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ABSTRACT 

In this paper we study the implication and the finite implication problems 

for data dependencies. When all dependencies are total the problems are equivalent 

and solvable but are NP-hard, i.e., probably computationally intractable. For 

non-total dependencies the implication problem is unsolvable, and the finite 

implication problmm is not even partially solvable. Thus, there can be no formal 

system for finite implication. The meta decision problems of deciding for a 

given class of dependencies whether the implication problem is solvable or whether 

implication is equivalent to finite implication are also unsolvable. 

i. INTRODUCTION 

One of the important issues in the design of relational database schemas is 

the specification of the constraints that the data must satisfy to model correctly 

the part of the world under consideration. These constraints determine which 

databases are considered meaningful. 

Of particular interest are the constraints called datadependencies. The 

first class of dependencies to be studied was the class of functional dependencies 

[Codd], which was followed by the class of multiva!ued dependencies [Fagl,Zan]. 

Recently, a number of generalizations of these dependencies have appeared; e.g., 

join dependencies [ABU,Riss], seneral dependencies [J~, and template dependenq!es 

[SU]. All these classes are subclasses of the class of tuple and equality 

generating dependencies of [BV2~Fag2,YP]. Intuitively, the meaning of a 

dependency is that if some tuples, fulfilling certain conditions, exist in the 

database, then either some other tuples must also exist therein~ or some values in 

the given tuples must be equal. 

A utilization of the above dependencies in the design of a relational database 

requires algorithms for determining whether a set of dependencies is redundant 
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([Ber]) and whether two sets of dependencies are equivalent ([BMS~,BeRi]). Both 

problems reduce to the imp!ication problem , i.e., the problem of deciding whether 

a given set of dependencies logically implies another dependency. The finite 

implication~roblem is the problem of implication when only finite relations are 

taken into account. 

The formalism is that of first order logic. We do not show how the various 

dependencies mentioned above can be written in this formalism, and the reader 

interested in that aspect is refered to [BV2,Nico]. In fact, we mostly refrain 

from using "relational" terminology, and except for a few remarks this paper is 

essentially concerned with a fragment of first order logic, which is relevant to 

database theory. 

This paper is an abridged version of [BVI]. 

2. DEPENDENCIES 

We use the language L(n) of first order logic with equality with no function 

symbols and one n-ary predicate symbol. Indexed x's are used for existentially 

quantified variable symbols, and indexed y's are used for universally quantified 

variable symbols. Indexed v's are syntactical variables ranging over variable 

symbols, An atomic formula R(Vl,... ,v~) is called a predicate formula and an 

atomic formula v.=v. is called an equality formula. A dependency is a sentence 
l j 

YYI'" "VYk ~Xl'''~x~(AIA'' .AAp ÷ BIA...ABq), where: 

(a) k,p,q ~ i,% ~ 0. 

(b) the A's and the B's are atomic formulas. 

(c) at least one ~ is a predicate formula. 

(d) the set of variables occuring in the A's is the same as the set of 

variables occuring in the predicated A's, and is exactly {yl,...,yk }. 

(e) the set of variables occuring in the B's contains {x I .... ,x~}. 

Restrictions (c) and (d) ensure that the sentence refers only to the information 

contained within the database. 

Suppose now that some Ar is yi=Yj. Obviously, we can identify Yi and 

wherever they occur in the dependency, and eliminate A r to get an equivalent 

dependency, Thus, we can assume 

(f) all the A's are predicate formulas. 

Yj 

Suppose now that some B r is xi=v j. Again, we can identify x i and vj and 

eliminate B r to get an equivalent dependency. Thus, we can assume: 
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(g) all equality formulas are of the form yi=Yj. 

Finally, recalling that Yy(A ÷ B A C) is equivalent to Vy(A÷B) A vy(A+C), 

if y is free in A,B and C, we assume: 

(h) either all the B's are predicate formulas or q=l and B 1 is an equa&ity 

formula. 

Intuitively, the meaning of a dependency is that if some tuples, fulfilling 

certain conditions, exist in the database, then either some other tuples must also 

exist therein, or some values in the given tuples must be equal. 

We now distinguish between several subclasses of dependencies. This is 

summarized in the following table° 

case 

all B's are predicate formulas 

q=l and B 1 is an equality formula 

~=0 (no existential quantifier) 

q=l 

p=2 and q=l 

many sorted (see definition) 

 ame 

tuple generating | tgd 1 

equality generating I egd 
total | td i 

i 

many to one med I 

two to one tod I 

many sorted msd~ 

A dependency is many sorted if no variable occurs in two different argument 

positions of the predicate symbol, and only variables which occur in the same 

argument position of the predicate symbol can be the arguments of an equality 

formula. Almost all dependencies dealt with in the literature are msd's. For 

example, for msd's: 

(i) an egd with p=2 is a functional dependency [Codd]. 

(2) a tgd with q=l is a template dependency [SU]. 

Remark. One may ask whether our syntactic definitions for dependencies can be 

replaced by semantic definitions. To a certain degree this can be done [CLM]. 

However, semantic definitions can characterize only up to logical equivalence, and 

the set of first order sentences equivalent to some dependency is not recursive. <> 

The dependencies of L(n) are called n-ary dependencies, In studying 

decision problems for L(n), n may be either a parameter of the problem or some 

fixed value. The class of all dependencies is denoted Dep. In the sequel we 

use D to denote a finite set of dependencies and d,d' to denote single 

dependencies. In writing down dependencies we usually omit universal quantifiers. 
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3. IMPLICATION PROBLEMS 

Let U = <A,R> be a structure for L(n). U finite if A is finite (and 

consequently, R is finite). U is semifinite if R is finite (A can be 

infinite). U is infinite if R is infinite (and obviously, A is infinite). 

U is empty if R is empty, and is trivial if it is empty or if IAI = i. (Note 

that A is always assumed to be nonempty). 

A set of dependencies D implies a dependency d, denoted D ~ d, if d 

holds in all models of D. D semifinitely implies d, denoted D ~f d, if d 

holds in all semifinite models of D. 

D finitely implies d, denoted 

D ~ d, if d holds in all finite models of D. Clearly, real-life databases 

are finite, but the domain of values might be conceptually infinite. However, 

for dependencies ~f and ~ are equivalent. 

Lena i. D ~f d iff D ~ d. <> 

are: 

(a) 

(b) 

By Lemma i it suffices to deal with ~ and ~. Our decision problems 

The implication problem - for a given D and d, decide whether D ~ d. 

The finit.e implicatio n problem - for a given D and d, decide whether 

D ~ d. 

The (finite) implication problem of type (C I ; C2), where C I and C 2 

are classes of dependencies is the (finite) implication problem for D = C I and 

d E C 2, That is, for such D,d decide whether D ~(f)d. 

As is well-known, both the implication and the finite implication problems 

are unsolvable for arbitrary first order sentences. Note that D ~ d entails 

D ~ d, but not vice versa, hence, the implication and the finite implication 

problems are independent. In fact, their equivalence entails their solvability. 

Lemma 2. The following sets are recursively enumerable: 

(a) {<D,d> I D ~ d}. 

(b) {<D,H> L D ~ d}. <> 

Corollary. If for classes of dependencies C 1 and C 2 we have that for 

D ~ C i and d 6 C 2, D ~ d iff D ~ d, then the implication problem of type 

(C 1 ; C2) is equivalent to the finite implication problem and is solvable. <> 

Let us now consider the case where D is the empty set. A dependency d is 

trivial if it holds in all structures, denoted ~ d, and is ~initely trivial 
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if it holds in all finite structures, denoted ~ d. Thus, as special cases of 

the (finite) implication problem, we get: 

(a) The trivialitx prqblem - for a given d, decide whether d is trivial. 

(b) The finite triviality problem - for a given d, decide whether d is 

finitely trivial. 

4. SOME SOLVABLE CASES 

If we restrict D to be a set of td's, then the (finite) implication 

problem is equivalent to the (finite) validity problem for ~ ~ sentences 

(Schonfinkel-Bernays class), whose solvability follows from Lemma 2 [BS]. 

Theorem i. The implication problem of type (td's ; Dep) is equivalent to the 

finite implication problem, and is solvable. <> 

As a special case we get the solvability of the (finite) triviality problem. 

Theorem 2. A dependency d is trivial iff it is finitely trivial iff 

(a) d is a egd and B 1 is yi=Yi , or 

(b) d is a tgd and for some substitution sequence 1 ~ il,...,i £ ! k, 

{BI, .... Bq} (xl/Yil , .... xl/Yil ) ~ {A 1 ..... Ap}. <> 

A decision procedure for the implication problem of type (td's ; Dep) is 

described in [BV2]. In some more restricted cases there is an efficient decision 

procedure [BB,Beer,BV2,MSY,Va], but this is not the case in general. We provide 

now some upper and lower time bounds. 

The following upper bound follows from the complexity analysis of the above 

mentioned decision procedure [BV2]. 

Theorem 3. Let D be a set of n-ary td's with u universal quantifiers, and 

let d be an n-ary dependency with p universal quantifiers and e existential 

quantifiers. Let s be the number of symbols in D and d. The implication 

problem for D and d can be solved in time O(s.p2n+u+e). <> 

The following theorems imply that, except in some restricted cases, there is 

probably no efficient decision procedure for the implication problem for this 

solvable case. 

Theorem 4. The triviality problem for tgd's is NP-complete, even for msd's 

and binary dependencies. 

Proof: In NP: Nondeterministically choose a substitution sequence and check 

for the condition of the Theorem 2o 

Hard for NP: 
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(a) msd's: reduction from EXACT COVER [Ka]. 

(b) binary dependencies: reduction from CLIQUE [Ka]. <> 

Theorem 5. The set {<d,d'> I d,d' are total mod~s and d ~ d'} is NP-hard 

even for msd~s and binary dependencies. 

Proof: We use the following NP-complete problems for reduction: 

(a) Msd's: reduction from EXACT COVER [Ka]~ 

(b) Binary dependencies: reduction from CLIQUE [Ka]. <> 

Additional results on the complexity of testing implication of msd's can be found 

in [BV3]. 

In some oases solvability follows from the fact that the answer to the 

decision problem is trivially negative. 

Lemma 3. Let D be a set of tgd's, and let d be an egd, then D ~ d 

if and only if D ~ d if and only if d is trivial. <> 

For several other solvable cases see [BV2]o 

When dealing with implication of tgd's, we can very easily eliminate egd's 

from consideration. Let d be the egd yyl...¥Yk(AiA...AAp÷ yg=Yh ). Let A 

denote the predicate formula R(Yk+l,...,Yk+n), and denote by A(m/Yi) , for 

1 < m < n, the result of substituting Yi for Yk+m in A. We associate with d 

the following set of tgd's: D 1 is 

{¥yl...VYk+n(AiA...AA p A A(m/yg) ÷ A(m/Yh)) I 1 < m < n}, D 2 is defined 

similarly, with g and h interchanged, and D d is taken to be the union of 
* 

D 1 and D 2. Let D be a set of dependencies, we denote by D the result of 

replacing each egd d in the set D by D d. 

Lemma 4. Let D be a set of dependencies and d a tgd, then D ~ d iff 

d d i f f  d.  < >  

It is well known that equality can be eliminated from first-order logic by 

adding the equality axioms: reflexivity, s~nnmetry, transitivity and substitutivity. 

This can also be applied to dependencies° Actually, we can prove an even stronger 

result: 

Theorem 6. Let D be a set of dependencies, and let d be a dependency. We 

can effectively construct a set of tnple generating rod's D' and a tuple 

generating rod d', such that D ~ d if and only if D' ~ d'~ and D ~ d 

if and only if D' ~ d', <> 
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5. UNSOLVABILITY RESULTS 

The main result of this section is: 

Theorem 7. The implication and the finite implication problems are unsolvable. <> 

Unsolvability is shown by encoding appropriate unsolvable problems of 

equational lo$ic in terms of dependencies. 

Let L be the language of first order logic with equality, with function 
eq 

symbols but no individual constants or predicate symbols. An equation is a 

sentence Vyl...VYk(S=t), where s and t are terms of Leq. A conditional 

equation is a sentence Yyl...¥Yk(Sl=t I A ... A Sm_ 1 = tm_ 1 ÷ s m = tm), m > I, 

where Sl,tl,...,Sm,t m are terms of Leq. Equational logic is a fragment of 

first order logic, in which equations and conditional equations are the only 

admitted sentences. 

Let L 2 be Leq with one binary function symbol g. A conditional 

equation of L 2 is simple if it is of the form Vyl...¥Yk(e(1)A...Ae(m-i ) ÷ e(m)), 
1 2 3 

m > i, where e(i) is g(vi,v i) = v i for 1 _< i < m, and e(m) is 

vP = v q , 1 < k,~ < m , _  1 < p,q < 3 . _  _ 

Lemma 5. For every (conditional) equation of L 2 we can effectively construct an 

equivalent simple conditional equation. <> 

A structure U=<A, fl,f2,...> for Leq is finite if A is finite, and 

is trivial if IAI = i. Clearly, every (conditional) equation has a trivial model. 

Non-trivial consistencY is, however, unsolvable. 

Theorem 8. [MeKe] The following two problems are unsolvable for L2: 

(a) to decide if an equation has a non-trivial model. 

(b) to decide if an equation has a non-trivial finite model. <> 

Corollary. The above problems are unsolvable even for simple conditional 

equations. <> 

Equations can be coded by dependencies by replacing functions by their 

representing relations. Let U = <A,g> be a structure for L2, i.e., U 

groupoid. The representing !elatio___~n for U is a ternary relation 

G = {<x,y,z> I z=g(x,y)} . 

G satisfies the following condition: 

(*) For all x,y, each belonging to some triple in G, there exists a 

unique z such that <x,y,z> E G. 

Conversely~ any non-empty ternary relation G on a set 

a groupoid U = <A,g>, where A = (x I <x,y,z> C G} ~ B, 

where z is the unique element such that <x,y,z> C G. 

is a 

B satisfying (*) defines 

and g(x,y) = z, 
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Condition (*) is expressed by the following dependencies: 

GI: zx(G(Yl,Y2,Y3) ÷ G(Y2,Y3,X)) 

G2: zx(G(Yl,Y2,y 3) A G(Y4,Y5,Y 6) ÷ G(Y5,Yl,X)) 

G3: G(Yl,Y2,y 3) A G(Yl,Y2,y 4) + y3=Y4 

Let Eq: Vyl...VYk(e(l ) A ... A e(m-l) + e(m)) be a simple conditional 

equation. To express it in terms of the representing relation we replace the 

equality formula e(i) by the predicate formula E(i): i 2 3 G(vi,vi,vi) to get the 

representing dependency dEq: Vyl...Vy k (E(1) A ... A E(m-l) + e(m)). 

Lena 6. Let U = <A,g> be a non-trivial (finite) groupoid satisfying a 

simple conditional equation Eq, then its representing relation G satisfies 

{GI,G2,G3,dEq} . Conversely, if G is a non-trivial (finite) ternary relation 

satisfying {GI,G2,G3,dEq} , then it defines a non-trivial (finite) groupoid 

satisfying Eq. <> 

As an immediate consequence we get: 

Theorem 9. The following two problems are unsolvable even for ternary mod's: 

(a) to decide if a set of dependencies D has a non-trivial model. 

(b) to decide if a set of dependencies D has a non-trivial finite model. <> 

This result will serve as a springboard for proving the unsolvability of the 

implication and the finite implication problems. However, it does have a 

significance by itself, since if a database is described by a set of dependencies 

which have no (finite) non-trivial model, then this set is probably semantically 

meaningless. 

Let Ga be {GI,G2~G3}, and let Gb be Ga (i.e., Gb is the result of 

replacing G3 by tgd's as described in Section 4). We define two dependencies: 

TI: G(YI'Y2'Y3) + Yl = Y2' 

T2: G(Yl,Y2,y 3) A G(Yl,Y4,Y 5) ÷ G(Yl,Y2,Y4)). 

Theorem i0. The following sets of ternary tuple generating mod's are not 

recursive: 

(a) {d I Ca U {d} 

(b) {d I Sa U {d} 

(c) {d I Gb U {d} 

(d) {~ I Gb U {d} 

TI}, 

TI}, 

> T2}, 

~f T2}, 

Proof. A groupoid is trival iff it satisfies the equation 

satisfies the equation VxVyvz(g(x,y) : z). Since T1 and 

equations, the claim follows by Theorem 8 and Lena 6. <> 

WxVy(x = y) iff it 

T2 represent these 
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The meaning of the above theorem is that the set of dependencies implying 

a specific dependency is not recursive. We are going now to construct a set of 

dependencies Gc, such that the set of dependencies implied by Gc is not 

recursive. 

A group is a groupoid satisfying the following axioms [TMR]: 

HI: g(x,g(y,z)) = g(g(x,y),z), 

H2: ~z(x = g(y,z)), 

H3: ~z(x = g(z,y)). 

These axioms are expressed by the following dependencies: 

G4: G(Y2,Y3,y 4) A G(Yl,Y4,y 5) A G(Yl,Y2,y 6) + G(Y6,Y3,Yb)), 

G5: xx(G(Yl,Y2,Y3) ÷ G(Y2,X,Yl)), 

G6: ~x(G(Yl,Y2,Y3) + G(x,Y2,Yl) ). 

The following theorem is the well-known unsolvability result for the word 

problem for groups (e.g. [Bo]). 

Theorem ii. The set of conditional equations which holds in all groups in 

not recursive. <> 

Let Gc be {GI,...,G6} . Using Lemma 5 we get: 

Theorem 12. The following set of ternary egd's is not recursive: 

{d I gc ~ d}. <> 

6. MORE UNSOLVABILITY RESULTS 

Actually, we have proved in the previous section a result which is stronger 

than Theorem 7. 

Theorem 13. The (finite) implication problem for ternary tuple generating mod's 

is unsolvable. <> 

By using various reduction technique, we can also have: 

Theorem 14. The (finite) implication problem for binary tgd's and for 5-ary 

tuple generating msd's is unsolvable. <> 

Remark. When constants are allowed to appear in dependencies (two constants 

suffice), the (finite) implication problem is unsolvable even for 4-ary many- 

sorted tuple generating mod's. <> 

For some sets of dependencies DI,D2, the set 
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IMPL(DI,D2) = {d I d E D 2 and D I ~ d} 

may be recursive. The met a implication problem is to decide, for given 

recursive sets of dependencies DI,D2, whether IMPL(DI,D 2) is 

recursive. 

Theorem 15. The meta implication problem is unsolvable~ 

Proof. The claim follows from the unsolvability of the meta word problem for 

groups [Ra]. <> 

Combining our unsolvability results with Lemma 2 we get: 

Theorem 16. The following sets are not recursively enumerable: 

(a) {<D,H> I D ~ d} 

(b) {<D,H> I D ~ d} . <> 

From part (a) of the theorem it follows that there is no proof procedure for 

finite implication of dependencies, and obviously no sound and complete formal 

system for finite implication can be found. In contrast, a proof procedure and 

a formal system for implication does exist [BV2,BV4,YP]. 

By the corollary of Lemma 2, ~ and ~ are not equivalent for 

dependencies in general, and by Theorem i they are equivalent for some classes of 

dependencies. The implication equivalance problem is to decide, for given 

recursive sets of dependencies DI,D2, whether for all d E D 2, D I ~ d iff 

D I ~ d. 

Theorem 17. The implication equivalence problem is unsolvable. 

Proof: The claim follows from the unsolvability of the residual finiteness 

problem for groups. [Ra]. <> 

We conclude by showing that ~ and ~ are not equivalent even for 

binary mod's, though the solvability issue for this class is open. We use 

dl,d2,d3,d 4 and ds: 

dl: 

d2: 

d3: 

d4: 

d5: 

Lemma i0. 

(a) {dl,d 2 } 

(b) {dl,d2,d3} 

~x(R(Yl,y 2) ÷ R(Y2,X)), 

R(Yl,y 2) A R(Y2,Y 3) ÷ R(Yl,Y3), 

R(Yl,y I) A R(Y2,y 3) ÷ R(Y3,Y2), 

~x(R(Yl,y 2) ÷ R(x,x)) 

R(Yl,y 2) ÷ R(Y2,Yl). 

d 4 but {dl,d 2) ~ d 4, 

d 5 but {dl,d2,d 3) ~ d 5. <> 
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7. CONCLUDING REMARKS 

The originators of dependency theory intended to develop a tool for automated 

database design. Our lower bounds for (finite) implication indicate that in its 

present state the theory is far from being such a tool. Thus, the theory has 

not yet passed its "true test", which is "demonstrating its effectiveness in 

solving day to day database design problems" [BBG]. 

It should be noted however, that while unsolvability holds for fairly 

restricted classes of dependencies~ we could not extend it for many-sorted mod's, 

and, more specifically, to embedded multivalued dependencies ([Fagl]) and embedded 

join dependencies ([MMS]). It is known that the (finite) implication problem 

for embedded multivalued and join dependencies of any fixed arity is solvable. 

It is also known ([YP]) that unsolvability for the class of many-sorted mod's 

entails unsolvability for a class which is slightly more general than the class 

of embedded join dependencies. 

The implication problem is a "local" decision problem. As said in the 

introduction, our motivation for studying it was the search for algorithms to 

solve "global" decision problems, the equivalence problem and the redundancy 

problem. Since D ~ d iff D U {d} ~ ~ D, unsolvability of the 

implication problem entails unsolvability of the equivalence problem. This is 

not the case for the redundancy problem. That and other "global" decision problems 

will be dealt with in a future paper. 
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The unsolvability of the (finite) implication problem for 6-ary mod's 

and for msd's has been proven independently by Chandra et al. [CLM] by reduction 

from the halting problem for two-counter machines. They have also shown that 

the implication problem for total tuple generating msd's is logspace complete 

in EXPTIME. See also Makowsky's paper in this volume. 


