoretical 

basis even when the underlying assumptions are not known to be true. 

II. Schemes Based on One-Way Functions. 

The purpose of this section is to illustrate the trickiness of formal proofs of 

security by analysing some simple schemes based on the notion of one-way functions. 

To simplify the analysis, we axiomatically assume that these functions are permuta- 

tions on some finite universe U , that they are everywhere easy to compute, and that 

they are everywhere difficult to invert (more details on this axiomatic approach can 

be found in Shamir [1980]). 

Given a one-way function f , we can generate a long pseudo-random sequence of 

elements in U by applying f to some standard sequence of arguments derived from 

the initial seed S . This sequence can be as simple as 

S , S+I , S+2 , ... 

and the cryptanalyst is assumed to know f and the general nature of the sequence, 

but not S . The values of f(S+i) are considered as indivisible objects rather than 

as bit strings, since we want to avoid problems of partial knowledge about them. Note 

that unlike the output of shift registers with feedbacks, these sequences do not suffer 

from error propagation problems, since each element is computed separately from its 

index and the seed. 

The difficulty of extracting S from a sin~!e value of f(S+i) is guaranteed 

by the one-way nature of f . However, without further assumption on f one cannot 

formally prove that S cannot be extracted from pairs of values (such as 

f(S), f(S+l)) ° Furthermore, f may be degenerate in the sense that some of its 

values may be directly computable from other values without computing S first. A 

simple example which shows that good one-way functions can be misused as sequence 

generators is supplied by the RSA encryption function (Rivest, Shamir and Adleman 

[1978]): 

EK(M) = ~ (rood N) 

This function is believed to be one-way with repsect to the key K when the message 

M and the modulus N ~re known, but its application to the standard sequence 

M = 2, 3, 4, 5, 6, ... 

generates the sequence 

2K(mod N) , 3K(mod N) , 4K(mod N) , ... 

in which the third element is just the square (mod N) of the first element, the 

fifth element is just the product (mod N) of the first two ~lements, etc. This 

multiplicative degeneracy makes the sequence insecure even though the secret seed K 

remains unknown. 
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A variant of this scheme avoids the problem of multiplicative degeneracy by 

using the sequence of primes as the standard sequence: 

M = 2, 3, 5, 7, ii, ... 

Is the generated sequence secure? We conjecture that it is, but without knowing all 

the potential degeneracies of the RSA function, we are unable to prove any formal 

equivalence between the difficulty of computing K from 2 K (mod N) and (e.g.) the 

difficulty of computing 5 K (mod N) from 2 K (mod N) and 3 K (mod N) . 

Another way (proposed by Rivest [1980]) in which long sequences may be generated 

from one-way functions is to iterate their application to the secret seed S . The 

resultant sequence: 

f(s) , f2(S) = f(f(S)), f3(S) = f(f(f(S))) .... 

is easy to extend in the forward direction (by applying f), but hard to extend back- 

wards (by appSying f-l) . If we pick two secret seeds R and T , generate the two 

sequences fi(R) and fi(T) and XOR pairs of their elements in opposite directions: 

fl(R) O fn(r) , f2(R) ~ fn-l(T),...,fn(R) @ fl(T) , 

we get a sequence which seems to be hard to extend either forwards or backwards. This 

can be formally proved in the following special case: 

Lemma I: If f is a one-way function, then a new element of the sequence cannot be 

computed from a single known element. 

Proof: By contradiction. Assume that for some i # j , fi(R) @ fn-i(T) can be com- 

puted from fJ(R) • fn-J(T) for all choices of the unknown seeds R and T . Our 

goal is to show that given an arbitrary S , f-l(s) can be easily computed, and 

thus f is not a one-way function. 

Without loss of generality, we assume that i < j . We pick a random T , and 

compute S • fn-J(T) . Since f is invertible, there is some (hard to compute) R 

such that S = fJ(R) . By assumption, from S ~ fn-J(T) = fJ(R) • fn-J(T) we can 

compute fi(R) ~ fn-i(T) = fi-J(s) • fn-i(T) . Knowing T , we can compute fn-i(T) 

and thus isolate fi-J(s) . Since j-i is positive, we can easily apply f j-i-i 

times to fi-J(s) to get: 

fJ-i-l(fi-J(s)) = f-l(s ) 

and this is the desired result. 

Q.E.D. 

Unfortunately, the XOR operator which scrambles the two sequences together makes 

it impossible to prove any formal result in more complicated cases. For example, we 

do not know how to prove that f2(R) @ f2(T) cannot be computed from fl(R) ~ f3(T) 

and f3(R) • fl(T) if we only assume that f is hard to invert. 

In view of these difficulties, it is quite remarkable that for one particular 

pseudo-random sequence generator based on the RSA function, we can formally prove that 

no matter how many sequence elements the cryptanalyst gathers, the task of computing 

one more element~:remains just as diffiuclt. The scheme and its proof are described 



548 

in the next section. 

III. TheProposed Scheme. 

The RSA public-key encryption function with modulus N maps the secret cleartext 

M under the publicly known key K to ~ (mod N) . The corresponding decryption 

function recovers the cleartext by taking the K-th root of the cyphertext (mod N) . 

The cryptographic security of the RSA cryptosystem is thus equivalent by definition 

to the difficulty of taking roots mod N . When N is a large composite number with 

unknown factorization, this root problem is believed to be very difficult, but when 

the factorization of N (or Euler's totient function ~(N)) is known and K is 

relatively prime to ~(N) , there is a fast algorithm for solving it. 

Each pseudo-random sequence generator consists of a modulus N and some standard 

easy-to-generate sequence of keys KI,K2, ... such that ~(N) and all the Ki's 

are pairwise relatively prime. As far as we know, the difficulty of the root problem 

is determined by the choice of N but not by the choice of the K.'s and thus 
I 

almost any segment of odd primes (e.g., 3,5,7,11, ...) can be used as the standard 

sequence. 

To actually generate a pseudo-random sequence of values RI,~, .~. , the two 

parties choose a random seed S and use their knowledge of ~(N) to compute the 

sequence of roots: 
I/K ! I/K 2 

h = S (mod N) , ~ = S (mod N) ..... 

The security of this scheme depends only on the secrecy of the factorization of N , 

and thus we can assume that everyone (including the cryptanalyst) knows N , S and 

all the Ki's . Our goal is to prove that the complexity of the root problem remains 

unchanged even when some of the other roots of the same S (mod N) are given for 

free. Without loss of generality, it is enough to consider the following pair of 

problems: 

(i) Given N and S , compute R I • 

(ii) Given N, S, R2, ... R% , compute R I • 

(The sequence of Ki's and the value of ~ are assumed to be fixed 

parameters in these problems). 

Since the difficulty of the root problems fluctuates wildly as N goes from I 

to infinity, we would like to establish the equivalence between the security of the 

RSA cryptosystem and the complexity of our pseudo-random sequences for each value of 

N rather than asymptotically. To deal with these finite problems, we have to con- 

sider their boolean circuit complexities. Unfortunately, for each particular N 

there exists a small circuit that stores the factorization of N and uses it to 

solve all the root problems mod N efficiently. To overcome this difficulty, we lump 
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together all the moduli N of the same binary size n and claim: 

Theorem 2: There is a fixed polynomial P(i,n) such that for any number Z of known 

roots, for any size n of the modulus, and for any circuit CZ, n that 

solves all the instances of problem (ii) of size n , there exists another circuit 
! 

of size at most IC~,nl + P(£,n) that solves all the instances of problem (i) of C n 

size n . 

The peculiar property of the RSA encryption function that makes the proof of this 

theorem possible is: 

Lemma 3: There is a polynomial size circuit that computes from N , A 1 ,..., A£ , 

~l(mo d .. ~ A S N) ,. , S mod N) the value of S °(mod N) where Ao = gcd(A 1 ,..., A£) 

Proof: 

that 

A ° = AIB I +.°.+ A£B£ 

Consequently, 
A ( )BI /A£\ B£ 

S o = sAI '' kS J (mod N) , 

and these exponentiations can be carried out efficiently by the method of repeated 

squarings. 

By Euclid's algorithm, there are (easy to compute) integers B 1 .... , B£ such 

Corollary: If the Ao'S are relatively prime, then 
i 

£ powers by a circuit of polynomial size. 

S itself can be computed from its 

Proof of Theorem 2: 

the K. , we define 
l 

equal to 

powers of 

i/K 2 
(2) T 

1/K~ 

T 

We show how to construct C 

T = S K~2"" "K£(mod N) . S ince  n 

KIK 2 ... K~ 
R 1 (mod N) . The following Z-I 

S : 

from C~, n Given N,S and all 

R I = S I/KI (mod N) , T is also 

numbers can be easily computed as 

KIK3...K £ ~.K% 
= R I = S K3" (mod N) 

KIK2---K~_ 1 --K~_ I 
= R I = S K2" (mod N) 

The values of N,T and (2)...(£) can be fed into C£, n 

of the seed S) , and the output of this circuit is: 

I/K 1 K2...K £ 
(i) T = R 1 (mod N) o 

(with T playing the role 
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Since the Ki's are pairwise relatively prime, the gcd of the ~ exponents of R 1 in 

(i) .,. (~) is 1 , and thus by the corollary of Lemma 3 we can easily compute R 1 

i~self. All the computations of powers in (2) ... (~) and the final extraction of 

R 1 can be done by a circuit whose size is some polynomial in ~ and n , and thus 
T 

the size of C n does not exceed [C£,n[ + P(£,n) 

Q.E.D. 

Practical cryptographic systems must be almost everywhere difficult to break, 

since the existence of an efficient cryptanalytic algorithm which for one percent of 

the keys can decypher one percent of the messages is enough to make the system useless. 

Theorem 2 is not strong enough in the context of cryptocomplexity, since it does not 

rule out the possibility that the RSA function is almost everywhere secure while our 

pseudo-random sequence generator is sometimes (i.e., for many S) breakable. To show 

that this situation is impossible, we have to consider circuits C~, n which are not 

perfect. For each N of size n , we define g(N) to be the f~action of seeds S 

for which C%, n computes the correct value of R I . This success rate depends on 

the circuit, and its v~lue is typically I for easily factorable N . We can now 

use (for the first time) the randomness of S in order to prove: 

Theorem 4: There is a fixed polynomial P(£,n) such that for any circuit C£, n 

that solves some of the instances of problem (ii) of size n with success rate g(N), 

there exists another circuit C'n of size at most ..]C£,n[ +P(£,n) that solves some 

of the instances of problem (i) of size n with success rate at least g(N) . 

Proof: The proof is very similar to the proof of Theorem 2. The new observation we 

need is that when K2, ... K£ and N are fixed, the mapping of S values to T 

K 2 ...K~ 
values represented by T = S (mod N) is a permutation. Consequently, a 

randomly chosen S has a probability of g(N) to yield a T for which the oracle 

C~ answers correctly. Note that while the numbers of easy seeds in problems (i) 

a~an(ii) are guaranteed to be similar, their identities may be completely different. 

Q.E.D. 

The pseudo-random sequence generator we propose is mainly of theoretical inter- 

est, since the modular exponentiation of huge numbers is too time-consuming for most 

practical applications. An interesting open problem is to make the proof technique 

developed in this paper applicable to faster cryptosystems and one-way functions in 

order to create more practical sequence generators with guaranteed complexity. 
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