
THE IMPLICATION PROBLEM FOR DATA DEPENDENCIES

F~end~d Abstract

C. Beeri and M.Y. Vardi

Department of Computer Science
The Hebrew University of Jerusalem

Jerusalem 91904, Israel

ABSTRACT

In this paper we study the implication and the finite implication problems

for data dependencies. When all dependencies are total the problems are equivalent

and solvable but are NP-hard, i.e., probably computationally intractable. For

non-total dependencies the implication problem is unsolvable, and the finite

implication problmm is not even partially solvable. Thus, there can be no formal

system for finite implication. The meta decision problems of deciding for a

given class of dependencies whether the implication problem is solvable or whether

implication is equivalent to finite implication are also unsolvable.

i. INTRODUCTION

One of the important issues in the design of relational database schemas is

the specification of the constraints that the data must satisfy to model correctly

the part of the world under consideration. These constraints determine which

databases are considered meaningful.

Of particular interest are the constraints called datadependencies. The

first class of dependencies to be studied was the class of functional dependencies

[Codd], which was followed by the class of multiva!ued dependencies [Fagl,Zan].

Recently, a number of generalizations of these dependencies have appeared; e.g.,

join dependencies [ABU,Riss], seneral dependencies [J~, and template dependenq!es

[SU]. All these classes are subclasses of the class of tuple and equality

generating dependencies of [BV2~Fag2,YP]. Intuitively, the meaning of a

dependency is that if some tuples, fulfilling certain conditions, exist in the

database, then either some other tuples must also exist therein~ or some values in

the given tuples must be equal.

A utilization of the above dependencies in the design of a relational database

requires algorithms for determining whether a set of dependencies is redundant

Research partially supported by Grant 1849/79 of the U.S.A.-Israel Binational
Science Foundation.

74

([Ber]) and whether two sets of dependencies are equivalent ([BMS~,BeRi]). Both

problems reduce to the imp!ication problem , i.e., the problem of deciding whether

a given set of dependencies logically implies another dependency. The finite

implication~roblem is the problem of implication when only finite relations are

taken into account.

The formalism is that of first order logic. We do not show how the various

dependencies mentioned above can be written in this formalism, and the reader

interested in that aspect is refered to [BV2,Nico]. In fact, we mostly refrain

from using "relational" terminology, and except for a few remarks this paper is

essentially concerned with a fragment of first order logic, which is relevant to

database theory.

This paper is an abridged version of [BVI].

2. DEPENDENCIES

We use the language L(n) of first order logic with equality with no function

symbols and one n-ary predicate symbol. Indexed x's are used for existentially

quantified variable symbols, and indexed y's are used for universally quantified

variable symbols. Indexed v's are syntactical variables ranging over variable

symbols, An atomic formula R(Vl,... ,v~) is called a predicate formula and an

atomic formula v.=v. is called an equality formula. A dependency is a sentence
l j

YYI'" "VYk ~Xl'''~x~(AIA'' .AAp ÷ BIA...ABq), where:

(a) k,p,q ~ i,% ~ 0.

(b) the A's and the B's are atomic formulas.

(c) at least one ~ is a predicate formula.

(d) the set of variables occuring in the A's is the same as the set of

variables occuring in the predicated A's, and is exactly {yl,...,yk }.

(e) the set of variables occuring in the B's contains {x I ,x~}.

Restrictions (c) and (d) ensure that the sentence refers only to the information

contained within the database.

Suppose now that some Ar is yi=Yj. Obviously, we can identify Yi and

wherever they occur in the dependency, and eliminate A r to get an equivalent

dependency, Thus, we can assume

(f) all the A's are predicate formulas.

Yj

Suppose now that some B r is xi=v j. Again, we can identify x i and vj and

eliminate B r to get an equivalent dependency. Thus, we can assume:

75

(g) all equality formulas are of the form yi=Yj.

Finally, recalling that Yy(A ÷ B A C) is equivalent to Vy(A÷B) A vy(A+C),

if y is free in A,B and C, we assume:

(h) either all the B's are predicate formulas or q=l and B 1 is an equa&ity

formula.

Intuitively, the meaning of a dependency is that if some tuples, fulfilling

certain conditions, exist in the database, then either some other tuples must also

exist therein, or some values in the given tuples must be equal.

We now distinguish between several subclasses of dependencies. This is

summarized in the following table°

case

all B's are predicate formulas

q=l and B 1 is an equality formula

~=0 (no existential quantifier)

q=l

p=2 and q=l

many sorted (see definition)

 ame

tuple generating | tgd 1

equality generating I egd
total | td i

i

many to one med I

two to one tod I

many sorted msd~

A dependency is many sorted if no variable occurs in two different argument

positions of the predicate symbol, and only variables which occur in the same

argument position of the predicate symbol can be the arguments of an equality

formula. Almost all dependencies dealt with in the literature are msd's. For

example, for msd's:

(i) an egd with p=2 is a functional dependency [Codd].

(2) a tgd with q=l is a template dependency [SU].

Remark. One may ask whether our syntactic definitions for dependencies can be

replaced by semantic definitions. To a certain degree this can be done [CLM].

However, semantic definitions can characterize only up to logical equivalence, and

the set of first order sentences equivalent to some dependency is not recursive. <>

The dependencies of L(n) are called n-ary dependencies, In studying

decision problems for L(n), n may be either a parameter of the problem or some

fixed value. The class of all dependencies is denoted Dep. In the sequel we

use D to denote a finite set of dependencies and d,d' to denote single

dependencies. In writing down dependencies we usually omit universal quantifiers.

76

3. IMPLICATION PROBLEMS

Let U = <A,R> be a structure for L(n). U finite if A is finite (and

consequently, R is finite). U is semifinite if R is finite (A can be

infinite). U is infinite if R is infinite (and obviously, A is infinite).

U is empty if R is empty, and is trivial if it is empty or if IAI = i. (Note

that A is always assumed to be nonempty).

A set of dependencies D implies a dependency d, denoted D ~ d, if d

holds in all models of D. D semifinitely implies d, denoted D ~f d, if d

holds in all semifinite models of D.

D finitely implies d, denoted

D ~ d, if d holds in all finite models of D. Clearly, real-life databases

are finite, but the domain of values might be conceptually infinite. However,

for dependencies ~f and ~ are equivalent.

Lena i. D ~f d iff D ~ d. <>

are:

(a)

(b)

By Lemma i it suffices to deal with ~ and ~. Our decision problems

The implication problem - for a given D and d, decide whether D ~ d.

The finit.e implicatio n problem - for a given D and d, decide whether

D ~ d.

The (finite) implication problem of type (C I ; C2), where C I and C 2

are classes of dependencies is the (finite) implication problem for D = C I and

d E C 2, That is, for such D,d decide whether D ~(f)d.

As is well-known, both the implication and the finite implication problems

are unsolvable for arbitrary first order sentences. Note that D ~ d entails

D ~ d, but not vice versa, hence, the implication and the finite implication

problems are independent. In fact, their equivalence entails their solvability.

Lemma 2. The following sets are recursively enumerable:

(a) {<D,d> I D ~ d}.

(b) {<D,H> L D ~ d}. <>

Corollary. If for classes of dependencies C 1 and C 2 we have that for

D ~ C i and d 6 C 2, D ~ d iff D ~ d, then the implication problem of type

(C 1 ; C2) is equivalent to the finite implication problem and is solvable. <>

Let us now consider the case where D is the empty set. A dependency d is

trivial if it holds in all structures, denoted ~ d, and is ~initely trivial

77

if it holds in all finite structures, denoted ~ d. Thus, as special cases of

the (finite) implication problem, we get:

(a) The trivialitx prqblem - for a given d, decide whether d is trivial.

(b) The finite triviality problem - for a given d, decide whether d is

finitely trivial.

4. SOME SOLVABLE CASES

If we restrict D to be a set of td's, then the (finite) implication

problem is equivalent to the (finite) validity problem for ~ ~ sentences

(Schonfinkel-Bernays class), whose solvability follows from Lemma 2 [BS].

Theorem i. The implication problem of type (td's ; Dep) is equivalent to the

finite implication problem, and is solvable. <>

As a special case we get the solvability of the (finite) triviality problem.

Theorem 2. A dependency d is trivial iff it is finitely trivial iff

(a) d is a egd and B 1 is yi=Yi , or

(b) d is a tgd and for some substitution sequence 1 ~ il,...,i £ ! k,

{BI, Bq} (xl/Yil , xl/Yil) ~ {A 1 Ap}. <>

A decision procedure for the implication problem of type (td's ; Dep) is

described in [BV2]. In some more restricted cases there is an efficient decision

procedure [BB,Beer,BV2,MSY,Va], but this is not the case in general. We provide

now some upper and lower time bounds.

The following upper bound follows from the complexity analysis of the above

mentioned decision procedure [BV2].

Theorem 3. Let D be a set of n-ary td's with u universal quantifiers, and

let d be an n-ary dependency with p universal quantifiers and e existential

quantifiers. Let s be the number of symbols in D and d. The implication

problem for D and d can be solved in time O(s.p2n+u+e). <>

The following theorems imply that, except in some restricted cases, there is

probably no efficient decision procedure for the implication problem for this

solvable case.

Theorem 4. The triviality problem for tgd's is NP-complete, even for msd's

and binary dependencies.

Proof: In NP: Nondeterministically choose a substitution sequence and check

for the condition of the Theorem 2o

Hard for NP:

78

(a) msd's: reduction from EXACT COVER [Ka].

(b) binary dependencies: reduction from CLIQUE [Ka]. <>

Theorem 5. The set {<d,d'> I d,d' are total mod~s and d ~ d'} is NP-hard

even for msd~s and binary dependencies.

Proof: We use the following NP-complete problems for reduction:

(a) Msd's: reduction from EXACT COVER [Ka]~

(b) Binary dependencies: reduction from CLIQUE [Ka]. <>

Additional results on the complexity of testing implication of msd's can be found

in [BV3].

In some oases solvability follows from the fact that the answer to the

decision problem is trivially negative.

Lemma 3. Let D be a set of tgd's, and let d be an egd, then D ~ d

if and only if D ~ d if and only if d is trivial. <>

For several other solvable cases see [BV2]o

When dealing with implication of tgd's, we can very easily eliminate egd's

from consideration. Let d be the egd yyl...¥Yk(AiA...AAp÷ yg=Yh). Let A

denote the predicate formula R(Yk+l,...,Yk+n), and denote by A(m/Yi) , for

1 < m < n, the result of substituting Yi for Yk+m in A. We associate with d

the following set of tgd's: D 1 is

{¥yl...VYk+n(AiA...AA p A A(m/yg) ÷ A(m/Yh)) I 1 < m < n}, D 2 is defined

similarly, with g and h interchanged, and D d is taken to be the union of
*

D 1 and D 2. Let D be a set of dependencies, we denote by D the result of

replacing each egd d in the set D by D d.

Lemma 4. Let D be a set of dependencies and d a tgd, then D ~ d iff

d d i f f d. < >

It is well known that equality can be eliminated from first-order logic by

adding the equality axioms: reflexivity, s~nnmetry, transitivity and substitutivity.

This can also be applied to dependencies° Actually, we can prove an even stronger

result:

Theorem 6. Let D be a set of dependencies, and let d be a dependency. We

can effectively construct a set of tnple generating rod's D' and a tuple

generating rod d', such that D ~ d if and only if D' ~ d'~ and D ~ d

if and only if D' ~ d', <>

79

5. UNSOLVABILITY RESULTS

The main result of this section is:

Theorem 7. The implication and the finite implication problems are unsolvable. <>

Unsolvability is shown by encoding appropriate unsolvable problems of

equational lo$ic in terms of dependencies.

Let L be the language of first order logic with equality, with function
eq

symbols but no individual constants or predicate symbols. An equation is a

sentence Vyl...VYk(S=t), where s and t are terms of Leq. A conditional

equation is a sentence Yyl...¥Yk(Sl=t I A ... A Sm_ 1 = tm_ 1 ÷ s m = tm), m > I,

where Sl,tl,...,Sm,t m are terms of Leq. Equational logic is a fragment of

first order logic, in which equations and conditional equations are the only

admitted sentences.

Let L 2 be Leq with one binary function symbol g. A conditional

equation of L 2 is simple if it is of the form Vyl...¥Yk(e(1)A...Ae(m-i) ÷ e(m)),
1 2 3

m > i, where e(i) is g(vi,v i) = v i for 1 _< i < m, and e(m) is

vP = v q , 1 < k,~ < m , _ 1 < p,q < 3 . _ _

Lemma 5. For every (conditional) equation of L 2 we can effectively construct an

equivalent simple conditional equation. <>

A structure U=<A, fl,f2,...> for Leq is finite if A is finite, and

is trivial if IAI = i. Clearly, every (conditional) equation has a trivial model.

Non-trivial consistencY is, however, unsolvable.

Theorem 8. [MeKe] The following two problems are unsolvable for L2:

(a) to decide if an equation has a non-trivial model.

(b) to decide if an equation has a non-trivial finite model. <>

Corollary. The above problems are unsolvable even for simple conditional

equations. <>

Equations can be coded by dependencies by replacing functions by their

representing relations. Let U = <A,g> be a structure for L2, i.e., U

groupoid. The representing !elatio___~n for U is a ternary relation

G = {<x,y,z> I z=g(x,y)} .

G satisfies the following condition:

(*) For all x,y, each belonging to some triple in G, there exists a

unique z such that <x,y,z> E G.

Conversely~ any non-empty ternary relation G on a set

a groupoid U = <A,g>, where A = (x I <x,y,z> C G} ~ B,

where z is the unique element such that <x,y,z> C G.

is a

B satisfying (*) defines

and g(x,y) = z,

80

Condition (*) is expressed by the following dependencies:

GI: zx(G(Yl,Y2,Y3) ÷ G(Y2,Y3,X))

G2: zx(G(Yl,Y2,y 3) A G(Y4,Y5,Y 6) ÷ G(Y5,Yl,X))

G3: G(Yl,Y2,y 3) A G(Yl,Y2,y 4) + y3=Y4

Let Eq: Vyl...VYk(e(l) A ... A e(m-l) + e(m)) be a simple conditional

equation. To express it in terms of the representing relation we replace the

equality formula e(i) by the predicate formula E(i): i 2 3 G(vi,vi,vi) to get the

representing dependency dEq: Vyl...Vy k (E(1) A ... A E(m-l) + e(m)).

Lena 6. Let U = <A,g> be a non-trivial (finite) groupoid satisfying a

simple conditional equation Eq, then its representing relation G satisfies

{GI,G2,G3,dEq} . Conversely, if G is a non-trivial (finite) ternary relation

satisfying {GI,G2,G3,dEq} , then it defines a non-trivial (finite) groupoid

satisfying Eq. <>

As an immediate consequence we get:

Theorem 9. The following two problems are unsolvable even for ternary mod's:

(a) to decide if a set of dependencies D has a non-trivial model.

(b) to decide if a set of dependencies D has a non-trivial finite model. <>

This result will serve as a springboard for proving the unsolvability of the

implication and the finite implication problems. However, it does have a

significance by itself, since if a database is described by a set of dependencies

which have no (finite) non-trivial model, then this set is probably semantically

meaningless.

Let Ga be {GI,G2~G3}, and let Gb be Ga (i.e., Gb is the result of

replacing G3 by tgd's as described in Section 4). We define two dependencies:

TI: G(YI'Y2'Y3) + Yl = Y2'

T2: G(Yl,Y2,y 3) A G(Yl,Y4,Y 5) ÷ G(Yl,Y2,Y4)).

Theorem i0. The following sets of ternary tuple generating mod's are not

recursive:

(a) {d I Ca U {d}

(b) {d I Sa U {d}

(c) {d I Gb U {d}

(d) {~ I Gb U {d}

TI},

TI},

> T2},

~f T2},

Proof. A groupoid is trival iff it satisfies the equation

satisfies the equation VxVyvz(g(x,y) : z). Since T1 and

equations, the claim follows by Theorem 8 and Lena 6. <>

WxVy(x = y) iff it

T2 represent these

81

The meaning of the above theorem is that the set of dependencies implying

a specific dependency is not recursive. We are going now to construct a set of

dependencies Gc, such that the set of dependencies implied by Gc is not

recursive.

A group is a groupoid satisfying the following axioms [TMR]:

HI: g(x,g(y,z)) = g(g(x,y),z),

H2: ~z(x = g(y,z)),

H3: ~z(x = g(z,y)).

These axioms are expressed by the following dependencies:

G4: G(Y2,Y3,y 4) A G(Yl,Y4,y 5) A G(Yl,Y2,y 6) + G(Y6,Y3,Yb)),

G5: xx(G(Yl,Y2,Y3) ÷ G(Y2,X,Yl)),

G6: ~x(G(Yl,Y2,Y3) + G(x,Y2,Yl)).

The following theorem is the well-known unsolvability result for the word

problem for groups (e.g. [Bo]).

Theorem ii. The set of conditional equations which holds in all groups in

not recursive. <>

Let Gc be {GI,...,G6} . Using Lemma 5 we get:

Theorem 12. The following set of ternary egd's is not recursive:

{d I gc ~ d}. <>

6. MORE UNSOLVABILITY RESULTS

Actually, we have proved in the previous section a result which is stronger

than Theorem 7.

Theorem 13. The (finite) implication problem for ternary tuple generating mod's

is unsolvable. <>

By using various reduction technique, we can also have:

Theorem 14. The (finite) implication problem for binary tgd's and for 5-ary

tuple generating msd's is unsolvable. <>

Remark. When constants are allowed to appear in dependencies (two constants

suffice), the (finite) implication problem is unsolvable even for 4-ary many-

sorted tuple generating mod's. <>

For some sets of dependencies DI,D2, the set

82

IMPL(DI,D2) = {d I d E D 2 and D I ~ d}

may be recursive. The met a implication problem is to decide, for given

recursive sets of dependencies DI,D2, whether IMPL(DI,D 2) is

recursive.

Theorem 15. The meta implication problem is unsolvable~

Proof. The claim follows from the unsolvability of the meta word problem for

groups [Ra]. <>

Combining our unsolvability results with Lemma 2 we get:

Theorem 16. The following sets are not recursively enumerable:

(a) {<D,H> I D ~ d}

(b) {<D,H> I D ~ d} . <>

From part (a) of the theorem it follows that there is no proof procedure for

finite implication of dependencies, and obviously no sound and complete formal

system for finite implication can be found. In contrast, a proof procedure and

a formal system for implication does exist [BV2,BV4,YP].

By the corollary of Lemma 2, ~ and ~ are not equivalent for

dependencies in general, and by Theorem i they are equivalent for some classes of

dependencies. The implication equivalance problem is to decide, for given

recursive sets of dependencies DI,D2, whether for all d E D 2, D I ~ d iff

D I ~ d.

Theorem 17. The implication equivalence problem is unsolvable.

Proof: The claim follows from the unsolvability of the residual finiteness

problem for groups. [Ra]. <>

We conclude by showing that ~ and ~ are not equivalent even for

binary mod's, though the solvability issue for this class is open. We use

dl,d2,d3,d 4 and ds:

dl:

d2:

d3:

d4:

d5:

Lemma i0.

(a) {dl,d 2 }

(b) {dl,d2,d3}

~x(R(Yl,y 2) ÷ R(Y2,X)),

R(Yl,y 2) A R(Y2,Y 3) ÷ R(Yl,Y3),

R(Yl,y I) A R(Y2,y 3) ÷ R(Y3,Y2),

~x(R(Yl,y 2) ÷ R(x,x))

R(Yl,y 2) ÷ R(Y2,Yl).

d 4 but {dl,d 2) ~ d 4,

d 5 but {dl,d2,d 3) ~ d 5. <>

83

7. CONCLUDING REMARKS

The originators of dependency theory intended to develop a tool for automated

database design. Our lower bounds for (finite) implication indicate that in its

present state the theory is far from being such a tool. Thus, the theory has

not yet passed its "true test", which is "demonstrating its effectiveness in

solving day to day database design problems" [BBG].

It should be noted however, that while unsolvability holds for fairly

restricted classes of dependencies~ we could not extend it for many-sorted mod's,

and, more specifically, to embedded multivalued dependencies ([Fagl]) and embedded

join dependencies ([MMS]). It is known that the (finite) implication problem

for embedded multivalued and join dependencies of any fixed arity is solvable.

It is also known ([YP]) that unsolvability for the class of many-sorted mod's

entails unsolvability for a class which is slightly more general than the class

of embedded join dependencies.

The implication problem is a "local" decision problem. As said in the

introduction, our motivation for studying it was the search for algorithms to

solve "global" decision problems, the equivalence problem and the redundancy

problem. Since D ~ d iff D U {d} ~ ~ D, unsolvability of the

implication problem entails unsolvability of the equivalence problem. This is

not the case for the redundancy problem. That and other "global" decision problems

will be dealt with in a future paper.

Aoknowled~ements.

We are grateful to J. Makowsky for fruitful discussions and to D. Harel

for helpful comments.

REFERENCES

[ABU] Aho, A.V., Beeri, C., Ulman, J.D.: The theory of joins in relational
databases. ACM TODS 4(1979), pp. 297-314.

[BB] Beeri, C., Bernstein, P.A.: Computational problems related to the
design of normal form relational schemas. ACM TODS 4(1979), pp. 30-59.

[BBG] Beeri, C., Bernstein, P.A.~ Goodman, N.: A sophisticate's introduction
to database normalization theory. Prec. 4th Conf. on VLDB, 1978, pp.i13-124.

[Beer] Beeri, C.: On the membership problem for multivalued dependencies.
ACM TODS 5(1980), pp. 241-259.

[Ber] Bernstein, P.A.: Synthesizing third normal form relation from
functional dependencies. ACM TODS 1(1976), pp. 277-298.

[BeRi] Beeri, C., Rissanen, J.: Faithful representation of relational database
schemes. IBM Research Report, San Jose, 1979.

84

[BMSU]

[Be]

[BS]

[BVI]

[BV2]

[BV3]

[BV4]

[CLM]

[Codd]

[Fagl]

[Fag2]

[JP]

[Ka]

[McKe]

[MMS]

[MSY]

[Nico]

IRa]

[Riss]

Baeri, C., Mendelzon, A.O., Sagiv, Y., Ullman, J.D.: Equivalence of
relational database schemes. Prec. llth ACM STOC, 1979, pp. 319-329.

Boone, W.W.: The word problem. Ann. of Math. 70(1959), pp. 207-265.

Bernays, P., Schonfinkel, M.: Zum Eintscheidungsproblem der
Mathematischen Logik. Mat. Annal. 99(1928), pp. 342-372.

Beeri, C., Vardi, M.Y.: The implication problem for data dependencies.
Prec. XPI Workshop, 1980. Also, Research Report, The Hebrew University
of Jerusalem, 1980.

Beerl, C., Vardi, M.Y.: A proof procedure for data dependencies.
Research Report, The Hebrew University of Jerusalem, 1980.

Beeri, C., Vardi, M.Y.: On the complexity of testing implication of
data dependencies. Research Report. The Hebrew University of Jerusalem,
1980.

Beeri, C., Vardi, M.Y.: Axiomatization of tuple and equality generating
dependencies. Research Report, The Hebrew University of Jerusalem, 1981.

Chandra, A.K., Lewis, H.R., Makowsky, J.A.: Embedded implicational
dependencies and their inference problem. Prec. XPI Workshop, 1980.
Revised, Prec. 13th ACM STOC, 1981.

Codd, E.F.: Further normalization of the data base relational model.
in Data Base Systems (R. Rustin, ed.), Prentice-Hall, N.J., 1972,
pp. 33-64.

Fagin, R.: Multivalued dependencies and a new normal form for relational
databases. ACM TODS 2(1977), pp. 262-278.

Fagin, R.: Horn clauses and database dependencies. Prec. 12th ACM STOC,
1980, pp. 123-134.

Janssens, D., Paredaens, J.: General dependencies. Workshop on Formal
Bases for Databases, Toulouse, Dec. 1979.

Karp, R.M.: Reducibility among combinatorial problems, in Complexity
of Computer Computation (R.E. Miller and J.W. Thatcher, eds.) Plenum Press,
1972, pp. 85-103.

McKenzie, R.: On spectra, and the negative solution for identities having
a finite non-trivial model. J. of Symbolic Logic 40(1975), pp. 186-196.

Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing Implications of data
dependencies. ACM TODS 4(1979), pp. 455-469.

M~ier, D., Sagiv, Y., Yannakakls, M.: On the complexity of testing
implications of functional andjoin dependencies, toappear in JACM.

Nicolas, J.M.: First orderlogic formalization for functional,
multivalued and mutual dependencies. Prec. ACM-SIGMOD, 1978, pp. 40-46.

Rabin, M.O.: Recursive unsolvahility of group-theoretic problems.
Ann. of Math. 67(1958), pp. 172-194.

Rissanen, J.: Theory of relations for databases - a tutorial survey.
Prec. 7th Symp. on MFCS, Poland, 1978, Lecture Notes in Computer Science
64, Springer-Verlag, pp. 537-551.

85

[su]

[TMI~]

[Va]

[YP]

[Zan]

Sadri, P., Ullman, J.D.: A complete axiomatization for a large class of
dependencies in relational databases. Proc. 12th ACM STOC, 1980, pp. I17-122.

Tarski, A., Mostowski, A., Robinson, R.M.: Undecidable theories. North-
Holland, Amsterdam, 1953.

Vardi, M.Y. Inferring multivalued dependencies from functional and join
dependencies. Research Report, The Weizmann Institute of Science, 1980.

Yannakakis, M., Papadimitriou, C.: Algebraic dependencies. Proc. 21st
IEEE Symp. on FOCS, 1980, pp. 328-332.

Zaniolo, C.: Analysis and design of relational schemata for database systems.
Technical Report UCLA-ENG-7769, UCLA, 1976.

Related Work

The unsolvability of the (finite) implication problem for 6-ary mod's

and for msd's has been proven independently by Chandra et al. [CLM] by reduction

from the halting problem for two-counter machines. They have also shown that

the implication problem for total tuple generating msd's is logspace complete

in EXPTIME. See also Makowsky's paper in this volume.

